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Abstract. This work investigates data structures for representing and manipulating 
d-dimensional geometric objects for arbitrary d >_ 1. A class of geometric objects is 
defined, the "subdivided d-manifolds," which is large enough to encompass many 
applications. A new representation is given for such objects, the "cell-tuple structure," 
which provides direct access to topological structure, ordering information among 
cells, the topological dual, and boundaries. 

The cell-tuple structure gives a simple, uniform representation of subdivided 
manifolds which unifies the existing work in the field and provides intuitive clarity 
in all dimensions. The dual subdivision, and boundaries, are represented consistently. 

This work has direct applications in solid modeling, computer graphics, and 
computational geometry. 

1. Introduction 

Many computational models of physical and mathematical phenomena describe 
objects as a set of simple building blocks connected by some proximity relation. 
This allows the separation of the description of geometry (the °'shape" of the 
building blocks) from topology (the relation between the building blocks). While 
there are a great variety of different geometric descriptions, many models use 
basically the same topological framework. The class of "subdivided d-manifolds" 
defined in Section 3 gives such a topological framework and allows a very general 
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Fig. 1. Example of two topologically equivalent objects: Two subdivided manifolds are equivalent if 
there is a homeomorphism between them carrying k-cells onto k-cells (see Section 3~. 

geometric structure. The basic building blocks in subdivided manifolds are 
k-dimensional cells, where 0 < k <_ d. 

A basic requirement of any representation is that it represent topological 
structure up to equivalence. As an example, the two objects in Fig. 1 are considered 
to be equivalent. The definition of topological equivalence is given in Section 3. 

It  is also useful to have access to several other properties. A number of 
computat ional  geometry algorithms use ordering information, for example: the 
only known optimal three-dimensional convex hull algorithm [29]; the divide- 
and-conquer method (one optimal algorithm) for building the two-dimensional 
Voronoi diagram [16], [19], [33]; and one way of describing the optimal 
algorithm for constructing the two-dimensional arrangement [6] (the other 
method is given in [13]). Figure 2 shows, within a subdivision of a surface: (a) an 
ordering of the edges and faces I incident to a vertex, and (b) an ordering of the 
vertices and edges incident to a face. Figure 3 shows, within a subdivision of a 
three-dimensional object: (a) an ordering of the faces and volumes incident to an 
edge, (b) an ordering of the edges and faces incident to both a vertex and a 
volume, and (c) an ordering of the vertices and edges incident to a face. These 
kinds of ordering are unified and generalized to d-dimensions in Section 7. 

Given a subdivision of an object, it is sometimes useful to have access to the 
topological dual of that subdivision. A classic example in computational  geometry 
is the duality between the Voronoi diagram and the Delaunay diagram. In rough 

Fig. 2. Examples of order in two dimensions: (a) an ordering of the edges and faces incident to a 
vertex; (b) an ordering of the vertices and edges incident to a face. 

t The term "face" is used in two different ways in this paper: to denote a two-dimensional cell in 
a two- or three-dimensional subdivided manifold; or to denote a subcell of a simplex. 
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Fig. 3. Examples of order in three dimensions: (a) an ordering of the faces and volumes incident to 
an edge; (b) an ordering of the edges and faces incident to both a vertex and a volume; (c) an ordering 
of the vertices and edges incident to a face. 

terms, the dual of a subdivided d-dimensional object is a subdivision of the same 
object produced by replacing every k-dimensional cell by a (d - k)-dimensional 
cell, while maintaining the corresponding incidence relations. An example is given 
in Fig. 4 (the original subdivision is depicted by solid lines and solid circles, while 
the dual is shown by dashed lines and open circles). 

The objects encountered when modeling real-world phenomena often have 
boundaries, so to be useful in practice, a representation must be able to handle 
boundaries consistently. Figure 5 gives an example of an object and its boundary. 

In the field of computational geometry, the most widely used and longest- 
standing representation of topological structure is the incidence graph [12], [15], 
[32]. This is a graph containing a node for every cell in an object, with arcs 
connecting nodes if the corresponding cells are incident and differ in dimension 
by one. The incidence graph does not provide any direct access to ordering 
information. Accessing ordering information requires searching in the graph, or 
the addition of auxiliary data structures, e.g., linked lists. 
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Fil. 4. Example of the dual, The original sule~tivision is depicted bY solid lines and solid circles, while 
the dual is shown by dashed lines and open circles. Note the one-to-one correspondences between 
original faces and dual vertices, between original edges and dual edges, and between original vertices 
and dual faces. 
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A subdivided Its boundary manifold-with-boundary 

Fig. 5. Example of an object and its boundary. 

In the case of two-dimensions, ordering information may be attached to edges; 
such edge-based schemes [2,1, [7!, [25,1 work out nicely because an edge is always 
incident to at most two faces and to at most two vertices. Similar work appears 
in the context of constructive solid geometry, where one method of representing 
solid (three-dimensional) objects is to represent their boundaries (e.g., [1,1, [3,1, 
[t  1,1, and [23]). Other work on representing subdivided surfaces appears in [10,1, 
[14,1, [20,1, and [34,1. For a comparative analysis of edge-based representations, 
see the work of Weiler [38,1, [39,1. 

In 1984 Guibas and Stolifi [16,1 introduced the "edge algebra," which uses a 
single basic unit (the directed, oriented edge), together with three simple operators, 
to represent the structure of, and ordering in, subdivisions of surfaces (2-manifolds). 
Faces and vertices are represented implicitly by "rings" of directed, oriented edges. 
The edge algebra can be characterized in an abstract setting as a finite set with 
three operators (following certain rules) acting on them. A one-to-one corre- 
spondence is shown between subdivided 2-manifolds and abstract edge algebras. 
The development includes an explicit representation of the dual subdivision, 
allowing symmetric access to the dual. Two primitive constructors are given for 
creating and combining edge algebras, capable of producing the edge algebra 
corresponding to any subdivided 2-manifold. The implementation of the edge 
algebra is called the "quad-edge data structure." 

In 1987 Dobkin and Laszlo [9,1 gave a generalization of this new idea to the 
three-dimensional case. They use a single basic unit, the "facet-edge," along with 
a set of five operators for moving within the structure, and four constructors. A 
somewhat similar data structure was described by Buckley [5]. 

One of the main properties of the new approach opened up by Guibas, Stolfi, 
Dobkin, and Laszlo is that it represents cells implicitly (by certain sets of basic 
elements). For this reason, the representations developed in this new line of 
research will be referred to as "implicit-cell representations," and the more 
conventional approaches will be referred to as "explicit-cell representations." 

This paper is concerned with generalizing the implicit-cell approach to the 
general case of arbitrary dimension. Similar work has been done independently 
by Lienhardt [21,1; while the approach and the class of objects considered in his 
work is different from that in this work, the underlying idea is the same. The main 



Representing Geometric Structures in d Dimensions 391 

difference is that the present work defines and uses the class of subdivided 
manifolds, which allows a simple desciption of the basic elements and operators, 
and allows the results given by the three main theorems of this paper. The work 
of Tits [36] also contains a similar idea in an entirely different context, proving 
properties of mathematical objects called "buildings." 

The present work introduces the "cell-tuple structure," a new representation 
of d-dimensional geometric objects, which contains in an easily accessible form 
the topological structure, ordering information, the dual, and boundaries. The 
basic elements are (d + 1)-tuples of cells, and the basic operators act on the 
components of these tuples in a natural way. Part of this work is the careful 
identification of an appropriate class of geometric objects, the subdivided mani- 
folds, which encompass a large class of natural objects. 

The main results are given as three theorems. The first theorem shows a 
relationship between sets of incident cells in a subdivided manifold and orbits of 
cell-tuples in its cell-tuple structure, which allows a simple description of many 
natural decompositions of objects and gives a unifying framework for existing 
representations. The second theorem shows that both the incidence graph and the 
cell-tuple structure are powerful enough to represent subdivided manifolds up to 
topological equivalence. The third theorem shows that circular orderings of cells 
exist in subdivided d-manifolds for all 1 < k _<_< d: given a (k - 2)-dimensional cell 
which is incident to a (k + 1)-dimensional cell, there is a simple closed path 
encountering each of the cells "between" them exactly once. 

To prove the theorems, the "generalized barycentric subdivision" of a sub- 
divided manifold is defined. This gives the connection between the "continuous" 
subdivided manifolds and the "discrete" cell-tuple structure, and is essential to 
understanding implicit-cell representations and seeing the basic similarity which 
they all share. 

The cell-tuple structure may be implemented in several ways: as a set of 
abstract entities acted on by operators following "algebraic" rules; as a regular, 
arc-labeled graph; or as a data base acted on by relational queries. The "ring of 
cells" in any ordering can be obtained by a straightforward application of the 
basic operators. Each cell-tuple contains "positional" information, e.g., which 
endpoint of an edge you are near, which side of a face you are on, etc. Constructors 
are defined for creating and manipulating subdivided manifolds. 

2. Problems with the Combinatorial Approach in Higher Dimensions 

The representations of topological structure considered in this paper are combina- 
torial in nature, in that they are discrete structures representing relations between 
cells. One of the nice properties of the existing schemes in two dimensions (e.g., 
[16]) is that they are complete and unambiguous: a one-to-one correspondence 
may be established between all subdivided 2-manifolds (surfaces) and all valid 
instances of a combinatorial representation. While it would be nice to keep this 
property when generalizing to higher dimensions, it is unlikely that this will be 
possible. 
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While all surfaces may be characterized combinatoriaUy by the classification 
theorem for sufaces [8], [35], there is no corresponding classification theorem for 
d-manifolds for any d > 3. A famous problem in mathematics is whether the 
Poincar6 conjecture [28] is true or false: that among 3-manifolds the 3-sphere is 
characterized by having a trivial fundamental group. 2 Since there is currently no 
way to identify the 3-sphere combinatorially, it is unlikely that there is any simple 
way to decide if a combinatorial structure is a 4-manifold. The same holds for 
d > 4. Furthermore, two related results show that such an approach is not feasible. 
Markov [24] showed that the problem of recognizing whether two d-manifolds 
are homeomorphic (for d >_ 4) is recursiverly unsolvable, and S. P. Novikov (see 
[37]) showed that the problem of recognizing a d-sphere (for d > 5) is recursively 
unsolvable. 

These results suggest that any combinatorial scheme which is general enough 
to represent all subdivided manifolds is also bound to allow nonmanifolds as well. 
Unfortunately, this implies that when building and manipulating such general 
combinatorial representations of geometric objects in higher dimensions, no matter 
what set of rules are imposed, the risk is run of constructing what Dobkin and 
Laszlo [9] aptly term "exquisite garbage." 

An alternative is to restrict the class of subdivided manifolds allowed; though 
it is not known how to determine whether or not an arbitrary combinatorial object 
may be realized as a subdivided manifold, in applications it is usually possible to 
use heuristics to ensure that manifold structure and other desired properties are 
maintained. (See [4] for further discussion of the combinatorial approach for 
manifolds and pseudomanifolds.) 

3. Subdivided Manifolds 

In geometric modeling, the objects being represented, and the building blocks 
which make them up, must be carefully chosen and well defined. 

Manifolds are a natural choice for objects in higher dimensions because they 
are simply defined, there are useful mathematical results available, and they are 
general enough to include most objects which occur in real applications. Inform- 
ally, a d-manifold is a topological space which looks locally like d-dimensional 
Euclidean space. (The reader is referred to [26] and [27], or [4], for topological 
background.) Many of the existing representations in two and three dimensions 
use manifolds or some restricted class of manifolds. 

There are several possibilities for the basic buidling blocks. In this work, cells 
which are homeomorphic to open balls are used, where "self-intersecting" bound- 
aries are not allowed. If self-intersecting boundaries were allowed, many of the 
results would still hold, but the description would not be as simple and clean. If 
more complicated building blocks are allowed (e.g., solid tori in three dimensions), 

2 The (homotopic) fundamental group is a basic concept in algebraic topology, which may be found 
in introductory texts on the subject. It is not used (directly) in this paper. 
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then representing the structure of their boundaries is not enough to specify their 
topology; thus a separate data structure is required. Since a goal of this work is 
to provide a single data structure, this possibility is not considered. 

