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Abstract. We describe the "cobweb" partition scheme and show that it can split 
any planar set into eight regions of equal area. 

I. Introduction 

It is commonly observed that any (measurable) set in the plane can be cut by a 
pair of lines into four parts of equal area. Courant and Robbins [4] showed a 
stronger theorem: that the pair of lines can be taken to be perpendicular. We 
rephrase this to say that some pair of perpendicular lines defines an equipartition 
of the set. The stronger result harnesses the intermediate value (Bolzano's) theorem 
to turn to advantage a degree of freedom which goes to waste in the proof of the 
weaker version (e.g., one line is often taken horizontal). 

Buck and Buck [3] used the same degree of freedom to show that a convex 
planar set can be partitioned by three concurrent lines into six parts of equal area. 
As with the perpendicular line pairs, fundamentally the method of proof is to 
consider a continuous family of partitions, use a real-valued function to measure 
how close each partition is to being an equipartition, and use the intermediate 
value theorem to argue that for some member of the family this function is zero. 
Thus that member is an equipartition. Edelsbrunner and Huber I-5] proved a 
discrete analog of this theorem; an analog for measurable sets (more generally, 
"density functions" as defined below) can also be observed. 

We refer to various ways of cutting up the space--such as by pairs of lines, 
pairs of perpendicular lines, or three concurrent lines--as partition schemes. 
Loosely speaking this is a set of partitions of space, parametrized by some 
manifold. (For instance, partitions by line pairs are parametrized by I~ 2 × ($1)2). 

*This research was supported by an ONR graduate fellowship. 
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Recent interest in equipartitions was stimulated by Willard's [10] recognition 
of their usefulness in the solution of "range search" problems. Willard's lead has 
been extended in many ways: the reader is directed to [12] for a discussion, and 
to [6] for some recent results. Equipartitions have also arisen in the study of 
"crossing families" [2]. 

Several investigations (see [12]) have been examined partition schemes for 
dimensions higher than two. For instance F. Yao et al. [13] showed that three 
planes can equipartition any set in three dimensions; while A. Yao and F. Yao [11] 
described certain partition schemes for arbitrary dimensions and showed that they 
equipartition every set. Broadly speaking these papers adopt the following 
approach (analogous to that described above, but using the Borsuk-Ulam theorem, 
a generalization of the intermediate value theorem) to establish their existence 
proofs: parametrize a set of constructions by the sphere S k, and map the sphere 
onto ~k in such a manner that any construction with the desired property (e.g., 
equipartition) will be carried to the origin. Then show that such a construction 
exists by observing that the map is continuous and antipodal; and that therefore, 
by the Borsuk-Ulam theorem, the range of the map includes the origin. 

As an example of the application of the Borsuk-Ulam theorem in this context, 
use the circle to parametrize (by orientation) the set of perpendicular line pairs, 
each of which evenly splits a given set in the plane. Now prove Courant and 
Robbin's theorem by considering the difference in the areas covered by two 
adjacent quadrants. 

We describe the "cobweb" partition scheme for the plane. It uses two lines and 
four line segments to cut the plane into eight regions (Fig. 1). We show that it 
equipartitions any planar set. 

As in previous investigations, we adopt the strategy of continuous parametriza- 
tion. We rely on topological arguments twice. In one of these we merely apply 
the intermediate value theorem much as described above. In the other we show 
that a map between two tori is a homotopy equivalence by examining the induced 
map on their fundamental groups. 

Fig. 1. A cobweb. 
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2. Preliminaries 

Definitions 

We first define some topological terms. (Useful references are [7] and [9]). The 
circle is denoted by S 1 and the real line by ~. Let X be a topological space. We 
say that X is path connected if for every pair of points x, y e X there is a path from 
x to y: i.e., a continuous map 9: [0, 1] --* X such that ,q(0) = x and 9(1) = y. 

If f :  X ~ ~ is a nonnegative function, then the support of . / i s  that subset of X 
on which f is positive. If this subset is compact, then we say that f is compactly 
supported. (We are concerned with the subsets of a Euclidean space X = Nk. In 
this case a set is compact precisely if it is closed and bounded.) 

