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Abstract. We present an O((n + k) log(n + k))-time, O(n + k)-space algorithm for 
computing the furthest-site Voronoi diagram of k point sites with respect to the 
geodesic metric within a simple n-sided polygon. 

I. Introduction 

A common goal of much recent research in computational geometry is to extend 
algorithms that have been developed for the Euclidean metric to the more 
complicated geodesic metric inside a simple polygon. The geodesic distance 
between two points in a simple polygon is the length of the shortest path 
connecting the points that remains inside the polygon. For  example, Toussaint 
IT] gives an algorithm for the "relative convex hull" of a set of points inside a 
simple polygon; Aronov [A] gives an algorithm for the nearest-neighbor geodesic 
Voronoi diagram; and Pollack et al. [PSR] give an algorithm for the "geodesic 
center" of a simple polygon. 

A classic structure in the Euclidean metric is the "furthest-site Voronoi dia- 
gram." Given a finite collection of point sites in the plane, the furthest-site Voronoi 
diagram partitions the plane into Voronoi cells, one cell per site. For each point 
in a cell, the owner site is the site furthest from the point, among all sites. Using 
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well-know algorithms, the Euclidean furthest-site Voronoi diagram of k sites can 
be computed in time O(k log k) and space O(k) [PSI. 

The content of this paper is an efficient algorithm for computing the furthest-site 
Voronoi diagram defined by the geodesic metric inside a simple polygon. The 
algorithm uses O((n + k) log(n + k)) time and O(n + k) space, where n is the number 
of bounding edges of the polygon and k is the number of sites. The best previous 
algorithm for this problem had running time O(n 3 log log n) [AT], and just 
computed (a superset of) the vertices of the furthest-site Voronoi diagram of the 
n corners of the polygon. We also remark that our furthest-site geodesic Voronoi 
diagram algorithm is a factor of O(log n) faster than the best known nearest-site 
geodesic Voronoi diagram algorithm [A]. 

The problem of computing the furthest-site Voronoi diagram is an extension 
of the "furthest-neighbor problem" which is: "Given a finite collection of points, 
for each point identify the element in the collection that is maximally distant from 
it." Suri IS] shows how to solve a special case of the furthest-neighbor problem 
in the geodesic metric inside a simple polygon. Specifically, he gives an algorithm 
that for each corner of the polygon computes the corner that is furthest from it 
in the geodesic metric. His algorithm runs in time O(n log n) and space O(n), where 
n is the number of bounding edges of the polygon. 

The geodesic furthest-site Voronoi diagram generalizes the geodesic furthest- 
neighbor mapping of Suri [S] in two ways. First, the Voronoi diagram provides 
a planar partition of the polygon together with its interior into furthest-site 
Voronoi cells. Consequently, arbitrary furthest-site queries can be answered using 
a planar point-location algorithm. Second, the set of sites is not restricted to the 
corners of the polygon. Rather, the sites can be arbitrarily situated in the polygon. 
Both of these generalizations have substantial technical impact on the algorithm 
for computing furthest-site Voronoi diagrams. 

There are many analogies between the Euclidean furthest-site Voronoi diagram 
and the geodesic furthest-site Voronoi diagram. In the Euclidean case, if a site has 
nonempty Voronoi cell, then it is extreme, i.e., it lies on the convex hull of the set 
of sites and it does not appear on the line segment between two sites. The 
counterclockwise sequence of Voronoi cells (at infinity) is the same as the 
counterclockwise sequence of sites on the convex hull. In the geodesic case, a site 
with nonempty Voronoi cell is also extreme, i.e., it lies on the relative convex hull 
of the set of sites and does not appear on a geodesic between two sites. The 
counterclockwise order of Voronoi cells along the boundary of the polygon is a 
subsequence of the counterclockwise order of sites on the relative convex hull. In 
the Euclidean case every extreme site has nonempty Voronoi cell; in the geodesic 
case the cell of an extreme site may be empty, roughly because the polygon is not 
large enough for the cell to appear. 

A further analogy between the two cases is the structure of the Voronoi diagram 
itself. In the Euclidean case the Voronoi diagram forms a tree with root at the 
Euclidean center of the set of sites. (The center of a set of point sites is the point 
that minimizes the maximum distance to any site.) If edges are directed toward 
the root, then this orientation is consistent with geometric direction toward the 
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center. In the geodesic case exactly the same properties hold, substituting "geodesic 
center" for "Euclidean center" and "geodesic direction" for "direction." 