For integers k > 0 denote the open unit k-ball by IB k, and the closed unit k-ball 
by B k. For  k = 0, let B ° and B ° each consist of a single point. An open k-ceil is 
a space which is home___omorphic with B k and a closed k-cell is a space which is 
homeomorphic with B k. Both open and closed k-cells are said to have dimension 
k. A nonempty Hausdorff space X is called a d-manifold if each point of X has a 
neighborhood homeomorphic with B d. Some authors include in their definition 
of a manifold that it have a countable basis, or that it be metrizable; neither 
restriction is added here. It is called a d-manifold-with-boundary if each point of 

d X has a neighborhood homeomorphic with either B d or IB1/2, where 

IBd/2 = {(Xl . . . . .  xd)e EdI(x~ + ' ' "  + X2) 1/2 < 1 and xl > 0}. 

The class of manifolds-with-boundary includes manifolds (without boundaries), 
but not vice versa. A point x in a manifold-with-boundary X is called a boundary 
point if its neighborhoods (of the type mentioned in the definition) are homeomor- 
phic to Bd/2 . The set of all boundary points of X is called the boundary of X, 
denoted t3X. Points of X which are not boundary points are called interior points, 
and the set of all interior points is denoted by Int X. In this paper use is made 
of the boundary and interior of balls, simplices (defined in Section 4), and 
manifolds. Balls always have the subspace topology as a subspace of R k. If a closed 
k-ball is considered as a manifold-with-boundary, its boundary and interior as a 
manifold-with-boundary agree with its boundary and interior as a subspace of R k. 
Note that B k = Int IB k. The same observations hold for k-dimensional simplices. 
When the interior or boundary of a general manifold-with-boundary are taken, 
the manifold-with-boundary definition will always apply. 

Define a subdivided d-manifold as a pair (M, C), where M is a d-manifold and 
C = {c,}=~ic is a finite collection of disjoint subsets of M whose union is M such 
that for each ~t e lc: 

• There is an integer k and an embedding f~: B k ~ M such that f~(B k) = c~ and 

L(B ~) = ~.  
• ~ - c~ is equal to a union of cells from C. 

It is not hard to show that this definition is equivalent to saying that (M, C) 
is a finite, regular CW complex in which M is a d-manifold. This fact is used 
in the proof of Lemma 1, and puts the definition of subdivided manifolds in 
the proper mathematical context. The definition of subdivided d-manifold-with- 
boundary is the same as that for subdivided d-manifold, except that M is a 
d-manifold-with-boundary. 

By this definition, each c, e C is an open k-cell for some k between 0 and 
d, inclusive. The open cells in subdivided manifolds are referred to simply as 
cells. Examples of 1-cells in a subdivided manifold are given in Fig. 6, and examples 
of 2-cells in a subdivided manifold are given in Fig. 7. 
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Valid l-cells 

d 

e 

Not valid l-cells 

Fig. 6. 1-cells in a subdivided manifold. Dots represent 0-cells and curved lines represent 1-cells. 
Observe that (a) and (b) each consist of an open l-cell and two distinct boundary 0-cells, hence are 
homeomorphic to B 1. The curve in (c) crosses itself, hence is not a l-cell. The boundary of the 1-cell 
in (d) should consist of two 0-cells; one is absent. The closed curve in (e) is not a 1-cell. The l-cell in 
(f), when taken with the single 0-cell which contains its boundary, is not homeomorphic to B 1 (its 
boundary "self-intersects"). 

F igu re  8 shows  a s u b d i v i s i o n  of  a 2-sphere  c o n t a i n i n g  five vert ices (0-cells), six 
edges  (1-cells), a n d  three  faces (2-cells), a n d  a s u b d i v i s i o n  o f  a K l e i n  bot t le  
c o n t a i n i n g  four  vertices, e ight  edges, a n d  four  faces. C o n s i d e r  the  objec t  s h o w n  in 

Fig.  3 o b t a i n e d  by  ident i fy ing  a face of  a cube  wi th  the squa re  side of a t r i angu la r  
pr ism.  T h e  resul t  is a subd iv ided  3 - m a n i f o l d - w i t h - b o u n d a r y  cons i s t i ng  of ten 
0-cells, s even teen  1-cells, ten  2-cells, a n d  two 3-cells. Th i s  ob jec t  cou ld  be made  
i n t o  a s u b d i v i d e d  3 -mani fo ld  (wi thou t  b o u n d a r y )  by a d d i n g  a n o t h e r  3-cell whose 
b o u n d a r y  m a t c h e s  the  b o u n d a r y  of the g iven objec t ;  this  m a y  be  e m b e d d e d  in  I~ 4. 

The  boundary of  a cell is ~ = ~'~ - c~. T h e  f u n c t i o n  f~ is cal led the  characteristic 
function for g. S ince  the  charac te r i s t ic  func t ions  a re  h o m e o m o r p h i s m s ,  the  b o u n d -  
a ry  of  a k-cell c~ is h o m e o m o r p h i c  to the (k - 1)-sphere, i.e., the  cells do  no t  have 

@@ @ 

Valid 2-cells Not valid 2-cells 

Fig. 7. 2-cells in a subdivided manifold. Dots represent 0-cells, curved lines represent l-cells, and 
shaded areas represent 2-cells. Observe that (a), (b), and (c) each consist of an open 2-cell whose 
boundary is a path of nonoverlapping 0-cells and 1-cells, hence are homeomorphic to B 2. The cells 
making up the boundary of the 2-cells in (d) and (e) do not form a simple path (their boundaries 
"self-intersect"). The single l-cell in the boundary of the 2-cell in (0 is not a valid 1-cell, as its boundary 
self-intersects. The closed curve making up the boundary of the 2-cell in (g) is not a 1-cell. The shaded 
area in (h) is not a 2-cell, as it is not homeomorphic to B 2. 
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Fig. 8. Two subdivided 2-manifolds. On the left is a subdivision of a 2-sphere containing five vertices 
(0-cells), six edges (l-cells), and three faces (2-cells). On the right is a subdivision of a Klein bottle 
containing four vertices, eight edges, and four faces, obtained by identifying the top and bottom sides 
of the square (edges 5 and 6), and the left and right sides of the square (edges 7 and 8), using the 
orientation given by the arrows. 

self-intersecting boundaries. The dimension of a cell c~ e C is denoted by dim(c,). 
Let c,k be a k-cell and let c,, be an /-cell. If  c,~ ___ b,, write c,k < c~,, and say that 
c,~ is a subeeli of c,,. The cells c~, and c,, are incident if c,~ < c,, or c,, < c,~. Note  
that < is a strict partial ordering of C. A sequence 7io,. . . . .  ai~ of cells satisfying 
~0 < "'" < ai~ is called an ascending chain of cells. If c,~ < c,, and l = k + 1, write 
c,, -< c,,. If M is a manifold-with-boudary,  a k-cell c, ~_ c3M is called a boundary 
k-cell. 

Two subdivided d-manifolds (or subdivided d-manifolds-with-boundary) are 
equivalent, (M, C)-~ (N, D), if there is a homeomorph ism between M and  N 
carrying k-cells onto  k-cells. An example of two equivalent subdivided 3-manifolds- 
wi th-boundary  was given in Fig. 1. 

For  notat ional  convenience, we assume the existence of  a cell c,_, of  dimension 
- 1 and a cell c~+, of  dimension d + I, such that c~_, < c~ < c~+, for all c~ e C. It 
is stressed that this is notat ion only, and these cells are never actually used. For  
example, when we write c . . . .  < c,~ -< c,~+,, where d i m ( c J  = i, it is unders tood that 
if k = 0, this simply means c~0 -< c,,, and if k = d, it simply means c,~_, -< c,,. 

The incidence graph can be defined using the partial ordering defined on cells. 
This graph has a node for every cell and arcs connecting two nodes if and only 
if the corresponding cells are incident and differ in dimension by one. It  is 
convenient to refer to the nodes by the indices of  the ceils, so the node set for the 
incidence graph of (M, C) is the index set I c. The incidence graph of (M, C) is 
~ u . c )  = (Ic,  <),  where ~k < ~l¢~-C,, -< C,,. It is assumed that associated with the 
incidence graph is a labeling of  the index set giving the dimension of  its associated 

cell, dim(c 0 = k ,~  dim(c~) = k. 

4. The Generalized Barycentric Subdivision 

The generalized barycentric subdivision of  a subdivided manifold is defined in this 
section. An unders tanding of the generalized barycentric subdivision gives the right 
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vantage point for understanding the mathematics underlying this work, and for 
seeing the underlying similarities among all of the implicit-cell representations. It 
is also a crucial object in the proofs of the theorems given in Sections 6 and 7, 
giving a link between subdivided manifolds and their combinatorial representa- 
tion. The definition of the generalized barycentric subdivision applies to subdivided 
manifolds-with-boundary as well as subdivided manifolds. Note that the term 
generalized barycentric subdivision is used for two different concepts in the 
algebraic topology literature. Our definition agrees with that in [22], but is 
different from that in [27]. 

Given a subdivided manifold (M, C), the partial order defined by its incidence 
relation is used to define a simplicial complex. Lemma 1 shows the existence of a 
homeomorphism from this simplicial complex onto (M, C), thus giving a triangula- 
tion of the manifold M. Furthermore, this triangulation is a refinement of (M, C) 
which allows the cells of C to be written in a very convenient form. (A refinement 
of (M, C) is a subdivided manifold (M, D) in which every cell of D is contained in 
a cell of C. In this particular case, the cells of D are the images of simplices under 
the homeomorphism.) 

An intuitive description of the generalized barycentric subdivision is given now, 
by giving an informal sketch of a construction of the set of cells which make it 
up. For  every cell c~ ~ C create a new vertex c,a(00 in c,. For every pair of cells 
c~k ' < c~k 2 in C, add a new 1-cell C~a(~k,, OCk 2) in c~2 having as endpoints the new 
0-cells Csd(0tk, ) and Csa(Ctk:). For every ascending chain c,~, < c,, 2 < c ~  of three cells, 
add a 2-cell in c,~ which has as its boundary the 0-cells C~a(Otk,), C~a(O~k), and C~d(Ctk) 
and the 1-cells C~d(O~k,, Otk), C~,a(~k,, O~k,), and C,d(Otk~, Ctk). Continue "filling in" cells of 
increasing dimension in this fashion, until finally new d-cells are added for all 
maximal ascending chains of cells in the partial order on C. The set of newly 
defined cells gives the generalized barycentric subdivision. (See Fig. 9.) 

1 

a ~ 0  ~ b 

2 
(M,C) 

o 

Fig. 9. Example of construction of the generalized barycentric subdivision, At the top is a subdivided 
2-manifold-with-boundary. The bottom sequence shows the construction. First five new vertices are 
added, one in each of the five cells; then eight edges are added, one for each pair of incident cells; and 
finally four faces are added, one for each full ascending chain of cells. 
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A k-simplex, k >_ 0, is the convex hull of k + 1 affinely independent points in 
ll~ d. A face of a simplex is a simplex formed by a subset of the simplex's vertices. 
The following notation is used to identify particular simplices: if v l , . . . ,  va are 
points in R d, tr(v 1 . . . . .  vz) denotes the simplex defined by v~ . . . .  , vt. A simplicial 
complex K in R d is a collection of simplices in R d such that every face of a simplex 
of K is in K and the intersection of any two simplices of K is a face of each of 
them. The polytope (or underlying space) of a simplicial complex K is I KI = U,,-~ K a. 
A triangulation of a space X is a simplicial complex K together with a homeo- 
morphism h: I K I --' X. 

An abstract simplicial complex d is a collection of finite nonempty sets, such 
that if A is an element of the collection, so is every subset of A. The vertex scheme 
of a simplicial complex is the abstract simplicial complex defined by the vertex 
sets of its simplices. A geometric realization of an abstract simplicial complex ~¢ 
is any simplicial complex whose vertex scheme is ~¢. 

If (M, C) is a subdivided d-manifold or a subdivided d-manifold-with-boundary, 
where C = {c~}~xc, define the abstract simplicial complex 

= { { %  . . . . .  < ""  < + I ¢ ) .  

For example, ~¢~M.C~ for the subdivided manifold shown in Fig. 9 is 

{a, b, 1, 2, A, al,  a2, bl, b2, aA, bA, 1A, 2A, alA, a2A, blA, b2A}. 