Now we describe the class of functions we work with. Let p be the Lebesgue 
measure (i.e., area function) in the plane. (References to measurability in this paper 
are necessary for technical reasons but do not otherwise feature in our arguments. 
They may be clarified in an analysis text such as [1]). 

Definition. A functionJ~ I~ 2 ---, ~ is a density function if it is nonnegative, measur- 
able, compactly supported, and if there exists some real K such that ~Bf<  KI4B) 
for all measurable sets B. 

Observe that the integral of a density function over any measurable set is finite. 
Let ~ 2 f  = M. 

Definition. A partition of the plane into a regions is an equipartition o f f  if the 
integral o f f  over each region is M/a. 

In order to partition a measurable subset of the plane (of finite measure, i.e., 
area) we represent the set by its characteristic function, which is 1 on the set and 
0 otherwise. 

Density Functions and Finite Sets 

Before we show why any density function can be equipartitioned with a cobweb, 
let us note that this fact implies the same for a finite set of points in general 
position. Let S be such a set, and suppose that 8 divides t SI. 

Thicken each point of S to a very small disk. Then define Js by letting it be 
constant of integral 1 within each disk, and 0 outside the disks. Thus.)'s is a density 
function, and M = [SI. Find an equipartition offs, This will be an equipartition 
of S unless perhaps if some of the disks intersect the lines and segments de- 
fining the partition. In this case the partition can be perturbed minutely to one 
in which every disk lies entirely in some region, without affecting the weights of the 
regions. 
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Thus the theorem on density functions (Section 3) implies: 

Corollary. Ever), finite set of  points in general position in 
partitioned by some cobweb. 

L. J. Schulrnan 

the plane is equi- 

Torus Maps and Rotating Pairs of Splitters 

We have already alluded to the fact that for any density function f there exist a 
line I t of arbitrary orientation, and another line 12, spl i t t ingfinto four quadrants 
(not necessarily right-angled) of equal weight. Here is a typical argument: choose 
the orientation of 1~; displace it until it splits f ;  now start with an 12 splitting one 
half-plane, and maintain this property while rotating 12 until it also splits the other 
half-plane. 

The neglected degree of freedom here is plainly evident in the orientation of l 1 . 
We make essential use of this freedom to rotate It and 12 through an entire circuit, 
always splitting f into four equal parts, before returning to the starting position. 
The fact that this can be done in a continuous fashion is a key ingredient of the 
argument in the next section; we prove it in the present section. First, however, 
we provide an informal argument which the reader may find sufficient. 

Let us suppose that f is nonzero only on some finite disk in the plane; and 
furthermore that within that disk it is continuous, and bounded below by some 
5 > 0 .  

Examine any specific lt , /2 which split f into four equal parts. It may be seen 
that on each of ll, l z there is some point about which they can be infinitesimally 
rotated without imbalancing their split of the weight off(i .e. ,  if the difference in 
the weights of the half-planes is expressed as a function of the angle, then the 
derivative of this function is zero). It may also be seen that each of these rotations 
has a nontfivial effect on the balance of weights of the quadrants. (That is, if the 
difference between the weights of any pair of adjacent quadrants is expressed as 
a function of the angle of l 1, then the derivative of this function is nonzero. 
Similarly for 12.) It therefore follows from the implicit function theorem [8, Section 
9] that the imbalancing effect on the quadrants, of an infinitesimal rotation of Ii, 
can be compensated for by an infinitesimal rotation of 12. This implicitly defined 
dependence of l 2 o n  11 is continuously differentiable, as It varies over some small 
domain. (An open set in its parametrization space R x $1.) 

The local functions (for 12 in terms of lt) constructed in this way can be patched 
together to give a global function: so that, as It is rotated through a full cycle, 
the 1~, l 2 configuration undergoes a continuous rotation, always maintaining an 
equipartition off. At the end of the cycle, It and l 2 return to their original positions. 

The remainder of this section is devoted to a full proof, without unnecessary 
assumptions on f ,  that Ii, 12 can be continuously rotated while maintaining an 
equipartition off.  Some homotopy-theoretic terms are needed only in this section, 
and can be found in [9]. 