The algorithm for computing the furthest-site Voronoi diagram consists of two 
steps. First, we compute the restriction of the Voronoi diagram to the boundary 
of the polygon. Intuitively, the boundary of the polygon in the geodesic case 
corresponds to points "at infinity" in the Euclidean case. Second, we extend the 
diagram to the interior of the polygon. Because the Voronoi diagram forms a tree 
with root at the geodesic center, the second step is easy. It can be performed by 
a "reverse geodesic sweep" toward the geodesic center. 

The first step, the computation of the Voronoi diagram on the boundary of the 
polygon, is much more involved. We use a technique developed by Suri IS] for 
determining furthest neighbors: we reduce the problem to three instances of the 
"two-fragment problem"; an instance of the two-fragment problem consists of a 
fragment of the boundary of the polygon and a fragment of the relative convex 
hull of the set of sites. The relative convex hull fragment contains the furthest sites 
of all points on the polygon boundary fragment. We solve an instance of the 
two-fragment problem using divide and conquer in the following manner. The 
polygon boundary fragment is split at its midpoint; this implies a corresponding 
split of the convex hull fragment. Thus one instance of the two-fragment problem 
results in two simpler instances. Eventually instances become small enough to be 
solved directly. 

We refine Suri's two-fragment technique in two ways. First, Suri's algorithm 
always splits the polygon boundary fragment at a corner of the polygon. This is 
sufficient for the furthest-neighbor problem, because furthest-neighbor information 
for points along a wall is not of interest. For the furthest-site Voronoi diagram, 
simply splitting at corners is insufficient, since potentially many Voronoi cells meet 
a single wall of the polygon. If necessary, we further split each wall into 
subsegments so that the shortest-path tree from a point in a subsegment to the 
sites is combinatorially invariant over the entire subsegment. The combinatorial 
invariance of the shortest-path tree implies that the Voronoi partition of the 
subsegment can be easily computed. 

The second refinement of Suri's technique concerns the complexity analysis of 
the recursion. Suri's original algorithm required a step called "trimming"; trim- 
ming a two-fragment instance introduces a different subproblem that could be 
solved directly. This operation is necessary in Suri's analysis in order to maintain 
the linearity of the total size of all subproblems at a particular level of recursion. 
We show that even without trimming, the total size of all subproblems at a 
particular level is linear. This observation simplifies the recursive structure of the 
"two-fragment" algorithm so that it actually matches the description given above. 
The analysis has been incorporated into the final version of Suri's furthest- 
neighbor algorithm [S]. 

The best lower bound that we know for computing the furthest-site geodesic 
Voronoi diagram is fl(n + klog k). It follows from known lower bounds for 
diameter computation in the Euclidean case. Conceivably, the current algorithm 
could be improved to match this lower bound. 
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2. The Furthest-Point Geodesic Voronoi Diagram 

This section contains the definition of the furthest-point geodesic Voronoi diagram 
and some of its basic properties. We begin by discussing geodesics in Section 2.2. 
Section 2.3 contains a fairly extensive treatment of relative convex hulls. The notion 
of a "far side" of a relative convex hull is developed in Section 2.4; this is a 
technical idea used to prove the Ordering Lemma in Section 2.7. Sites are assumed 
to be in "general position"; this assumption and its consequences are discussed 
in Section 2.5. In Section 2.6 we actually give the definition of the Voronoi diagram. 
Section 2.7 contains the Ordering Lemma, which states that the order of Voronoi 
cells around the boundary of the containing polygon (i.e., the sequence of sites, as 
determined by the Voronoi cells meeting consecutive sections of the boundary) is 
the same as the order of sites around the relative convex hull of the set of sites. 
In Section 2.8 we define a refined form of the Voronoi diagram and use it to show 
a linear bound on the descriptive complexity of the (unrefined) Voronoi diagram. 
Finally, in Section 2.9 we show that the Voronoi diagram forms a tree directed 
toward the geodesic center of the set of sites. The algorithm for computing the 
diagram appears in Section 3. 