Let KtM.C~ be any geometric realization of ~¢(M,C~, SO that the vertex v~, e K~M,c ~ 
corresponds to {ei} e ~¢tM.c~. This always exists by Theorem 3.1(a) of [27]. It may 
be assumed that Ktu.c ~ is embedded in Nn for some n (see the proof of Theorem 
3.1(a) of [27]). If ~: tKtM.c~I ~ M is a homeomorphism and c% < . . . <  ei,, define 
%(% . . . . .  ei~) = ~,(Int a(v~,o . . . . .  v~,)); thus c,(% . . . . .  e~) is the image under ~, of 
the interior of the simplex tr(v~ . . . . .  v~,). Recall that the interior of a vertex is 
equal to the vertex, so that c~,(%) is a point in M. 

Lemma 1. I f  (M, C) is a subdivided d-manifold or a subdivided d-manifold-with- 
boundary, then there exists a homeomorphism OtM.C): IKtM.C~I --' M such that 

c ,  = U . . . . .  = , ,  

In the statement of this lemma, and in the remainder of the paper, the following 
convention holds: the set of sequences over which the union is taken includes the 
sequence consisting only of c~. 

Proof The proof is omitted for brevity. It involves a formalization of the 
construction given earlier in this section, and may be found in [4]. [] 

For  a given (M, C), let @~u,c) be a homeomorphism satisfying Lemma 1, and 
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define c~a(~ . . . . .  0q) = c~,,M.c)(~io,..., ~). Let 

C~d = {c~d(~ . . . . .  ~ ,~) I~  < " "  < ~,~ E C}. 

(M, Cu) is the generalized barycentric subdivision of (M, C). (M, C~d) is a sub- 
divided d-manifold or subdivided d-manifold-with-boundary itself, and each cell 
c~d(~e . . . . .  ctl,) of C~d is the image under ~(u.c) of the interior of the simplex 
tr(v~, ° . . . . .  v~,). Because characteristic maps are not unique, the barycentric subdivi- 
sion is not unique, but is unique up to equivalence. 

The generalized barycentric subdivision allows the use of theorems from 
algebraic topology about triangulated manifolds in the proofs of the main results, 
and may be used when extending those results to manifolds-with-boundary. 
Writing cells in C as unions of cells in C~ is useful in proofs, and allows the 
definition of the dual in a straightforward manner in Section 8. 

Note that the proof of Lemma 1 depends on the basic building blocks being 
open cells and on the characteristic functions being homeomorphisms. The 
definition of the generalized barycentric subdivision depends on Lemma 1. The 
proof of Lemma 2 in the next section makes use of the generalized barycentric 
subdivision, and Lemma 2 is necessary for the definition of the cell-tuple structure. 
In short, the results in this paper depend critically on the particular definition of 
subdivided manifolds. 

Two facts about K(M.c) for manifolds and manifolds-with-boundary are used 
at various times in the remainder of the paper. The first says that in a triangulated 
manifold or manifold-with-boundary, every simplex is a face of a d-simplex. This 
follows from Exercise 35.4 of [27]. 

Fact 1. I f  a ~ K(M.c ~, then: 

(a) a is a d-simplex, or 
(b) a is contained in a d-simplex. 

Since KtM, c) is homeomorphic to M, and is trivially triangulated, it is a 
triangulated manifold. The following fact says that a (d - 1)-simplex in K(u.c) is 
in the boundary of IK(u,c)l if and only if it is incident to exactly one d-simplex 
(otherwise it is incident to exactly two d-simplices). This fact follows from Exercise 
35.4 of [27]. 

Fact 2. I f  a e  K(M.c) is a (d - 1)-simplex, then: 

(a) a ~ c~lK(M.c)l =:" a is contained in exactly two d-simplices. 
(b) a ~_ dlK(u.c)l =~ a is contained in exactly one d-simplex. 

5. The Cell-Tuple Structure 

The basic elements of the cell-tuple structure are now defined. If (M, C) is a 
subdivided d-manifold, a (d + 1)-tuple (Go . . . . .  C,d ) of cells from C such that c~, e C, 
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C~o ~( - . -  -< c~ is called a ceil-tuple. Tuples are conceptual ly simple and  change in 
a uniform way with dimension. This simplicity and uniformity carries over  to the 
cell-tuple structure. The set of all cell-tuples for (M, C) denoted by 

T~u,c~ = {(C~o . . . . .  %)1c~, e C, c~ o < . . .  -< c J .  

The k-componen t  of  a cell-tuple t = (c~ . . . . .  c~) is denoted by t k = Ca~. 
The  basic opera tors  act on components  of  the cell-tuples. Before defining these 

opera tors  the following l emma is needed, which shows that  if a componen t  of  a 
given cell-tuple is specified, then there is a unique cell-tuple which agrees with the 
given cell-tuple on all components  except the specified one. 

Lemma 2. I f (M,  C) is a subdivided d-manifold, t ~ T~M.c ~, and 0 < k < d, then there 
is a unique t' E T~M.c ~ such that t'k ~ tk and tl = tifor all i ~- k. 

Recall f rom Section 4 that  v~ denotes the vertex of KtM.C ~ corresponding to 
c~ e C. In this section tr(~ t . . . . .  ~t) is used as shor thand  for the simplex tr(v . . . . . . .  ~,~,) 
cor responding  to the chain of  cells c% < ""  < c~,, e C. 

Proof Let t~T~M ,c) a n d 0 _ < k < d . I f t = ( c ~  o . . . . .  c . . . .  , c , , , c  . . . .  , . . . .  c , , ) , l e t a =  
tr(Cto . . . .  , ~k- 1, ~k, Ctk+ 1 . . . . .  Ctd) and let a '  = a(% . . . . .  ~k- 1, ~k+ 1 . . . . .  atd). By Fact  
2(a), there is a d-simplex or" # a which contains tr'. There must  exist a k-cell c,~ 
such that  a" = 0-(% . . . . .  ak-  ~, ~,, Ztk + ~ . . . . .  ~n). Let 

t' = (c~ o . . . . .  c . . . . .  c ~ ,  c ~ + ,  . . . . .  c ~ ) .  [ ]  

This guarantees  that  the following definition of the basic opera tors  is well 
defined. For  0 < k < d, define switchk: Ttu,c ~ ---} T~M.c) by switchk(t) = t', where t' is 
such tha t  t~, ~ t k and t~ = ti for i # k, as given by L e m m a  2. The  result of switchk(t) 
is to return the cell-tuple which agrees with t on all but the kth component .  

When  showing examples  of  the cell-tuple structure, cell-tuples are drawn as 
dots located within their d-dimensional component ,  and near  to their other  
components .  See Fig. i0 for examples of switcho(t), switchl(t), and switch2(t), where 
t = (a, 6, B). 

The  eeli-tuple structure ~M.C~ for (M, C) is the pair  (T(M.C), {switChk}o<k<_d ). 
Abusing notat ion,  switch will often be taken to represent the set of  opera tors  
{switChk}o<_k<a, e.g., the cell-tuple structure will be written as (T~M.c ~, switch). 

It  is useful, and helpful for intuition, to think of the cell-tuple structure as an 
undirected arc-labeled graph GtM.c>, which has a node for each ceU-tuple and a 
k-arc between nodes whose cell-tuples are related by switch k. Tha t  is, GtM.c~ = 
(V, E), where V = T~M,c ), Ek = {(t 1, t2)tswitchk(tl) = rE}, and E = UO<_k<_d Ek. An 
arc e ¢ E is labeled with k if e e E k. These undirected arcs are well defined, because 
L e m m a  2 implies that  switchk(t 1) - -  t 2 if and only if switchk(~ 2) = t 1. This labeling 
is well defined, because the Ek'S are disjoint: k # l ~  [switChk(t)]k # [switchl(t)]k. 
Note  that  every node  of this graph is incident to exactly one arc labeled k for 
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* J . (a.6,B) 7 _  ** ,,n,u,~, 

/" 7" ! . . t t -  

$ 

Fig. 10. Examples of switch. Cell-tuples are depicted as dots, within the face which is their 
2--component, near the edge which is their 1-component, toward the vertex which is their 0-component, 
e.g., cell-tuple (a, 6, B) is shown as a dot in face B, near edge 6, toward vertex a. The arrows indicate 
the application of switch k to (a, 6, B): switcho((a, 6, B)) = (d, 6, B), switchl((a, 6, B)) = (a, 1, B), and 
switch2((a, 6, B)) = (a, 6, A). 

0 < k < d. Figure 11 shows GtM, c ~ for the subdivision of the 2-sphere given in 
Fig. 8. 

If  w = w 1 .-. w~e {0 , . . . ,  d}*, define 

Sswi tch~ , ( swi t chw,_ , ( ' " ( swi t chw2(swi t ch~( t ) ) ' " ) ) )  if w ~ 2, 
switchw(t)  

if w = L  

I f  J ~_ {0 . . . . .  d}*, let swi tch , ( t )  = {swi tchw( t ) lw  ~ J} .  If  I _~ {0 . . . . .  d},  switcht . ( t )  
is ca l led  the  / - o r b i t  o f  t. T h i s  m a y  be t h o u g h t  of  as  the  set o f  al l  ce l l - tuples  

0 1 
1 

1 0 - 

F i g .  11. Example of GtM, o, Nodes corresponding to cell-tuples are depicted by dots as in Fig. 10. 
There is an arc labeled k for every pair of cell-tuples related by switchk. 
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obtainable from t by repeated applications of switchk operations, where the k's are 
in I. The set of / -orbi ts  for all t e TtM, c ~ partitions T~t,c~ into a set of equivalence 
classes. Each subset I gives a unique partition. 

In terms of the graphical interpretation of the cell-tuple structure an / -o rb i t  of 
t may be understood as the set of all cell-tuples in GtM.c~ reachable from t by 
following paths whose arcs are labeled by elements of I. Another way of thinking 
of this is by considering the subgraph of G~M,c ~ consisting of all arcs whose labels 
are in I. The /-orbit of t is just the connected component of this subgraph 
containing t. The connected components of this subgraph are exactly the set of 
/-orbits of T~M.c ~, hence are equal to the equivalence classes generated by the 
/-orbits. 

If c, is a k-cell of C, the set of ceU-tuples having c, as a component, 

assoc(c~) = {t ~ T~M,c~lt, = c~}, 

is called the set of associated cell-tuples of G. If G,o < " ' <  G,,, such that 
dim(G) = ij for j e {0 . . . . .  l} the set of cell-tuples 

assoc(G,,,, . . . ,  c~,) = {t ~ T~M,c)Iti, = c%, 0 <__ j <_ t} 

is called the set of associated ceii-tuples of C,o, . . . ,  G,. This gives a correspondence 
between chains of cells in C and subsets of T~M ,cv For  0 < k < d, the associated 
sets of the k-ceils in C form a partition of TtM, c ). This is developed to give a 
fundamental relationship between cells in C and orbits in ~M.c), when Theorem 
1 and Corollary 3 are proved in Section 6. 

Two cell-tuple structures are equivalent, J~M.C~ ----- ~'~N,o~, if there is a bijection 
j: T~M.c ~ --* T~N.o ~ which preserves the switch operation, i.e., 

switChk(j(t)) = j(switchk(t)) 

for all t e T~M.c ~, 0 < k <_ d. 
The following lemma shows that for any ascending chain of cells there is a 

cell-tuple which has all of the cells in that chain as components. This is equivalent 
to showing that any ascending chain of cells may be extended to a maximal 
ascending chain. 

Lemma 3. I f  (M,  C) is a subdivided d-manifold or a subdivided d-manifold-with- 
boundary and G,o < "'" < G,~, where I > O, c% ~ C and dim(c%) = i j, then there exists  

t ~ TtM.c ~ such that  ti, = c% for  j = 0 . . . . .  I. 

Proof. If I = d, let t = (G,0 . . . . .  c~,,). If I < d, let a = a(~i o . . . . .  ai,). By Fact 1 there 
exists a d-simplex a(~o, . . . ,  ~a) ~ K~M.c~ containing a. Let t = (Go,-.-, G,). []  

A similar result to that of Lemma 2 can be phrased without reference to the 
cell-tuple structure. Given an ascending chain of three cells, where the difference 
in dimension between each pair of consecutive cells is one, there is a unique cell 
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which is incident to both the first and third cells (taken in ascending order) but 
is different from the middle cell. Recall (from Section 3) that the assumption of 
the existence of cells c,_~ and c~+~ is made for notational convenience. 

Corollary 1. I f  (M, C) is a subdivided d.manifold, c ~ _ , - < c ~ c ~ , + , ,  where 
0 < k < d, c~ ~ C and dim(c~) = k, then there is a unique c~, e C such that c~. # c~ 
and c~_, ~( c~, .< cak + ~. 