Surround the convex hull of the support o f f  by a large circle O. Each directed 
line 2 intersecting that convex hull meets O in two points, 2 + and 2-. Let f f  be 
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the set of directed lines intersecting O. We topologize ~¢ with the following metric 
(where),t, )-2 ~ L~): 

d(),~, ),z) = max (distance from v to the other line). 

We further restrict ourselves to the subspace 5a, of L~ a, consisting of those 
lines which split f into halves of equal weight. Call these lines splitters. Observe 
that at every orientation, £,a. restricts to one line or to a family of parallel lines 
parametrized by a closed interval. We claim that the set of all "rightmost" splitters 
(each representing such a family of parallel, commonly oriented splitters) is a loop 
(continuous map from S 1) in .W; as is the set of all "leftmost" splitters. We show 
this for the "rightmost" splitters, L¢'**, as follows. Let m be the rightmost member 
of ~ .  at the orientation ft. If there is a discontinuity at fl in the map S t ~ ~** 
sending an orientation to the rightmost splitter at that orientation, then there is 
an e > 0 and a sequence of angles {fl~}~ converging to fl such that (where m~ is 
the rightmost splitter at angle fl~) d(m~, m) > e for all i. For fl~ very close to fl this 
implies that the intersection of m~ and m must lie outside 0. Then m~ is strictly 
to one side ofm within 0, and since both m and m; are splitters, the band between 
them within 0 must have measure O. However, then they cannot both be 
rightmost--for one of them can be displaced rightward into the band. 

Proposition. There are continuous maps, It, 12: S t "-" ~** such that, for aHot E S t, 
the quadrants defined by 11(o0 and lz(~) all have equal weight; and such that, as 
traces out one circuit of  S 1, the orientations of  lt(00 and 12(~ ) each make exactly 
one net rotation. 

Proof If "~t and )-2 a re  intersecting directed lines, let ),t.2 be their point of 
intersection, and let 2~, 2~-, 2~- and )-2 (as before) be their intersections with O. 
Let J-  be a torus. 

We define a map H: ~**  x oW** ~ J ,  H(2 t, 22)= (a, 1/) as follows. ~ is the 
orientation of ),t. If 21 and ),2 intersect, then r/ is 2n/M times the weight of the 
wedge-shaped region (quadrant) swept clockwise about )-1.2 from 2~ to 2~. 
Otherwise if 2t and 22 have the same orientation, set r /= 0, while if they have 
opposing orientations, set r /=  n. Since f is a density function, H is continuous. 

The heart of our proof lies in showing that H is a homotopy equivalence. In 
order to see this we first examine the images of generators for the fundamental 
group ztl(£a** x ~**). The fundamental group of a torus is isomorphic to Z 2. 
Let y be the path in L~** × ha** which, for some fixed ),t, rotates 22 once 
counterclockwise. Then H(y) is a path which leaves 0t fixed and makes one counter- 
clockwise circuit in r/. Let z be the path in &a** × L~** which rotates both 2 t and 
22 through one full counterclockwise circuit, while keeping them at some fixed 
angular separation. Then H(z) is a path which makes one counterclockwise circuit 
in ~, while making no net change in q. Hence H(y) and H(z) generate rq(9-). We 
conclude that H induces an isomorphism of fundamental groups. 

The torus is a triangulable space and therefore can be given the structure of a 
CW-complex. It is a theorem of J. H. C. Whitehead [9, Section 6] that if a 
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continuous map among CW-complexes induces isomorphisms of all their homo- 
topy groups, that map is a homotopy equivalence. Since the higher homotopy 
groups of the torus vanish, we find that H possesses a homotopy inverse 
J: .Y-- ~ Lk'** x .£e**. 

Thus J(H(y)) and J(H(z)) are homotopic to y and z, and generate 
nl(Se** × £,0**). Let u be a path in 3-- which makes one counterclockwise circuit 
in ~ while keeping r /at  the fixed value rt/4. u is homotopic to H(z), therefore J(u) 
is homotopic to J(H(z)) and, thus, to z. Hence J(u) is our desired rotating pair of 
splitters lt, l 2 which split f into equal-weight quadrants. []  

3. Equipartition by a Cobweb 

If a pair of splitters of a density function f should happen to separate the plane 
into quadrants of equal weight, then we refer to the splitters as a pair of quartering 
axes for f 

A bisector of a quadrant Q is any ray or line segment in Q, whose endpoint(s) 
lie on the half-axes bounding Q, and which separates Q into two regions of equal 
weight. Observe that any two bisectors of Q intersect unless the region between 
them is of weight 0. 