2.1. Preliminaries 

The universe U is a compact region in the plane whose boundary OU is a simple 
n-sided polygon. The set of sites S is a collection of k points of U. A vertex of t?U 
is called a corner and a segment of aU is a wall. A corner is reflex if the measure 
of its interior angle is more than rc and convex if it is less than n. If x and y are 
distinct points of 0U, then boundary fragment c~U[x, y] is the portion of ~U 
counterclockwise from x to y inclusive. The symbol ~ denotes the boundary of a 
set relative to the whole plane, rather than to any proper subset of the plane. The 
terms "relative boundary" and "relative interior" used without any other qualifica- 
tion mean "relative to U." 

A polygonal path is a simple path comprised of a sequence of line segments. If 
p is a polygonal path, then the size of p, I Pl, is the number of maximal segments 
contained in p and not containing a corner of t3U in their interiors, and the length 
of p is the sum of their (Euclidean) lengths. A polygonal region is a compact set 
whose boundary is the union of a finite number of line segments. We allow points 
as (degenerate) line segments, so for example a finite set of points is also a 
polygonal region. 

2. 2. Geodesics 

For points x, y e U, the geodesic path g(x, y) is the shortest path in U connecting 
x and y. Such a shortest path is called simply a geodesic. This path is unique. In 
fact, it is a polygonal path with interior vertices only at reflex corners of OU [LP]. 
We often consider g(x, y) directed from x to y. A link ofg(x, y) is a maximal segment 
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of g(x, y) not containing any corners in its interior; clearly an endpoint of a link 
is either x, y, or a reflex corner. The first endpoint of the last link of g(x, y) is the 
anchor of y with respect to x; it is either a reflex corner of ~3U or x itself. 

We make heavy use of the fact that the intersection of any two geodesics is 
connected and is itself a geodesic. This fact follows immediately from uniqueness 
of geodesics. Two geodesics overlap if they intersect in more than a single point. 

The geodesic distance d(x, y) between points x and y is the length of ,q(x, y). The 
geodesic distance is a metric; in particular, it is continuous as a function of both 
x and y and satisfies the triangle inequality d(x, z) <_ d(x, y) + d(y, z). Furthermore, 
by uniqueness of geodesics, d(x, y) + d(y, z) = d(x, z) if and only if y lies on glx, z). 
We often write du for the function defined by du(x) = d(u, x). 

Lemma 2.2.1 [PSR, Lemma 1]. For any u, v, w ~ U, d, is a convex function on 
g(r,, w) with unique local minimum (possibly at v or w). In particular, for any z ~ .q(t,, w), 
z # v, w, du(z) < max{du(v), d,(w)}. 

The geodesic direction O(x, y) from x to y 4: x is the direction (i.e., unit vector) 
from x toward the anchor of x with respect to y, that is the direction given by 
the first link of ,q(x, y). For fixed y, O(x, y) = - Vdy(x), where Vdy(x) is the gradient 
of d r with respect to x, evaluated at x [A, 3.12]. At any point x not an anchor 
with respect to y, dr(x ) is differentiable as a function of x and O(x, y) is continuous 
as a function of both x and y. For H a closed subset of U, let O(x, H) be the set 
of directions from x to the points of H, i.e., {O(x, h): h ~ H, h # x}. 

The geodesic angle/__xyz is the angle counterclockwise from 0(y, x) to O(y, z). 
The measure of / x y z  is written m / x y z .  The angle between O(y, x) and 0(y, z) is 
the smaller of the two angles / x y z  and /_ zyx. 

Lemma 2.2.2 [PSR, Corollary 2]. I f  x, y, z ~ U, y # x, z, and the angle between 
O(y, x) and O(y, z) is at least rr/2, then d(x, z) > max{d(x, y), d(y, z)}. 

The shortest-path tree from s, T(s), is the union of the sets of links of g(s, y) 
taken over corners y of t?U. It has n - 1 or n links, depending on whether or not 
s itself is a corner of U [GHL+ ] .  