Proof. By Lemma 3, there is a t e  T~u.c ~ such that t~ = c~, for ie{0  . . . . .  d} c~ 
{k - 1, k, k + 1 }. By Lemma 2 there exists a unique t' such that t~ = t~ ~ i ~ k. 
Let c~ = t~,. This satisfies the statement of the lemma. It must be shown that c~ is 
unique. Suppose there exists c~; which is not equal to c~ or c~, such that 
c~,_, < c~. -< c~+c Then the cell-tuple (t o . . . . .  tk- 1, C~,, tk+ 1 . . . . .  td)  is not equal to t 
or t', contradicting Lemma 2. [] 

It is useful to define a switch operator on triples, which is possible given 
Corollary 1. Let 

S = {(c,,_,, c,k, c~,+,)lc~,_,-<c~,~(c~,+,, 0 <_ k < d, and c~,_,, c~,, c~,~,eC}. 

Define s w i t c h : S ~ C  by switch(c,~_, ,c~k,c~,)=c~. ~, where c~ is given by 
Corollary 1. 

This allows another approach to the representation of subdivided manifolds, 
which may be called the augmented incidence graph. To the standard incidence 
graph, add a new data structure which contains a pointer for every triple 
(c~k_,, c~,, c~+,) in the set S, which points to switch(c~_,, c~k, c~+,). This requires 
considerably less space than the full cell-tuple structure when the number of 
dimensions gets large, at some cost in the speed of switch queries and searches. 

Yet another possible approach is to maintain a relational database of the set 
T~M,C ~ of tuples, without explicitly representing the switch operators at all. If t is 
a cell-tuple, switchk(t) may be found by determining the cell-tuple in the database 
satisfying the definition of switch. Similarly, the set of cetl-tuples associated with 
a chain of cells may be found by a relational query, i.e., finding all ceU-tuples in 
the database containing the specified cells in their appropriate components. 

Thus there are a number of ways of viewing the cell-tuple structure, each leading 
to a different possible implementation: as a set of data elements and pointers 
directly representing the cell-tuples and switch operators; as an arc-labeled graph; 
as an augmented incidence graph; or as a relational database. The time and size 
requirements of these methods are discussed in [4]. 

6. A Basic Relationship Between Cells and Orbits 

There is a beautiful relationship between sets of cells in a subdivided manifold 
and orbits of cell-tuples in its cell-tuple structure. This is stated and proved as 
Theorem 1 in this section. Besides being necessary for the proofs of the two 
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theorems in the next section, this relationship allows a concise descript ion of 
c o m m o n l y  used elements of subdivided manifolds. An informal  explanat ion of the 
theorem,  a long with examples  relating to useful model ing techniques, are given 
immediate ly  following the proof  of  Corol lary  3. 

Recall f rom Section 5 the definition of the / -o rb i t ,  the set of  cell-tuples reachable 
f rom a given cell-tuple by applying sequences of switchk'S, where the k's are taken 
f rom I. If  I is a subset of {0 , . . . ,  d}, let f = {0 . . . . .  d} - I. Thus  if I = {io . . . . .  i~}, 
then l - o r b i t ( t ) =  switch~ o ...... d~-~t ...... ~,}},(t). If  c~, ° < . . . <  c~,, is an ascending chain 
of  cells, recall f rom Section 5 that  the associated set of  this chain of  cells, 
assoc(c~  . . . . .  c,,) is the set of cell-tuples which contain these cells as components .  
If  I = {i o . . . . .  it} is the set of  dimensions of  these cells, and  t is any cell-tuple in 
the associated set, then Theorem 1 shows that  the associated set is equal to the 
set of cell-tuples which may  be obtained f rom t by repeated applicat ions of swi tch  k, 

where k ¢ I. 

Theorem 1. I f  c% < . . .  < c,,, and t ~ T~M.c ~ such that  ttj = c% for  0 <_ j <_ I, then 

assoc(c,, ° . . . . .  c~,,) = switchi.(t) ,  where I = {io . . . . .  it}. 

The  following definitions are needed in the proof. If  a is a simplex in K, then 
the s tar  of  a is St a = {Int a ' l a ' e  K and a is a face of a'}. The  closed star  of  a is 
S-'] a = { a ' e  K l3a"  e K s.t. a is a face of  a" and a '  is a face of  a"}. The link of a is 
Lk  a = {a' e K l~r' ~ S-t cr and a '  c~ a = ~ } .  In words, if ~r is a simplex in a simplicial 
complex K, then St  cr is the set of the interiors of simplices in K which have a as 
a face; ST a is the set of simplices in K which have a as a face, plus all of their 
faces; and L k  a is the set of  simplices in St  a which are disjoint f rom a. (See Fig. 
12.) The  k-skeleton o fa  simplicial complex is the union of all simplices of  dimension 
less than or equal  to k, and the k-skeleton of a subdivided manifold is the union 
of all cells of dimension less than or equal to k. The intuition behind the use of 

St C5 

~ c L k  t~ 

Fig. 12. Examples of the star, closed star, and link. Here tr is a 0-simplex (point); its star St tr consists 
of itself, plus the interiors of the 1-simplices and 2-simplices (open line segments and triangles) incident 
to o; its closed star ST tr consists of all 2-simplices (closed triangles) incident to tr plus their subfaces; 
and its link L k  tr is the set of simplices in ST tr which are disjoint from a. 
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the star, closed star, and link in what follows is that if c~ is a k-cell in C, then, 
within the k-skeleton of KtM, c), ISt v~l corresponds to ca, ISt v~l corresponds to 
~ ,  and ILk v~l corresponds to ~ (under the homeomorphism given by Lemma 1). 

To show assoc(C~o . . . . .  ca,) ~ switcht.(t) requires showing that the subgraph of 
GtM,c ~ induced by assoc(c~ o . . . . .  c J  is connected. This is the only difficult part of 
the proof. The proof uses the fact that there is a one-to-one correspondence 
between the set of ascending chains of length I in C and the t-simplices of Ktu . c  , 
and the similar fact that there is a one-to-one correspondence between cell- 
tuples in TtM.c ~ and d-simplices in KtM,cr These facts both follow from the 
definition of K(M.c ~ (the graphical interpretation of the ceU-tuple structure is 
equivalent to a labeled version of the 1-skeleton of the topological dual of the 
generalized barycentric subdivision). The ascending chain c~  < -.. < c~,, corre- 
sponds to a(0q o . . . . .  ~,), and the cetl-tuples in assoc(c~ o . . . . .  c~,) correspond to 
the d-simplices in St a(oqo . . . . .  ~i,). Then the problem of showing that the sub- 
graph of GcM.o induced by assoc(c~, .._.., c~,) is connected reduces to proving that 
there is a "pa th"  of d-simplices in St a(o:~ . . . . .  ~,) between any two d-simplices 
in St a(~o . . . . .  ~i,). 

It is useful to define switch on the d-simplices of KtM,c): given d-simplex 
tr = a(~ o . . . . .  ~k- 1, Ctk, Ctk + 1 . . . . .  Cta), 0 <_ k _< d, define switchk(a) to be the unique 
d-simplex a(ct o . . . . .  cq _ 1 ,  0~k, 0~ k + 1 . . . . .  t~d)  such that 0t~, # ct k, i.e., if tr corresponds to 
t, then switchk(~ ) corresponds to switchk(t). 

Proo f  o f  Theorem 1. To see that switchto(t) ~_ assoc(c~ o . . . .  , ca) is easy: If k e 
then switchk does not change tj for any j e L So if t' = switchw(t ), for any w e/'*, 
then t~ = t j, for all j e I, i.e., t' ~ assoc(tio . . . .  , ti). 

What must now be shown is that assoc(c~o . . . . .  c~,) ~_ switcht.(t). First the 
following claim is proved: 

If # is a k-simplex in KtM.o,  0 <_ k < d, and if a, o' are d-simplices in St t~, then 
there is a sequence tr = a o . . . . .  a m = a' of d-simplices of KtM, o ,  contained in 
St #, such that tr~ n trj~ 1 is a (d - 1)-simplex for 0 < j  < m - 1. 

To do so, use is made of Corollary 70.3 of [27]: 

Corollary 70.3. Let  (X, A) be a compact triangulated relative homology d- 
manifold, with X - A connected. I f  tr and a' are two d-simplices o f  X not in A, 
there is a sequence tr = ao, tr 1 . . . . .  am-1 = a' o f  d-simplices not in A, such that 
a i c~ ai+l is a (d - 1)-simplex not in A , f o r  each i. 

It will be shown that the hypotheses of this corollary are met if X = lK(u.c)l and 
A = IK~M.c~- St  #[. The claim then follows, since IStS1 = X -  A, and the d- 
simplices in St 0 are exactly those which are not in K~M.c~ -- St ~. 

Here the pair notation (X, A) means that X and A are topological spaces such 
that A is a subspace of X. Since if X - A is a d-manifold, then (X, A) is a relative 
homology d-manifold (see comment on p. 374 of [27]), we only need to show that 
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ISt  ~[ is a d-manifold. This follows from the observat ion that  any open subset Y 
of  a d-manifold X is a d-manifold. 

For  a pair (X, A) to be compact  means that X and A are compact .  Since 
X = IK(u.c)l  and A = IK(M,c) -- St  81 are finite unions of d-simplices, they are 
compact .  For  a pair (X, A) to be triangulated means that X is tr iangulated by 
h: [KI ~ X in such a way that  A is triangulated by a subcomplex of  K under  h. 
K(M,c) is a simplicial complex, hence X is trivially triangulated, and K ( u , c  ) -- St  
is a subcomplex, so (X, A) is a triangulated pair. All that  remains to be shown is 
that  X - A = [St 81 is connected. Let x, y ~ ISt #1, and let z e Int  ~ (remember that 
z = 8 if dim(t~) = 0). Let l~ and ly~ be the line segments joining x and y with z, 
respectively. Both  l~ and ly~ are contained in [St t~l, so l~ u ly~ is a path from x 
to y contained in St  ~, so St ~ is path connected, hence is connected. This finishes 
the p roof  that  the hypotheses of Corol lary 70.3 of  [27] are met, and hence the 
claim is proven. 

Apply the claim with # = a(~e . . . . .  ~).  Let % be a simplex in the sequence 
a o . . . . .  am, where 0 < j < m. By the definition o f  switch on the d-simplices o f  K(M.c), 
% n %+ i is a (d - 1)-simplex if and only if aj+ 1 = switchk(%) for some 0 <_ k < d. 
Since aj ~_ S-t 8, it must  be that  t~ ~ %, which gives that  the vertices of ~ labeled 
by i o . . . . .  it are also in try+ ~. Therefore, tr~+~ = switch~(%) for some k e  I. 

Given t as in the statement of  the lemma, and a t' ~ assoc(te . . . . .  t~,), let a and 
a '  be the corresponding d-simplices in K(u.c) ,  respectively. Then 

t, t' ~ assoc(tio . . . . .  t 0 

~r, a ' ~ S t  8 

=~ 3 a sequence a = ao, . . . ,  {Tm = (7' o f  

d-simpliees in St 8 such that  aj c~ ai+ 
is a (d - 1)-face for j = O, . . . ,  m - 1 

=~ 3w = Wo"" w,,_ ~ ~/ '* s.t. a '  = switchw(a ) 

3w = w0""  win- 1 e I* s.t. t ' = switchw(t ) 

=~ t' e switcht,(t). 

Thus assoc(tio . . . . .  ti,) ~- switchf.(t). [ ]  

It will be useful in the proof  of  Theorem 2 to think of  assoc as a function taking 
ascending chains of  cells to sets of  celi-tuples. The next corollary shows that  this 
function is injective. 

Corollary 2. I f  ~io < "'" < oq. and ~jo < " "  < ~j~, then 

{ ~  . . . .  , ~,.} = {~ jo , . . . ,  ~j.} ~ assoc(c~,o . . . . .  c,,o) = assoe(c~,o, . . . .  c,,,). 