A diamond is a set of four bisectors, one in each quadrant, such that endpoints 
of adjoining bisectors meet. We refer to the structure of a pair of quartering axes, 
with four bisectors in the shape of a diamond, as a cobweb (see Fig. 1). 

Theorem. Every density fimction in the plane is equipartitioned by some cobweb. 

Proof We define a pseudodiamond as a sequence of five connected bisectors 
wrapping around the origin: the first and last are in the same quadrant, and the 
head of each touches the tail of the next. The first and last may have their free 
ends on the axes or at infinity. Let us denote the six points defining these bisectors 
as v o . . . . .  v 5, with v o and v5 possibly infinite. Denote the intersection of the axes 
by w. 

Given the points v~ . . . . .  v4 of a pseudodiamond, there may be some choice in 
v o and v 5 due to the existence of regions in which the density function, f has 
weight 0. If we arbitrarily choose Vo and v5 to be as far inward (close to w) as 
possible, then v4v5 and v~v o must intersect, and we find that there are just two 
types of pseudodiamonds (Fig. 2): 

Inner pseudodiamonds, where the free ends are finite, and hit their respective 
axes in between w and the other pseudodiamond point. (Thus v0 is between 
w and v,, and v 5 is between w and vl. ) 

Outer pseudodiamonds, where the free ends are either infinite or hit their 
respective axes beyond the other pseudodiamond point. (Thus v0 is beyond 
v 4, and v5 is beyond vl.) 

There is one boundary case contained in both of these types: when v0--v4 
and v~ = v5 we have a diamond. 
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(a) 

'4 Vo~ 

v v5 

v 3 

m. 

(b) 

Fig. 2. (a) Inner and (b) outer pseudodiamond. 

We refer to the segment/)2/)3 as the base of the pseudodiamond. Given a pair 
of quartering axes and a bisector of one of the quadrants, it is not always possible 
to construct a pseudodiamond with that bisector as its base. In order to understand 
when this is possible, we introduce the eight "s tandard"  bisectors, those parallel 
to the quartering axes. In case there is any freedom in their placement, locate them 
as close to w as possible. Call their intersections with the axes, notches. We now 
show that the condition that a pseudodiamond exist with a given base v2v3 is that 
(see Fig. 3): 

(I) v 2 lies strictly beyond the adjoinin9 quadrant 's  notch on v2's half-axis; and 
(II) /)3 lies strictly beyond the adjoinin9 quadrant 's  notch on v3's half-axis. 

In view of the fact that f is compactly supported, (I) ensures that v 1 can be 
chosen finite, and (II) does the same for/)4. This is all that is needed in order to 
guarantee that v2/)3 is the base of a pseudodiamond. Conversely, if the condition 
is violated, vl and v4 will not both be finite, and a pseudodiamond with base/)2/)3 
will not exist. 

Fig. 3. Existence condition; Case 1. 

v 2 

Q1 

v 0 
Q4 
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We now establish: 

Lemma. For some choice of quartering axes, there exists an outer pseudodiamond 
with at least one finite endpoint. 

Proof. Among each pair of adjacent quadrants Qi and Q~, set Qi --* Qj if the notch 
for Qi on their common half-axis is further from w than is the notch for Q~. 

Two cases arise: 

Case 1: There exist consecutive quadrants Ql, Q2, Q3 such that Q1 --* 0 2  "-* Q3. 
Pick a point vl on the half-axis between Q4 and Q1, beyond both of their notches 
on that half-axis (see Fig. 3). A bisector VlVo can be extended through Q4 to a 
finite point Vo. Similarly, a bisector vlv 2 can be extended through Q~ to a finite 
point v2. v2 must be at least as far out as the notch of Q~ on that half-axis. Since 
QI ~ Q2, v2 is at least as far out as the relevant notch of Q2. Therefore a bisector 
v2v3 may be extended through Q2 to a finite v 3. v 3 must be at least as far out as 
the relevant notch of Q2; and, since Q2 ~ Qa, v3 is at least as far out as the relevant 
notch of 03- Therefore a bisector vav 4 may be extended through Qa to a finite 
v4. Finally, a bisector v4v5 may be extended through Q4 to a finite or infinite v~. 

