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ERRATA CORRIGE 

Stochastic Differential Games: 
Occupation Measure Based Approach 

V. S. BORKAR l AND M.  K.  GHOSH 2 

C o m m u n i c a t e d  b y  M.  P a c h t e r  

Abstract. An error in the proof of Theorem 4.1 of Ref. 1 is corrected. 
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The proof  of  Theorem 4.1 in Ref. I is incorrect. The crux of  the proof  
is based on a minimax theorem due to Fan (Theorem 3 of  Ref. 2). To use 
Theorem 3 of  Ref. 2, we need to show that the map 

(Or,  v 2 ) f f M l  • M2-*Rx[Vl, v2](Tr) (1) 

(see Ref. 1 for notation and other details) is continuous. But in Ref. 1 we 
have only shown that the above map is continuous in each argument. Thus, 
there was an error in using Theorem 3 of  Ref. 2. The proof  can be salvaged 
if we make the following assumption: 

rh(x, Ul, u2)= r hi(x, Ul)+ r~2(x, u2), (2a) 

F(x, Ul, u2) = fl(X, Ul) + f2(x, u2), (2b) 

where rhi: Ndx V ~ R  a, f,-: Ndx V,-~R, i=  1, 2 satisfy the same conditions as 
fit and ~. Under this assumption, the map (1) is continuous as shown in 
Section 5 of  Ref. 1. Thus, the proof  of  Theorem 4.1 of  Ref. 1 would be 
valid. 
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We would like to mention that Theorem 4.1 in Ref. 1 is true without 
Assumption (2) above. Here, we indicate a proof very briefly. Using the 
techniques involving quasilinear p.d.e. (see Chapter 4, Ref. 3; see also the 
Appendix of Ref. 4, where analogous arguments are used) and a minimax 
theorem due to Fan (Theorem 1, Ref. 5), one can show that the Isaacs 
equation [Eq. (43) in Ref. 1], 

X~b (x) = min max [Lv,.v2q~ (x) + r(x, vl,/22)] 
O2 Ol 

= max min [L~,,~2~b (x) + r(x, vl, v2)], (3) 
~)1 O2 

has a unique solution in C2(~ u) c~ Cb(~a). The unique solution of this equa- 
tion will be the value of the game with the discounted payoff criterion. Using 
this solution, Theorem 4.3 of Ref. 1 is valid, which would in turn provide 
a proof of Theorem 4.1 of Ref. 1. 

Again for the same reason, the proof of Theorem 4.4 in Ref. 1 is 
incorrect. The proof can be salvaged by Assumption (2) above. However, 
all the results in Section 4.2 in Ref. 1 are valid without this extra assumption. 
Using the unique solution of Eq. (3), we can modify the arguments in Section 
4.2 in Ref. 1 to derive all the desired results. 
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