P r o o f  (=~) F r o m  the definition of  assoc. 
(~=) The p roof  is by contradiction. Assume without  loss of  generality that 
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dim(0ti,)= i k and d im( • )=  A. Suppose {~tio . . . . .  ~q,} ~-{~o . . . . .  ct~}. Without 
loss of generality, assume that there exists a k such that ~k ¢ {~jo . . . . .  ~j,}. By 
Lemma 3, there exists t e assoc(C,,o, . . . ,  ca,,). If t ~ assoc(Ca, o . . . . .  c~,) we are done. 
If t e assoc(c , ,  ° . . . . .  %, ) ,  let t' = switchi~(t). Now, t' e assoc(ca, ° . . . . .  ca,,), but 
t' ¢ assoc(c,,o . . . . .  ca,) .  [] 

If 0 _< k __<_ d, let k = {0 . . . . .  d} - {k}. Thus 

k -orb i t ( t )  = s w i t c h t l  ..... k - l .k + 1 ..... d~'(t) • 

The next corollary shows how the cells of a subdivided manifold are represented 
in ~M.o .  It follows from Corollary 2 and Theorem 1. 

Corollary 3. T h e r e  is a o n e - t o - o n e  c o r r e s p o n d e n c e  b e t w e e n  k -ce l l s  and  k -orb i t s .  

An informal explanation of the relationships given by Theorem 1 and Corollary 
3 is now given, along with some pictorial examples which show the importance 
of this result. Recall the graph G~M.c) for the cell-tuple structure given in Section 
5: its node set is TtM.C ), and two nodes are connected by an arc labeled k if 
the corresponding cell-tuples are related by s w i t c h  k, where 0 < k < d. Now fix 
0 < k < d, and suppose all of the arcs labeled k are eliminated from G~M.C r There 
is a one-to-one correspondence between the k-cells of C and the connected 
components in this new graph. Furthermore, consider a sequence of increasing 
integers 0 < k~ < --. < kt _< d. Suppose all of the arcs labeled with k~ . . . . .  k t are 
eliminated from Gtu .c ) .  There is a one-to-one correspondence between ascending 
chains of cells cak, < ' " <  ca~,, where the dimension of each c% is k j ,  and the 
connected components in this new graph. 

The relationship between a subdivided manifold, its generalized barycentric 
subdivision, and the cell-tuple structure provides a general framework for many 
of the entities which have been devised in existing representations. The sets of 
d-simplices in the generalized barycentric subdivision which correspond to the 
cell-tuples in an orbit may be thought of as a "realization" of the entity, and these 
"realizations" will generally break up the object into something which is almost 
a partition (there is usually some measure-zero overlap between the entities). 
Figure 13 gives several examples in two dimensions, and Fig. 14 gives several 
examples in three dimensions (see Section 11 for the definitions of V-E and F-E 
half-edges). 

Theorem 1 gives a direct, efficient method of accessing all cell-tuples associated 
with a cell or chain of cells, and thus a straightforward method of accessing cells 
incident to a given cell or chain of cells. This is accomplished by doing a search 
within the graph G~M.C), using arcs in /', where I is the set of dimensions of the 
specified cells. This search can be done in time linear in the number of cell-tuples 
in the associated set if a depth-first search is used (assuming that each s w i t c h  query 
takes constant time). For instance, to find all cells in the boundary of a k-cell c,~, 
given a cell-tuple such that tk = C~, perform a search of switch~o .... .  k -  u ' ( t )  • Starting 
with an empty list, as each new cell-tuple t' is encountered, add to the current list 
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V-E. half-edge/J" 

~T~~-_~ ~ 2  F-E~alf-!dge 

Cells 

ossoc  ,, _ \ 

ass°c(v2,e2) ~ 
! re~"" I assoc~e3f2 ) 

Associated Sets 

. .  

Elements of K(M,C ) 

{0'1 } ' ° r ~ ' ~  1 ~ i t  

0 0 t 

{ 2 } -orbit ~ "----~-- 

Orbits 

Fig. 13. Examples of Theorem 1 in two dimensions. The cells vl, el, and f~ and ascending chains 
v 2 -< e 2 and e a -< fz shown in the upper left have the associated sets shown in the lower left. At the 
lower right are shown the orbits specified by Theorem 1 for these cells and chains. Observe that in 
each case the associated set equals the orbit, as stated by the theorem. In the upper right are shown 
the 2-simplices in the generalized barycentric subdivision incident to each of vl, el, and f~, and to 
both v 2 and e2, and to both e 3 and fz. Note the one-to-one correspondence between these 2-simptices 
and the cell-tuples in the lower illustrations. 

of b o u n d a r y  cells the componen t s  t~ th rough  t~,_ ~ which have not  yet been found 
(keeping a " f o u n d "  bi t  for each cell makes  this efficient). 

The  fol lowing lemma, which has an a lgebraic  flavor, is of  interest  in and  of  
itself, and  is useful when defining const ructors  and  in connect ing  the cell- tuple 
s t ructure  to others '  work.  The propert ies ,  or  rules, given in this l emma are 
ana logous  to  the rules given for the quad-edge  and facet-edge d a t a  structures.  Rule 
(ct4) essential ly shows the existence of c ircular  order ings  which is given in full 

detai l  by  Theorem 3. 
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f 
2 ! ~ 2 ~  

0 0 

f f  

Edge 

) 

Face 

2 ~  . . . . . .  

(V-C) Comer (E-C) Dihedron (F-C) Half-face 

Fig. 14. Examples of Theorem 1 in three dimensions. The upper left illustration shows the {0, 2, 31- 
orbit corresponding to the associated set of cell-tuples of a 1-cell; the upper right illustration shows 
the {0, 1, 3}-orbit corresponding to the associated set of cell-tuples of a 2.cell; the lower left illustration 
shows the { 1, 2}-orbit corresponding to a "corner" defined by an ascending chain consisting of a 0-cell 
and a 3-cell; the lower middle illustration shows the {0, 2}-orbit corresponding to a "dihedron" defined 
by an ascending chain consisting of a 1-cell and a 3-ceU; the lower right illustration shows the 
{0, 1}-orbit corresponding to a "half-face" defined by an ascending chain consisting of a 2-cell and a 
3-celI. 

Corollary 4. I f  t ~ T~M.c ) and i # j e {0 . . . . .  d}, then: 

(ctl) switchi(t) ~ t, 
(ct2) switchij(t) v ~ t, 
(ct3) switchi,,(t) = t, 
(ct4) / f j  = i _+ 1, 3m _> 2 such that  switcht~jr(t ) = t, 
(ct5) / f j  # i _+ 1, then switcht~j~2(t) = t. 

Proof. Properties (ctl), (ct2), and (ct3) follow from the definition of switch. 
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Let t e T~M.c ) and I = {0 . . . . .  d} - {i , j}.  Let c,,~ = ti, for i k e I, so that 

{c% . . . . .  % _ )  = {t~lk~t}. 

The subgraph of G(M,c) induced by assoc(c..~ . . . . .  c.,,_z} is connected (this follows 
from the proof of Theorem 1). Since every node is incident to exactly one 
arc labeled i and one labeled j, this subgraph is a cycle, with alternating arcs 
labeled i and j. If j = i + 1, this gives (ct4). If j 4: i +_ 1, then there are exactly 
two /-cells satisfying ti-~-< c~-< t~+ ~, namely c, = t~ and c, = [switchi(t)]6 and 
there are exactly two j-cells satisfying t j _ ~ - < c ~ , - ( t j ÷ ~ ,  namely c,, = tj and 
c,, = [switchj(t)]j .  Thus by the definition of associated sets, assoc(%o, . . . .  c,,~_) has 
exactly four elements, formed by the four possible choices for c, and %. This gives 
(ct5). []  

7. Representation of Incidence and Order 

Two theorems are proved in this section. The first shows that the incidence graph 
and the cell-tuple structure are each powerful enough to represent subdivided 
manifolds up to equivalence. The second shows the existence of many orderings 
of cells within subdivided manifolds, and shows that these orderings are directly 
accessible using the cell-tuple structure. 

Recall from Section 3 the definition of the incidence graph ~M.C~ for a 
subdivided manifold (M, C). Two incidence graphs are equivalent if there exists a 
bijective map between their nodes which preserves order (<)  and the dimension 
label (dim). 

Theorem 2. I f ( M ,  C) and (N,  D) are subdivided d-manifolds, then the fo l lowing are 

equivalent:  

(1) (M, C) ~- (N, O), 

(2) ~M.c~ -~ ~N.o~, 
(3) ~ . c t  -~ ~N,o~. 

Proof.  The proof is organized as follows: 

(M, C) "~ (N, D) ~ ~M.Ct ----- ~<n,O) ~ ~-]~M.Ct ~- ~N,O~ 

K(M.C ~ ~ K(N.o~ ~ d(M,C~ ~-- d(N,t>~ 

If I c is an index set for a set of cells C, define the index  function index: C ~ I c 
by i n d e x ( c , ) =  ~, i.e., i n d e x ( c ) =  ~ , ~ c  = % In this proof the index sets are 

C = {c,},~jc and D = {da}a~, o. 

(M, C) --- (N, D) ~ ~(M,C) ----- ~N.o)" Let h: M --* N give an equivalence between 
(M, C) and (N, D), i.e., h is a homeomorphism which takes k-cells onto k-cells. 
Define i: I c ~ I v  by i(~) = index(h(c,)). The following shows that i: I c ~ Io  is an 
equivalence between ~ u . c )  and ~N,D). i is well defined because h takes k-cells 
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onto  k-cells, i is injective because 

al # O~ 2 ~ c~, # C=~ =~ h(c=,) # h(c~2) =~. i(a~) # i(a2)- 

T o  see that  i is surjective, let a = index(h-t(da)) for any f ie~o; then i ( a )=  
index(h(h- t(da))) = ft. i preserves dim because 

dim(a) = dim(c~) = dim(h(c=)) = dim(i(~t)). 

Tha t  i preserves < can be seen as follows: 

a I < a2¢~c=, < c=2~.h(c~,) < h(c~2)c-~i(at) < i(a2). 

~tu.c)  ~ ~tN.m ~ ~tW,C~ ~- ~tN.m =~ KtM.O ~-- K~N.o) =* (M, C) "" (N, D). Let 
i: I c ~ I o give an equivalence between ~¢M.c~ and ~ N . m ,  i.e., i is bijective, 
and preserves < and dim. It must  be shown that  i preserves simplices, hence gives 
an equivalence between ,~/~M.o and ~'~N.o)- If {a 0 . . . . .  ak} ~¢M.C~,  then there 
exists an ordering aio . . . . .  ai~ of  the elements of  {% . . . . .  ak} SO that  a~o < -'- < a~. 
Since i preserves < ,  this implies that  i(a 0 < ' "  < i(ai). So {i(aio) . . . . .  i(ai) } e MtN.or 
The  same argument  applied to i -1 shows that  {fio . . . . .  fik}e,~tN.O~ implies 
{i- l(fio) . . . . .  i -  t(flk)} e d{M.cr  Thus {a 0 . . . . .  ak} ~ d~M.c) if and only if {i(a,o) . . . . .  

/ ( a i l ) }  e J~(N,D)" 
In fact, i: I c ~ I o is also an equivalence between K~M.c ) and K ~ . o  ). This follows 

from Theorem 3.1(b) of [27], when it is noted that the isomorphism produced 
there preserves labels: the isomorphism f :  IK~u,c)l-~ IKts, o)[ produced by the 
theorem is a bijective simplicial map  which has the proper ty  that f(v~) = v,~), so 
label(v=) = dim(a) = dim(i(a)) = label(vitJ = label(f(v~)). 

Let ~,u: [KtM,c)I ~ M and SN: IKtN.m[ ~ N be maps giving barycentric subdivi- 
sions o f (M,  C) and (N, D), respectively, which exist by Lemma 1. Define h: M ~ N 
by h = ~ 'Nofo~ '~  t. This is a composi t ion of  homeomorphisms,  so is a homeo- 
morphism.  It will be shown that  h takes k-cells on to  k-cells. Define j:  I c ~ Io by 
j(a) = fia:,f(v~) = va. This is well defined since f is an equivalence. Let c~ be a 
k-cell in C. Then 

= h  h(c~) (~o<...<~,< Csa(ao, . . . ,  at, a)) 

= U 
ff.O < . , ,  < ~tl < Ot 

= U 
ff, O < " . ,  < ~ t /<  ~t 

= U 
jtao) < - -  < j(=~) < j(*t) 

= U 
j (=o)  < " "  < j (= / )  < j ( = )  

$N o f o $;t'(C,d(ao . . . . .  at, a)) 

$N ° f ( I n t  a(a o . . . . .  a 1, a)) 

$N(int a(j(%), . . . ,  j(@, j(a))) 

c~(j(ao) . . . . .  j(@, j(=)) 

which is a k-cell in D. 
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The first and last equalities use Lemma 1. The rest follow from the definition 
of h, and the fact that  f is an equivalence. 