Let P,(s) be the set of points in U that have anchor a with respect to s. The 
shortest-path partition of U from s is the collection {Pa(s): P,(s) :/: ~} .  It is a planar 
polygonal subdivision of U; it can be computed and in fact triangulated in linear 
time given a triangulation of U [GHL+ ] .  We can describe the bounding edges of 
the shortest-path partition as follows. Suppose P,(s) is not empty, where a ¢ s. 
Let ab be the first link of the geodesic g(a, s) (clearly, ab is the second link of all 
geodesics g(x, s) for x ~ P,(s)). Since P,(s) is not empty and a is a reflex corner of 
c?U, we can extend link ab past a into U. First suppose that neither wall of 0U 
incident to a overlaps this extension. Let y be the first point past a of the extension 
so that y~t?U. Then segment ay is the shortest-path partition edge (from s with 
anchor a), denoted p,(s). Now suppose some wall of 0U overlaps the extension of 
segment ab; then we simply define p,(s) to be this wall. It can be checked that the 
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Fig. 1, Geodesic 9(x,y), its shadow ~' and foreshadow x* (they are unique in this case), the 
corresponding boundary geodesic 0(x, y ) =  91x*, ,v), and geodesic direction O~x, y}. U[y ,  x]  is shaded. 

boundary of a cell of the shortest-path partition consists of an alternating sequence 
of shortest-path partition edges and sections of 0U. 

A set A _ U is relatively convex with respect to U if g(x, y) ~_ A whenever 
x, y ~ A; the relative convex hull of set F, denoted R(F), is the smallest relatively 
convex set containing F, i.e., the intersection of all relatively convex sets containing 
F [T]. Relatively convex sets are discussed in detail in the next section. A set is 
degenerate if it is contained in a single geodesic. 

If x and y are distinct points of U, then a shadow of g(x, y) is a point pe8U 
so that segment y)~ extends the last link of g(x, y) while staying in U. Clearly, y is 
a shadow of g(x, y) only if y 6 8U. Shadows are not unique, indeed it is possible 
that every point on a subsegment of a wall is a shadow of g(x, y). Similarly, a 
foreshadow of g(x, y) is a point x* e 8U lying on a segment contained in U extending 
the first link of g(x, y) backward. Equivalently, a foreshadow of g(x, y) is a shadow 
of g(y, x). For an illustration of these definitions, see Fig. 1. 

A boundary geodesic is a geodesic connecting two distinct points of 8U. Let x* 
and p be the foreshadow closest to x and shadow closest to y of g(x, y), respectively. 
Then 0(x, y) denotes the boundary geodesic 9(x*, 9). Geodesic O(x, y) splits U into 
two simply connected polygonal regions U[x,y] and U[y,x] with disjoint 
interiors; 8(U[x, y]) is OU[x*, ~] u g(p, x*) and c?(U[y, x]) is g(x*, ~) u 8U[33, x*]. 
(Note that 8(U[x, y]) is distinct from 8U[x, y].) U[y, x] is shaded in Fig. 1. 
Intuitively, U[x, y] contains points lying on or to the right of O(x, y), while points 
on the geodesic or to the left of it constitute U[y, x]. Notice that O(x, y) is exactly 
the common boundary of U[x, y] and U[y, x]; hence any geodesic from a point 
in U[x, y] to a point in U[y, x] must intersect O(x, y). Both U[x, y] and U[y, x] 
are relatively convex, since a geodesic connecting two points of, say, U[x, y] must 
have connected intersection with ~(x, y). 

Boundary geodesics are intended to model infinite Euclidean lines, just as 
geodesics correspond to line segments. Unfortunately, there may be more than 
one boundary geodesic containing g(x, y); O(x, y) is meant to be the canonical 
choice. It is the smallest boundary geodesic containing 9(x, y). Similarly, U[x, y] 
models the Euclidean half-plane lying to the right of the line directed from x to 
y. (A different notion of "half-plane" based on geodesic distance from a point is 
introduced in Section 2.6). 
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The following two lemmas capture some basic properties of boundary geodesics. 
Suppose point w lies on boundary geodesic g(u, v) and point x is in U[u, v]. The 
first lemma concerns shadows of #(w, x); the second shadows of g(x, w). As an 
exercise, the reader is encouraged to compare them with corresponding statements 
in Euclidean geometry or, equivalently, with the case when U is convex. The 
number of conditions in the lemmas is due to the large variety of degeneracies 
that may occur in the geodesic universe. 