We have constructed a pseudodiamond with at least one finite endpoint, Vo. If 
the pseudodiamond is outer, we are done. Otherwise Vo is between v 4 and w. A 
bisector extended from v 0 through Q3 can be chosen to arrive at point v_ 1 outside 
v3. v_ 1 . . . . .  v4 is an outer pseudodiamond, with finite endpoint v 4. 

Case 2: A pair of opposin9 quadrants arrow the two others. Rotate the axes. By the 
time one axis reaches the other's present position, the arrows will all have reversed. 
At the time of the first change we are in case 1. [] 

We prove the theorem by starting from an outer pseudodiamond with finite 
Vo, as provided by the lemma (see Fig. 2(b)). Rotate the axes in the direction from 
vl toward v o. We now make several observations: 

1. For  any quartering axes and selected quadrant: (a) The range of angles 
available for the base of a pseudodiamond in that quadrant is parametrized 
by an open (possibly empty) interval. (b) The space of all allowable bases is 
path-connected. 
Proof: (a) We showed earlier that the condition (I, II) for the existence of a 
pseudodiamond was necessary and sufficient. The positions of the two 
notches discussed there, limit the angles available to the base of a pseudodia- 
mond. (b) To transform one base into another, rotate it until a pair of 
endpoints identify; then the region remaining between the two bases is of 
weight 0 and can be closed continuously. 

2. The bounds of the parametrizing interval vary continuously. 
Proof: The positions of the notches are continuous functions of the positions 
of the quartering axes, which in turn, as we demonstrated in the proposition 
earlier, can be rotated continuously. 
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3. The entire configuration of a pseudodiamond is a continuous function 
(unique up to some possible choice due to weightless regions) of the 
quartering axes and the base segment. 
Proof:  Vo can be chosen continuously in the quartering axes and v~; v 1 can 
be chosen continuously in the quartering axes and v2. Similar reasoning 
applies to v 5 and v4. 

These observations enable us to rotate the pseudodiamond continuously along 
with the quartering axes -always keeping the angle of the base away from the 
bounds of the parametrizing interval, as long as that remains nonempty. 

Two possibilities arise. The first is that as the axes rotate, the parametrizing 
interval is always nonempty. Then the axis carrying v~ reaches the position 
formerly occupied by the axis carrying Vo, with a continuous choice of pseudo- 
diamond throughout. Now shift the base until it is in the exact position formerly 
occupied by the segment v2v~. That  position is suitable for the base of a 
pseudodiamond because the original v3 and Vo were finite (Fig. 2(b)). Since the 
space of bases is path-connected, this shift can be accomplished continuously. Also 
(should this be left to choice due to weightless regions), shift v~ until it is in the 
former position of v o, v4 of I)3, and v 5 of v4. 

Now recall that we started with an outer pseudodiamond: 1)0 was outside of 
v,. This means that, presently, vl is outside of 1)5--indicating that we have arrived 
at an inner pseudodiamond. Having continuously moved from an outer to an 
inner pseudodiamond, somewhere on the way we must have encountered a 
diamond. 

The second possibility is that at some moment  during the rotation, the 
parametrizing interval vanishes. Then by stopping arbitrarily shortly before that 
moment, we can find a pseudodiamond with 1)2 and 1)3 each arbitrarily close to 
the notch into the adjoining quadrant. In that case v~ and 1)4 can each be taken 
arbitrarily far from w. Then since f is compactly supported, a bisector extended 
from Vl must reach a point Vo between w and v4; and a bisector extended from 
v4 must reach a point 1)5 between w and 1)t. Hence this pseudodiamond, which we 
have arrived at continuously, is inner. On the way we must have passed through 
a diamond. [] 
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