~(M.c) = ~tu.ol =:" ~-](~.c) ~ 3-~(u.o). Let i: I c --. I o be an equivalence between 
~ ( ~ . c )  and ~ ( s . m .  Define j:  T(M,c ) ~ T(m m by 

J((Go, " " ,  c J )  = (di~)  . . . . .  di~)).  

(d~(~,) may be thought  of as shorthand for d.~.n~x(¢.,)). ) It must  be shown that j is 
well defined, bijective, and preserves swi tch .  

To  see that  j is well defined: 

(c~o . . . .  , c~)•T(M ,c) ~ ~o < ' ' "  <~a  

,*~ i(c%) < " "  < i(ee) 

To  see t h a t j  is injective: if t ~ t ' •  T~M,c ~, then there is a k such that  t k v ~ t'k, and 
i( index(tk)) ¢ i ( index( t ' k ) )~  [ j ( t )]k  ~ [ j( t ' )]k  ~ j ( t )  ¢ j(t ').  TO see that j is surjective: 
if (d0o . . . . .  da)  • T~m o), then 

/~o < " "  < / ~  =" i -  ~(/~o) < " "  < i -  ~(/~.) =~ (c,-,~Oo~ . . . . .  c,-,~o,,~) • r~...c~. 

and J((ci-qoo) . . . . .  ci-,(0~))) = (d00,. . . ,d0)- To see that j preserves swi tch:  let 
0 <_ k <_ d and t e T(M,c r Then  

t' = switChk(t) ¢*" (ti = t'i'*~i ¢ k) 

( index(t i)  # i n d e x ( t l ) ~ i  ~ k) 

.¢~ (i(index(ti)) ¢ i(index(t'i))¢¢" i ¢- k) 

ee, ([j( t)]i  --- [ j( t ' )] i '*~ i :/: k) 

¢e. j(t ') = switchg(j(t)) .  

~M.c) ~ ~N,o) ~ ~tM.c) ~ ~ m m -  Let j :  T~M.c ) ~ T(N.o) give an equivalence be- 
tween ~-~(M. c)and JtN.OI, i.e.,j is bijective, and switchk(j( t ) )  = j(switchk(t)) ,  Vt  • T(ta. c), 
0 < k < d. An equivalence i: lc  ~ Io will be defined. 

The following fact will be needed: if J ___ {0 . . . . .  d}*, then 

swi tch j ( j ( t ) )  = j ( swi tchj ( t ) )  

for all t ~ T(M,c~. This can be seen by the following argument.  If w •  J, then 
swi tchw( j ( t ) )  = j ( swi t chw( t ) )  by repeated applications of the definition of equiva- 
lence. Thus  

t' • swi tchs( j ( t ) )  ¢*" t' = swi tchw(j ( t ) )  for some w • J 

¢~ t' = j ( swi tchw( t ) )  for some w~ J 

t' • j (switchj( t ) ) .  
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Let c a be a k-cell, and let t e TtM.q be a cell-tuple such that t k = C a (which exists 
by Lemma 3). Now, assoc(G ) = switch,(t), by Theorem 1. Putting this together 
with the fact given in the previous paragraph and Corollary 2 gives 

= j(switch~*(t)) = switch~*(j(t)) = assoc(d#) j(assoc(c~)) 

for a unique k-cell d o e D. 
By this argument, it is possible to define i: I c --. lo  by 

i(ct) = index(assoc- l(j(assoc(G)))). 

This also gives that dim is preserved (dim(0t) = k = dim(fl)). It must be shown that 
i is bijective and preserves <.  To see that i is bijective: recall from Corollary 2 
that assoc (as a function from lc  to 2 r'M.°) is bijective with its range, by definition 
index is bijective, and it is given that j is bijective. To see that i preserves < :  
first note that if fl = i(ct), then fl = index(assoc-l(j(assoc(c~)))) implies assoc(d#) = 
j(assoc(c~)). Now suppose cq, at2e lc ,  k 1 = dim(cq), and k 2 = dim(or2). Let fll = 
i(g0 and f12 = i(ct2). Then 

~ .  k, < k 2 a n d  Ste TtM.c ) s.t.  t k ,  = Ca, , tk2 = Ca2 

kl < k2 and assoc(ca, ) n assoc(ca2 ) ~ 

"~ kl < k2 and j(assoc(ca,)) r~j(assoc(c~2) ) ~ 

¢*- k 1 < k 2 and assoc(d#) n assoc(d#2 ) ~ 

¢~ k 1 < k 2 and 3t e T(N,D ) s. t .  tk, : d#,, tk2 = d#2 

~1 < 3~. [] 

The next theorem shows the existence of many orderings of cells within 
subdivided manifolds, and shows that these orderings are directly accessible using 
the cell-tuple structure. Recall the examples of ordering given in Section 1. Figure 
2 gave examples in two dimensions: Fig. 2(a) showed an ordering of the t-cells 
and 2-cells incident to a 0-ceil, and Fig. 2(b) showed an ordering of the 0-cells and 
1-cells incident to a 2-cell. Figure 3 gave examples in three dimensions: Fig. 3(a) 
showed an ordering of the 2- and 3-cells incident to a 1-cell, Fig. 3(b) showed an 
ordering of the 1- and 2-cells incident to both a 0-cell and a 3-cell, and Fig. 3(c) 
showed an ordering of the 0- and 1-cells incident to a 2-cell. Observe that in each 
of these five cases, the ordering is of the set of all (k - 1)- and k-cells containing 
a (k - 2)-cell, or within a (k + 1)-cell, or both. 

All of these cases can be put into one framework, by thinking of fixing both a 
(k - 2)-cell and a (k + 1)-cell containing it. This works for 1 <_ k _< d. In the case 
of k = 1 the (k - 2)-cell is not needed, and in the case of k = d the (k + l)-cell is 
not needed. Again the convention of including extra cells ca_, and ca, ~, of dimension 
- 1 and d + 1, respectively, is used for notational convenience. 

If c~_2 < c~k +: where 1 < k _< d, G,_2 is a (k - 2)-ceil and c~ +, is a (k + 1)-cell, let 

S(ca,_: ca. , )  = {CalCa~_~ < Ca < Car+,}" 
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When it is clear from the context, S is written for S(c~_~, c . . . .  ). It  is this set S 
which can be ordered. The idea is that  given a ( k -  2)-cell contained in the 
boundary  of a (k + 1)-cell, all of the cells "be tween"  them may  be put into a 
circular order  " a r o u n d "  the ( k -  2)-cell, such that  this order  alternates between 
(k - 1)-cells and k-cells, consecutive pairs of k-cells share the (k - l)-cell between 
them, and consecutive pairs of ( k -  1)-cells share the k-cell between them. The 
reason this idea is not more  obvious when trying to generalize from two and three 
dimensions is that  of  the five cases d = 2, k = 1 (as in Fig. 2(b)), d = 2, k = 2 (as 
in Fig. 2(a)), d = 3, k = 1 (as in Fig. 3(c)), d = 3, k = 2 (as in Fig. 3(b)), and d = 3, 
k = 3 (as in Fig. 3(a)), only one involves fixing two cells, namely d = 3, k = 2. 

Let m = # (S). A circular ordering of S is an ordering %o, . . . .  c~_, of  the elements 
of S such that:  

(1) c,, is a (k - 1)-cell if i is even, and is a k-cell if i is odd, 
(2) c, . . . .  o~ and c, . . . . . .  share c,, for 0 < i < m - 1 

(by share is mean t  "are  each incident to"). 
Theorem 3 shows the existence of ordering information for all dimensions from 

0 to d, and shows that  the celi-tuple structure gives immediate  access to it via the 
switch opera tors  (the incidence graph does not offer such direct access). 

Theorem 3. There  exists a circular ordering o f  S(c~ 2, c~+,). Furthermore,  the 
switch structure directly represents this ordering information: 

(A) There  exis ts  a t o •  T~u,o such that t°_ 2 = c . . . .  and t°+ l = c~+ . For  any 
such t °, i f  the sequence of  cell-tuples t o . . . . .  t m- 1 is defined by 

~switChk(t i -  1), i even, 
t i "t 

( switchk_ l(t i -  1), i odd, 

then the sequence C.o . . . . .  c.._, defined by 

t~_ I, 

%' (t~, 

i even. 0 <_ i <_ m -- 2, 

iodd,  l < _ i < _ m - 1 ,  

(B) 
gives a circular ordering o f  S(c~,_ 2, c~+,). 
There  exis t  c~o, cn, • C such that c~_: -< %0 "( cn, -< c~ .  . For  any such C,o 
and c,,, i f  the sequence C,o . . . . .  c,._, is defined by 

= I switchk-  1(c~k_2, c~,_2, %,_,), 

cn, (switchk(C ~ .... cn,_~, c . . . .  ), 

i even, O < i <_ m - 2, 

iodd,  1 < i < m - 1 ,  

gives a circular ordering o f  S(c~_ 2, c~k+,). 

Proof. Let t o = (c~o,... ,  c~,1)e T~u.c ) such that  t °_ 2 = c~k_2 and t°+l = c.~+,, which 
is possible by L e m m a  3. Let T ' =  assoc(c~ o . . . . .  c~_2, c . . . .  , . . . .  c~). Then T ' =  
switchtk_ 1.k).(t °) by Theorem 1. 
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Recall from Section 5 the definition of G t u . c ) ,  the graph whose nodes are 
cell-tuples and whose labeled arcs represent the s w i t c h  k operators.  Let G be 
the subgraph of  G t u . c  ) induced by T', i.e., G = ( E E L  where V = T' and 
E = E k_ 1 u Ek: 

E = {(t 1, t2)lt ~, t 2 E T'  and e is labeled with k - 1 or k}. 

Every t e V is incident to exactly one arc labeled k - 1 and one labeled k, and G 
is connected,  because T'  = swi tch tk_  Lk~.(t0). SO G is a simple circuit, whose arcs 
are labeled alternately by k - I and k. Let 

t 1 = s w i t c h  k_ l(t°), 

t 2 = switChk( t t), 

t 3 = s w i t c h  k_ l(t2), 

t 4 = swi tchk( ta) ,  

t ,~- 2 = switChk(t  m-  3). 

t m -  1 = s w i t c h  k _ l ( t  = - 2). 

Then  T ' =  {t ° . . . . .  tin-t}. Let 

Crto = tO-  1, 

Cnt = t 1,  

Crt 2 --~ t2k_ l ,  

C~3 = t 3,  

= t m - 2  
C~m_ 2 k -  1 , 

C~_1 = t r ~ - l "  

Let  S = S(c~,_~, c~k~,). It must  be shown that  S = {C.o . . . . .  c.._,}. If c ~  S, then 
c~_2 < c~ < c~k+, implies that  there exists a t e T' such that  either tk_ 1 = c~ or 
tk = C~. SO C~ ~ {C~0 . . . . .  C,._,}. This shows that  S c {C.o . . . .  . c.._,}. I f0  < i _< m - 1, 
then c.k_2 < c.,  < c ~ ,  implies c . , e S ,  i.e., {c,0 . . . . .  c.~_,} ~ S. Proper ty  (1) of a 
circular ordering follows from c., = t~_ t if i is even, c., = t~ if i is odd. Property 
(2) follows from the definition of s w i t ch .  Parts  (A) and (B) of the theorem 
follow. [] 

To  access the cells in a circular order ing starting at a given cell-tuple, apply 
swi tChk_  1.k repeatedly, taking the ( k -  1)- and /o r  k-components  of the resulting 
cell-tuples to  get the (k - 1)- and /o r  k-cells in the ordering. Referring to Fig. 2, in 
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IN C~l 
coLo .,~ 

c~5 ~ ' /  c0~2 

I c c t 3  ~cL4 
t t ~ t 2  

Fig. 15. Example of Theorem 3. On the left, the sequence c~0 . . . . .  c~ gives a circular ordering of the 
set of  1-cells and 2-cells incident to a 0-cell, O n  the right, the sequence of cell-tuples t ° , . . , ,  t 5 may be 
obtained by starting with t °, and alternately applying switch1 and switch 2. This "r ing" of cell-tuples 
may be used to obtain the sequence of cells c~0 . . . . .  c.s. 