Lemma Z2.3. Suppose u, v e ~U, u ~ v, w ~ g(u, v), x e U[u, v], and w ¢ x. 

(1) l f  x(Eg(u, v), then any ,shadow X of g(w, x) lies in OU[u, v]. 
(2) l f  x e g(u, v), then some shadow Yc of g(w, x) lies in OU[u, v]. 

Proof. (1) Suppose x ¢ g(u, v). Then g(w, Yc) cannot intersect O(u, v) again after x, 
so :~ e ~U[u, v]. 

(2) Suppose x ~ g(u, v); without loss of generality assume w, x, v are in that order 
along g(u, v). We can choose ~ = v unless g(u, v) bends at or after x. If g(u, v,) bends 
right at some point c at or after x, then since U[u, v] lies locally to the right of 
g(u, v), c must be a reflex corner of ?,U[u, v], and we can choose ~ = c. If O(u, v) 
bends left at some point c, then the straight-line continuation of g(w, c) at c enters 
the interior of U[u, v] and thus will not intersect g(u, v) again. Hence we can choose 

to be any shadow of g(w, c) distinct from c. []  

Lemma 2.2.4. Suppose u, v e t3U, u C v, w e g(u, v), x e U[u, v], w C x, and ~ is the 
closest shadow of g(x, w). 

(1) U'w ¢ OU and g(x, w) does not overlap g(u, v), then qv e c~U[v, u]. 
(2) I f  v is the closest shadow ql" g(u, w) and g(u, w) is not an initial portion of 

g(u, x) (i.e., w ~ g(u, x)), then ~ e 0U[v, u]. 

Proof (1) If g(x, w) does not overlap g(u, 0, then O(w, x) cannot be O(w, u) or 
O(w, v). Since w¢OU, ~, ~ w and O(w, ~ ) =  -O(w, x) must enter the interior of 
U[v, u] at w. As g(x, Cv) cannot intersect g(u, v) again, v~, e ~U[v, u]. 

(2) The statement is trivial if w e~.U. If not, then w ¢ ~. We might have 
O(w, x ) =  O(w, u), in which case v~ = v. We cannot have O(w, x ) =  -O(w, u), else 
w~g(u, x). Otherwise O(w, Cv) must enter the interior of U[v, u] and as before 
~v ~ a UEv, u]. [] 

Boundary geodesic g(x, y) separates points a and b ifa  e U[x, y] and b e U[y, x], 
or vice versa. Similarly, boundary geodesic g(x, y) separates sets A and B if 
A c U[x, y] and B ~_ U[y, x], or vice versa. Note that separation does not imply 
disjointness, indeed if (degenerate) set A is contained in boundary geodesic g(x, y), 
then g(x, y) separates A from itself. 

For a compact  set F ~ U and z e U, let tad(z, F) = maxx~ v d~(x). The center of 
F is the point z that minimizes rad(z, F). Pollack et al. [PSR] show that the center 
of the set of vertices of U is unique. In fact, with minor modifications their proof  
shows that the center of any compact  set F ~_ U is unique. 
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Fig. Z Geodesic triangle ,~xyz. 

For points x, y, z ~ U we define the geodesic triangle A x y z  as follows [PSR]. 
If {x, y, z} is degenerate, then A x y z  is the smallest geodesic containing x, y, and 
z. Otherwise we can choose points x', y', and z' so that x' is the point at which 
g(x, y) and g(x, z) diverge, and similarly for y' and z'. Refer to Fig. 2. Then the 
circuit g(x', y'), g(Y', z'), g(z', x') is a simple polygon Ax'y'z'. We define A x y z  to 
be the union of g(x, x'), g(Y, Y'), g(z, z'), and Ax'y'z '  together with its interior. All 
of the interior angles of Ax'y'z '  are reflex except at x', y', z' [PSR]. The geodesic 
triangle is a special case of the relative convex hull of a finite set of points discussed 
in Section 2.3. A seemingly more natural definition of A x y z  as U[x, y] c~ 
U[y, z] c~ U[z, x] could lead to unexpected results, such as inclusion of common 
shadows of g(Y, x) and g(z, x) into Axyz .  The proof of the following lemma is in 
the same spirit as the proofs of Lemmas 2.2.3 and 2.2.4. 