(a) the 1-cells and 2-cells incident to a 0-cell are accessed by applying switch12 , 
and in (b) the 0- and 1-cells incident to a 2-cell are accessed by applying switchol. 
Referring to Fig. 3, in (a) the 2- and 3-cells incident to a 1-cell are accessed by 
applying switch23, in (b) the 1- and 2-ceUs incident to both a 0-cell and a 3-cell 
are accessed by applying switchi2, and in (c) the 0- and 1-cells incident to a 2-cell 
are accessed by applying switcho~. An example in two dimensions for the set of 
1-cells and 2-cells incident to a 0-cell is given in Fig. 15. 

8. The Dual 

An example of the topological dual of a subdivided 2-manifold was given in Fig. 4. 
Essentially, the dual of a subdivided d-dimensional object is a subdivision of the 
same object produced by replacing every k-dimensional cell by a (d - k)-dimen- 
sional cell, while maintaining the corresponding incidence relations. Suppose 
(M, C) is a subdivided d-manifold. Recall from Lemma 1 : 

0 . . . . .  

a~o < . . .  < ell < ~ 

If c, e C, then the dual cell for c, is 

dual c~ = U csa(~, ~t,o . . . .  , cti,). 

Examples of dual cells are shown in Fig. 16. The dual complex of (M, C) is 
(M, Ca"°l), where C a"l = {dual c~)~x,.. 

Since the characteristic functions for C are not unique, the cells in C~a are not 
unique. Hence the dual is not unique, but it ~s unique up to equivalence. 

From the definition it follows that there is a one-to-one correspondence between 
the original cells and the dual cells, and that incidence and the orderings are 
preserved. The incidence graph for (M, C d~) may be obtained from the incidence 
graph for (M, C) by "turning it upside-down," and (M, C a~z) is represented 
implicitly by the incidence graph for (M, C). 
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dual c A 

Q dual CA C a V a 
\ 

, 

\ \ \dual  c 1 
\ 

\ 
cb c B Vb vB dual  c b \C)  

dual  c 8 

Generalized barycentric Dual ceils 
Primal cells subdivision 

Fig. 16. Example  of dual  cells, c a, c b are 0-cells, c I is a l-cell, and  c A, cn are 2-cells. The  middle  
i l lustrat ion shows  the simplicial cells in the generalized barycentr ic  subdiv is ion  associa ted with c~, e.g. 
the  vertex v~ is the  0-cell ca( l) ,  and  the  open  tr iangle defined by v~, vt, and  v s is the  2-cell ca(a, 1, B). 
T h u s  cl  = {c~(1)} w {Ga(a, 1)} w {ca(b, 1)} and  dual cl = {ca(1)} w {c,~(1, A)} w {ca(l ,  B)}. 

There is a one-to-one correspondence between T~M.c ~ and T~M,cd~,~; define 
switchR: TtM.c~ ~ T~M,c~-~ by switchR((c~o . . . . .  c~)) = (dual c~d, . . . .  dual c~,). Note 
that switchk in the dual corresponds to switChd-k in the original subdivision, i.e., 
switChRkR = switChd-k. Thus the cell-tuple structure for (M, C) represents the dual 
implicitly. 

If the dual is to be represented explicitly, consider the set of tuples 

T(M,C) k.J ~(M, CdUal), 

acted on by switchR and switch k, 0 < k < d. Then the extension of Corollary 4 
obtained by adding the following rule holds: 

(ct6) switchRiR(t) = switChd_i(t), 

9. Extension to Manifolds-with-Boundary 

Most of the results given so far have applied only to subdivided manifolds (without 
boundary). In generalizing the cell-tuple structure to the with-boundary case, the 
problem is that switch,(t)  is not defined if t d_ 1 ~ 0M. 

Two approaches are considered for the extension of the earlier results to the 
with-boundary case. The first is to set switch to some special value in the undefined 
cases, indicating that an attempt was made to "pierce the boundary." Then the 
definition of circular ordering may be modified so that when k = d and c~_2 ~ ~M, 
the ordering is a simple path rather than a simple cycle. The theorems may be 
proved as before. 

The second approach may be described intuitively as imagining that the space 
"outside" of the d-manifold-with-boundary (M, C) is simply another d-cell (though 
in general, the complement of a d-manifold-with-boundary embedded in R" is not 
a d-cell). An abstract object c~ is added to C, such that, for every c~ contained 
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in OM, c, < c , .  Now switch may be defined as before on the set C u {c,~}, and 
all of the results for subdivided manifolds can be proved for subdivided manifolds- 
with-boundary (see [4] for details). In addition, this makes it possible to access 
the boundary as a subdivided (d - 1)-manifold immediately; the cell-tuple struc- 
ture associated with c, ~, inherited from the cell-tuple structure for (M, C), is exactly 
the cell-tuple structure for OM. 

10. Constructors for d-Dimensional Objects 

So far subdivided manifolds have been treated as static, existing objects. A useful 
system must provide operators for creating, modifying, combining, separating, and 
destroying them. Such operators are termed constructors. One possible set of 
general constructors for subdivided manifolds, with and without boundary, which 
does not depend on a particular representation, is proposed in [4]. These operate 
on objects of various dimensions, allow changing of dimension, and are sufficient 
to construct any subdivided manifold. A very brief description is given here. 

The basic creative constructor, make_vertex, simply produces a vertex. Its 
inverse, kilt_vertex, removes an isolated vertex. 

The constructor lift takes a subdivided (k - 1)-manifold homeomorphic to S k ~ 1, 
and "fills in the interior" of C with a k-cell c,~. The constructor unlift is the inverse 

of lift. 
The constructor join identifies a specified pair of equivalent cells, and all of 

their corresponding subcells. In general, the desired correspondence between the 
subcells in the boundaries of the two cells must be specified. One method is to 
specify for each cell a chain of boundary cells of decreasing dimension, i.e., for c~,, 
give a chain c~k ~-'-" ~- c~ 0, and for c~, give a chain c~; ~---- ~- c~. Identifying the 
corresponding cells in these chains completely specifies how all the subcells of c~k 
and c~ will be matched. This lends itself naturally to a cell-tuple implementation. 
The constructor unjoin is the inverse of join. 

The constructor split is a generalization of the Euler operators which split edges 
and faces. Given a set of the subcells on the boundary of a k-cell c~, such that if 
taken as a subdivided (k - 2)-manifold their union is homeomorphic to S k- 2, split 
performs a lift on the subset, so as to split c~ into two new k-cells. The constructor 
unsplit is the inverse of split. 

It is not hard to show that any subdivided d-manifold can be built from this 
set of constructors, using a recursive construction. Build every d-cell by first 
building its boundary and then performing a lift; if d -- 1 building the boundary 
consists of two applications of make_vertex. For every pair of d-cells which need 
to be adjacent, perform a join on the common pair of ( d -  1)-cells in their 

boundaries. 
These constructors may be implemented in any representation which allows 

access to incidence structure and ordering information. Implementations based on 
the incidence graph and the cell-tuple structure are discussed in [4]. To implement 
the proposed constructors using the cell-tuple structure, certain pairs of cell-tuples 
are "attached to" or "detached from" each other. The key to attaching or 
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detaching the proper cell-tuples is to traverse the edge-labeled switch graphs in 
the proper order, i.e., by exploring the corresponding orbits or matching cells in 
a prescribed lock-step order, and modifying the appropriate switch arcs to 
maintain the rules listed in Corollary 4. 

The above discussion of constructors considers only topological structure. 
Maintaining the connection between topology and geometry, allowing access and 
easy updates of topology and geometry simultaneously, while also allowing 
changes to be made to either independently, is one of the most challenging 
problems for an implementation. 

11. Relation to Other Implicit-Cell Representations 

The relationship of the cell-tuple structure to half-edges, the quad-edge data 
structure, the facet-edge data structure, n-G-maps, and chamber systems is ex- 
amined in this section. In particular, it is discussed how the basic elements and 
the query operators correspond. 

In the two-dimensional case, Baumgart [2] described the "winged-edge data 
structure." The basic idea is to have two basic objects (winged-edges) associated 
with each edge, which point to each other and to adjacent winged-edges. The idea 
of "splitting" an edge in half has given rise to two different entities which have 
both been called "half-edges." If one imagines splitting the edge lengthwise, a 
half-edge corresponds to an incident face-edge pair. M~intyl/i [23] devotes a 
chapter to such half-edges. If one imagines splitting the edge by a "midpoint," a 
half-edge corresponds to an incident vertex-edge pair. The term is used in this 
context in [21]. Weiler [38] distinguishes between the two possibilities for a 
half-edge by using the terms vertex-edge (V-E) structure and face-edge (F-E) 
structure (examples of V-E and F-E half-edges were included in Fig. 13.) Attaching 
pointers to half-edges allows direct access to ordering information. It follows from 
Theorem 1 that a V-E half-edge corresponds to a pair of cell-tuples related by 
switch 2 (i.e., each vertex-edge pair corresponds to a 2-orbit), and an F-E half-edge 
corresponds to a pair of cell-tuples related by switcho (i.e., each face-edge pair 
corresponds to a 0-orbit). Observe that the generalized barycentric subdivision 
gives a geometric realization to these half-edges, as indicated in Fig. 13. 

Guibas and Stolfi [16] introduced the "edge algebra" for representing subdivi- 
sions of 2-manifolds (without boundaries) in which the boundaries of faces are 
allowed to self-intersect. For every edge in the original and dual subdivisions there 
are two possible directions of traversal and two ways of giving a local orientation 
to the surface. Taking all possible combinations of direction and orientation give 
four "directed, oriented edges" for each edge. These are the basic elements of the 
edge algebra. There are three operators, Rot, Onext, and Flip, which may be applied 
to directed, oriented edges. Flip reverses orientation, Rot essentially "rotates about 
the midpoint" (into the dual), and Onext rotates about the base (in the direction 
indicated by the orientation). These are illustrated in Fig. 17. It is proved that 
these operators obey a set of ten rules, and a one-to-one correspondence is 
established between their class of subdivisions and between the set of all "abstract 
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0"-,// 

e Onext 

Fig. 17. Examples of Rot, Onext, and Flip. The straight'arrows indicate direction along the edges, 
and the curved arrows indicate orientation, as the direction of rotation. 

edge algebras" (systems of entities and operators obeying the ten rules). Ordering 
around vertices is available by applying a sequence of Onext  operators, and 
ordering around the boundary of a face by a sequence of Rot2Flip operators. 

There is a one-to-one correspondence between primal directed, oriented edges 
in the edge algebra and the cell-tuples in the cell-tuple structure. Given a tuple, 
the corresponding directed, oriented edge is given by: t 1 tells which edge is 
involved, t o gives the direction (as the origin of travel), and t2 gives the orientation 
(as the direction of rotation, i.e., which face Onext  rotates through). Conversely, 
given a directed, oriented edge, the edge specifies a 1-cell, the direction gives a 
0-cell (the endpoint moved away from), and the orientation gives a 2-cell (the face 
encountered during a positive rotation). In Fig. 18 this correspondence is indicated 
by location. 

There is a similar correspondence between dual directed, oriented edges and 
the dual cell-tuples in T~M.c~,o, ~ (described in Section 8). The set of cell-tuples 
Ttu.c ~ w T~u.c~o,,, ~ corresponds to the set of all directed, oriented edges in the edge 
algebra. Let go be a map from Ttu, o u T~M.c~,a, ) which gives this correspondence. 
If e = ga(t), then e Onext may be "rewritten" as switch~2(t), (i.e., p( t )Onex t  = 
ga(switch12(t)) ), e Flip as switch2(t), and e Rot  as switch2R(t). Conversely, switcho(t) 
may be rewritten as e Rot  2 Flip, switch,(t)  as e Onext  Flip, and switch2(t ) as e Flip. 
The two quad-edge constructors, MakeEdge  and Splice, may be rewritten in terms 
of the cell-tuple constructors mentioned in Section 10 (see [4]). 

Primal quad-edges G(M.C ) 

Fig. 18. Pictorial comparison between directed, oriented edges and cell-tuples. On the left are the 
quad-edges associated with edges in the original subdivision; the side on which the half-heads appear 
indicates orientation. On the right are the cell-tuples for the same subdivision, along with the arcs of 
the graph corresponding to the cell-tuple structure. 



420 E. Brisson 

It is interesting to note that Guibas and Stoifi introduce a refinement of the 
original subdivision, called the "completion," which is exactly the generalized 
barycentric subdivision in the two-dimensional case. 