Lemma 2.2.5 (Triangle Lemma). Suppose {x, y, z} is not degenerate. Let ~ and 
be shadows of g(x, y) and g(x, z) respectively. Assume z ~ U[y, x]. If" u ~ Axyz  

and u ¢ g(x, y) c~ g(x, z), then there is a shadow (t of g(x, u) so that fi ~ cgu[)~, f]  and 
g(x, ft) intersects g(y, z). I f  u is in the interior of Axyz ,  then, for any shadow ft of 
g(x, u), ~ ~ OU[y, ~] and g(x, gt) intersects g(y, z). I f  u ~ U[y, x] c~ U[x, z] c~ U[y, z], 
then g(x, u) intersects g(y, z) and there is a shadow fi of g(x, u) in OU[~, ~]. 

2.3. Relatively Convex Sets 

This section develops properties of relatively convex sets. The main result is 
Lemma 2.3.4. It states that the "extreme" points of a set F can be ordered so that 
the relative convex hull of F is the intersection of all "cones"  defined by consecutive 
triples of extreme points. An immediate consequence of Lemma 2.3.4 is a decompo- 
sition of a relatively convex set into a collection of simple polygons and connecting 
geodesics. Also, the order of extreme points extends to a natural notion of a 
traversal of the boundary of a relatively convex set. This ordering has a number 
of useful consequences, given in Lemmas 2.3.6-2.3.9. 

Lemma 2.3.1. Any relatively convex set R is simply connected. 

Proof We show that the region enclosed by a simple cycle y in R lies completely 
in R. Suppose x e 7, Y is in the interior of Y, and y is a shadow of g(x, Y). Since y)7 
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connects a point  inside 7 to a point on or outside 7, there is a point  w in the 
intersection of y~ and 7. Since R is relatively convex, g(x, w) ~ R, so y e R. [ ]  

We now give a long sequence of definitions related to relatively convex sets. 
To mot ivate  the terms, consider the simpler case of  a finite point  set F and its 
(ordinary) convex hull H in the plane. Fo r  a point  x in the plane, the set O(x, F) 
is a finite set of directions; define its " 'convex closure" span(x, F) by including any 
direction in the angle between any ~, ~' in O(x, F). Then clearly span(x, F) = O(x, H). 
We can classify a point  x in the plane as interior to H (meaning span(x, F) = O(x, H) 
has measure  2zt), exterior to H (meaning span(x, F) has measure  at most  lr), or as 
a thin point  of H (meaning H is a line segment and x is an interior point  of the 
line segment). Notice that  an exterior point  of H could well lie on the boundary  
of H. A special case of a bounda ry  point  is an extreme point,  when span(x, F) has 
measure strictly less than 7t; of  course all extreme points  of  H must  be points of  
F. For  x an exterior point  of H, we can define the clockwise extreme point  r(x) 
to be the point  of F so that  O(x, F) is as clockwise as possible (in span(x, F)); 
possibly there are two such extreme points, in which case r(x) is chosen to be the 
furthest f rom x. Similarly, we can define the counterclockwise extreme point / (x) ;  
then, for extreme point  x, l(r(x)) = r(l(x)) = x. For  an extreme point  x of F, the 
sequence x o = x, xi+~ = r(xi) eventually repeats and forms a counterclockwise 
traversal of  the boundary  of H. Fur thermore ,  H is the intersection of half-planes 
with bounding lines through xixi+ 1. 

Much of the remainder  of this section gives analogues of  these definitions in 
the relatively convex case and establishes basic propert ies  of  the definitions. The  
technical details are quite intricate because of the complexi ty of  the geodesic 
setting; however,  the development  follows the outline just given. For  the following, 
let F be a nonempty  polygonal  region contained in U. 

For  x e U, we define span(x, F) to be the smallest set of directions containing 
O(x, F) so that  whenever ct, ~' e 0(x, F), ~ V: - ~', and the angle between ~ and ct' 
is contained in U near  x, then every direction in this angle is in span(x, F). If x e U 
is not a reflex corner  of  c3U, then it is easy to see that  either span(x, F) has a single 
component  or span(x, F) consists of two opposi te  directions. If x is a reflex corner 
of OU, then span(x, F) may  have two components  that  are not  opposi te  directions; 
in fact one or both  componen t s  may  have positive measure.  Since F is a polygonal  
region, it is easy to check that  the endpoint  of any componen t  of  span(x, F) is 
O(x, y) for some y e F. We  show below (Lemma  2.3.3) that  span(x, F) = O(x, R(F)). 