Dobkin and Laszlo [9] created a data structure for representing complexes of 
3-ceils in an analogous fashion to that of Guibas and Stolfi's two-dimensional 
data structure. The class of 3-complexes allowed in [9] are subdivisions of spaces 
homeomorphic to B 3 or B 3, where the cell boundaries are allowed to self-intersect 
(though it is possible that others may be generated by using their constructive 
operators). The basic units are pairs of the form (e, f )  such that the edge e is 
incident to the face f. Since the (topological) dual of an edge is a face, and vice 
versa, there is a one-to-one correspondence between facet-edges in the primal and 
dual subdivisions. As in the quad-edge data structure, the idea of orientation is 
now added. There are two possible directions to rotate around an edge, and two 
possible directions to traverse the boundary of a face. With each pair are associated 
four objects called facet-edge pairs (or simply facet-edges), corresponding to the 
four possible ways of assigning these directions. 

There are five operators for moving among facet-edges: Enext, Fnext, Clock, 
Rev, and Sduat. Enext gives a pair with the same orientation and face component, 
but with the next edge around the face in the direction given by the face's 
orientation. Fnext gives a pair with the same orientation and edge component, 
but with the next face around the edge in the direction given by the edge's 
orientation. Clock and Rev leave both components unchanged. Clock changes both 
orientations, while Rev changes only the edge's orientation. Sdual gives the corre- 
sponding facet-edge in the dual, such that the orientation of the dual face matches 
that of the primal edge, and the orientation of the dual edge matches that of the 
primal face. The first four of these operators are shown pictorially in Fig. 19. The 
set of all facet-edges, taken with the five operators above, constitutes the facet-edge 
data structure. The four facet-edge constructors, make_facet_edge, splice_facets, 
splice_edges, and transfer, may be rewritten in terms of the cell-tuple constructors 
mentioned in Section 10 (see [41). 

As in the case of the edge algebra, there is a one-to-one correspondence between 
the cell-tuples in the cell-tuple structure for a subdivided 3-manifold and the primal 
facet-edges in the facet-edge data structure: tl gives the edge, t 2 gives the facet, to 

a~toc~ 

a Enext 

aRev ~ ~a ~aFnext 

Fig. 19. A facet-edge pair and primitive operators. The larger curved arrows indicate orientation 
within a face, and the smaller curved arrows indicate orientation about an edge. 
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gives the direction within the face, and t a gives the direction around the edge. This 
same correspondence holds for the dual. If the facet-edge a corresponds to the 
cell-tuple t, then the facet-edge operators can be rewritten in terms of the switch k 
operators as follows: a Clock as switcho3(t), a Enex t  as switchol(t  ), a F n e x t  as 
switchEa(t), a Rev  as switcha(t ), and a Sdual as switchR(t). The switch operators may 
also be written in terms of the facet-edge operators. 

Two other researchers have described, independently of each other and of this 
work, representations of d-dimensional objects which are similar to the cell-tuple 
structure. Lienhardt is a computer scientist whose work with "n-G-maps" is 
concerned with representations of subdivisions of higher-dimensional objects 
suitable for computational applications, while Tits is a mathematician, who 
developed "chamber systems" as a tool for working with mathematical objects 
called "buildings." 

The idea underlying n-G-maps is basically the same as that of the cell-tuple 
structure. The definition of an n-G-map (taken from [21]) is: 

Definition 1. Let n > 0; an n-G-map is defined by an (n + 2)-tuple 

G = (B, ~o, ~1 . . . . .  ~,), 

such that: 
• B is a finite, nonempty set of darts; 
• ~o, 71 . . . . .  ~, are involutions on B (i.e., Vi, 0 < i < n, Vb ~ B, ct~(b) = b), such 

that: 
o Vie {0 . . . . .  n - 1}, "i is an involution without fixed points 

(i.e., Vi, 0 <_ i <_ n - 1, Vb ~ B, as(b) ~ b); 

o Vie {0 . . . . .  n - 2}, Vj e {i + 2 , . . . ,  n}, aict~ is an involution. 

If a, is an involution without fixed points, G is without boundaries, or closed, 
else G is with boundary, or open. 

Here, n is the dimension. To associate an n-G-map with a topological object, first 
consider n = 1. In this case, darts are defined to be V-E half-edges. Two half-edges 
"gathered" by ~o form an edge, and two edges are adjacent at an endpoint if the 
respective half-edges are gathered by cq. Thus a 1-G-map corresponds to a set of 
edges forming cycles and paths. A connected closed 1-G-map corresponds to a 
single cycle, and a connected open 1-G-map corresponds to a single path. (See 
Fig. 20.) In two dimensions, a face is defined by "a  simple elementary cycle of 
edges." These faces may be "sewn" together to form two-dimensional subdivisions. 
In general, any connected closed (n - 1)-G-map is allowed to be the boundary of 
an n-cell, and such cells may be sewn together to create n-dimensional subdivisions. 
Lienhardt discusses the orientability of n-G-maps and gives a definition for the 
dual of an n-G-map. In [20] he shows how to compute the number of boundaries, 
the Euler characteristic, orientability factor, and genus of 2-G-maps (representing 

surfaces). 
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etl % 

V 
Fig. 20, Example of a 1-G-map. The three edges are divided into halt-edges, or darts, by the small 
perpendicular marks near their midpoints. Darts are gathered into edges by the % operators, and two 
edges are adjacent if they contain darts which are gathered by e I operators. 

The topological objects represented by "n-G-maps" (termed subdivisions) form 
a much larger class of partitions of topological spaces than subdivided manifolds. 
What is referred to as a cell is very general. For instance, a torus or a Klein bottle 
might be the boundary of a three-dimensional cell. So the underlying spaces 
created are very general, i.e., are not manifolds, or any class of "familiar" space. 
The advantage to this is that allowed (gathering) operations always give another 
valid object. The disadvantage is that less can be said about them, e.g., the ordering 
results presented in this paper do not apply. 

Taking the cell-tuple structure as an abstract system obeying Corollary 4, the 
rules followed by each are basically the same: 0q acts on B in n-G-maps in the 
same way that switch~ acts on T~u.c ). The only difference is the way that boundaries 
are handled. In an n-G-map, bet, = b if b is a boundary dart, whereas in the 
cell-tuple structure, either switch,(t) is equal to a special value, or to another 
"outside" cell-tuple. If the first method for handling boundaries in the cell-tuple 
is taken, setting switch,(t) to be equal to t would be just as easy to detect as setting 
it to an arbitrary value, i.e., this would make the cell-tuple structure agree 
completely with n-G-maps in this abstract framework. Recall that, in this ap- 
proach, the boundary is represented only implicitly. The definition of n-G-map 
does not include any explicit representation of the boundary as an (n - 1)-G-map, 
as was given in the second approach for handling the boundary in the cell-tuple 
structure, so direct access to the boundary as a subdivided (d - 1)-manifold is not 
possible. 

.Tits' work [36] is concerned with the characterization of combinatorial "build- 
ings," which arose out of the geometric study of semisimple Lie groups and 
semisimple algebraic groups. His work is developed in a much more general setting 
than that given here, and is not concerned with subdivided manifolds. He does 
not consider the representation of subdivided manifolds or ordering, and does not 
consider computational issues. 

The concept of chamber system, when appropriately applied to a subdivided 
manifold (M, C), is basically a labeled version of the 1-skeleton of the dual of the 
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barycentric subdivision of (M, C). If a subdivided d-manifold (M, C) is considered 
as a geometry over the set 0 . . . .  , d, so that the elements of the geometry are the 
cells of C and the labeling of the elements is the dimension of the cells, then the 
complex (in the context of Tits' work) associated with this geometry is equivalent 
to the abstract simplicial complex dtM, c~ defined in Section 4. The chambers are 
then the d-simplices of s~u.c ). The partition ~i in the associated chamber system 
is essentially a matching between chambers, which corresponds to the pairs of 
d-simplices associated by switchi. (switch is defined on the d-simplices of K~u.c ) in 
Section 6. By the correspondence between the simplices of d(M.C) and K(u,c ), this 
gives a definition of switch on S~I~M,C).) By the one-to-one correspondence between 
the d-simplices of ~¢~u.c) and the cell-tuples of T~u.c ), there is a one-to-one 
correspondence between chambers and cell-tuples, so that a pair of chambers are 
in the partition ~i  if and only if the corresponding pair of cell-tuples are connected 
by switch~. 

Chamber systems are used by Huson and his coauthors [10], [14] in their 
study of tilings of the plane. Huson has developed an implementation of two- 
dimensional chamber systems as part of his work. 

12. Directions for Future Work 

Three possible directions in which further work might be pursued are briefly 
discussed: generalizing and extending the cell-tuple structure and similar rep- 
resentation schemes as an end in itself; using the cell-tuple structure to obtain 
new results in computational geometry; and the use of the cell-tuple structure in 
practical applications. 

In this work the basic building blocks were cells whose boundaries were not 
self-intersecting, and the objects represented by their unions (the underlying spaces) 
were topological manifolds. A natural generalization of the problem is to consider 
larger classes of cells, or larger classes of underlying spaces, or both. If a larger 
class of cells is allowed (under suitable restrictions), the description of basic units 
as tuples does not work out as simply, but many of the basic ideas go through. 
Similarly, if a larger class of underlying spaces is allowed, i.e., nonmanifolds, the 
ordering result may be lost, but additional representational power may be gained. 
Lienhardt's work [21] on n-G-maps deals with a very general class, a class which 
is larger than the class of all spaces which follow the rules given in Corollary 4. 
There may be a valuable class of objects between those represented by the ceU-tuple 
structure and those by n-G-maps, which have a simple representation and retain 
some ordering properties. Work on representation of nonmanifold structures 
include [17], [18], [30], [31], [39], [40], and [413. 

As an example of where the cell-tuple structure might prove useful in obtaining 
new algorithms for open computational geometry problems, consider the compu- 
tation of the convex hull of a set of points in R a. This is a much-studied problem 
(in R 2, perhaps the most studied problem in computational geometry). The 
asymptotically best existing algorithms for computing the convex hull of n points 
in the general case of d dimensions run in time O(n Ld/z~) for even d >_. 4, and time 
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O(n La/2j log n) for odd d > 4. The existing lower bound for d > 4 is f~(nkd/2J), given 
by the size of the output, so dosing the log n gap for odd d > 4 is an open problem. 
Another open problem for higher dimensions is to generalize the divide-and- 
conquer algorithm devised for the three-dimensional convex hull [29] to d > 4. 
(Buckley [5] gives a divide-and-conquer algorithm for the particular case of d = 4, 
but gives no analysis of the running time.) Edelsbrunner comments on this problem 
[12, p. 173]: "A crucial step in this generalization will be the formulation of order 
relations among the faces of the convex hull which can be exploited in 'merging' 
two separated polytopes." Perhaps the ordering developed in this paper may help 
to produce such a generalization. 

For the Voronoi diagram, there is a similar log n gap for even d > 4. There is 
a lifting method which reduces the Voronoi diagram problem to the convex hull 
problem in one higher dimension, so an improved convex hull algorithm will also 
give an improved Voronoi diagram algorithm. 

The cell-tuple structure may be thought of in several ways, as discussed in 
Section 5: as a set of data elements and pointers directly representing the cell-tuples 
and switch operators; as an arc-labeled graph; or as a relational database. Several 
hybrids are also possible, including the augmented incidence graph. Simplifications 
may be made if more is known about the particular objects being used in an 
application, e.g., perhaps all cells are simplicial. Building a useful system based on 
any of these strategies involves considerations of speed and memory, as well as 
deciding how to maintain the connection between geometry and topology. In any 
real application a geometry package with some degree of robustness, and some 
means of displaying the output, will have to be implemented. These are discussed 
in [4]. 

13. Conclusion 

The primary contribution of this paper is the introduction of the cell-tuple 
structure, which gives a simple, easily implemented data structure for representing 
the topological structure of geometric objects, the ordering within such objects, 
their topological duals, and their boundaries. The class of objects studied, the 
subdivided manifolds, is general enough to encompass many applications. This 
work generalizes existing work in two and three dimensions to the general 
higher-dimensional case, and provides a simple unifying framework for existing 
work. 

Part of this work, a contribution in itself, is the generalization of the ordering 
of cells familiar in two and three dimensions to the general higher-dimensional 
case, whose existence was proved by using the cell-tuple structure. In addition to 
describing the cell-tuple structure as a static representation, a set of possible 
constructors was proposed for creating and modifying subdivided manifolds. 

It is hoped that the cell-tuple structure will lead to new theoretical results as 
well as providing a practical method of representing objects for modeling and 
graphics. 
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