If span(x, F) consists of a single componen t  of measure  less than 2n, then x is 
an exterior point of F. Notice span(x, F) can have measure  exceeding n but less 
than 2n only if x is a reflex corner  of 0 U. If  span(x, F) consists of a single componen t  
of measure less than n and x e F, then x is an extreme point of F. If span(x, F) 
consists of two connected components ,  then x is a thin point  of F. Set F is extreme 
if every element of it is extreme. 

In Fig. 3, for F = {1, 2, 3, 4, 5}, point 5 and all points  of 0U except a are exterior 
(but none are extreme), points 1, 2, and 3 are extreme points,  and every point  on 
g(1, a) except 1 is a thin point. In Fig. 3, {1, 2, 3} is extreme. 

For the remainder  of  this section, F c U is a finite set of  points containing at 
least two elements. 
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Relative convex hull of {1, 2, 3, 4, 5}. 

Let x be an exterior point of F or a point of OU. We wish to define clockwise 
and counterclockwise extreme points of F from x. To do this we first define a 
point oppv(x)e dU so that, instead of the cyclic counterclockwise order on OU, we 
may speak of linear counterclockwise order on OU - {oppv(x)}. If x e OU define 
oppv(x ) to be x, otherwise define oppv(x) to be the first point of OU intersected by 
the ray with endpoint x directed opposite the bisector of span(x, F). The clockwise 
extreme point of F from x, denoted r(x), is the point f e F so that there is no 
geodesic extending g(x, f )  to a point f '  e F, and among all such points the closest 
shadow of 9(x, f )  is as clockwise as possible in OU - {oppv(x)}. Similarly define 
the counterclockwise extreme point of F from x, denoted l(x). For  example, in 
Fig. 3,/(2) = 1, r(2) = 3, l(a) = 1, and r(a) = 2. There are two subtleties to these 
definitions. First, r and I depend upon the set F, but, except in the proof of Lemma 
2.4.3, we leave this dependence implicit. Second, there are two distinct (though 
overlapping) cases in the definition: either x is exterior, so that span(x, F) consists 
of a single component, or x e OU and, even if span(x, F) consists of two components, 
there is still a natural way to define r(x) and l(x). Notice that there is no natural 
definition of r(x) and l(x) if span(x, F) has measure 2rt or if span(x, F) has two 
components and x ¢ OU. The following lemma describes properties of functions r 
and l; its proof  is highly technical, detailed, and sometimes unintuitive. 

Lemma 2.3.2. Let x be an exterior point of F or a point of O U ,  r = r(x) ,  l = l(x), 
let ~ be the closest shadow of g(x, r), and let I be the closest shadow of 9(x, t). 

(1) I f  x is exterior, then span(x,F)= /__rxl. I f  x e a U  or m/_rxl v~ rc, then 
F ~_ U[r, x] c7 U[x, l]; if m/_ rxl = n, then F ~_ U[r, l]. 

(2) I f  r v~ l, then rf and II are disjoint; if also x ~ OU, then x, ~, i are in that 
counterclockwise order around t3U. 

(3) Both r and I are extreme points of F. 
(4) I f  x is an extreme point of F, then r(l(x)) = l(r(x)) = x. 
(5) Let x e O U  or m / r x l  < ~. Then f = r(x) if and only if f eF ,  F c_ U[f,x],  

and g(x, f )  cannot be extended to g(x, f ' )  for any other f '  e F. 

Proof (1) We must always have span(x, F) ~_ Lrxl  by definition of span(x, F) and 
of points r and l; certainly O(x, r), O(x, l) e span(x, F). If x is exterior, then span(x, F) 
is connected, so we must have /__ rxl = span(x, F). For  the second statement, first 
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suppose x ~ ? U  or m / r x l  ~ re. Let x* be the closest foreshadow of g(x,r). We 
claim i6c~U[?,x*] :  this follows immediately from the definition of r and I if 
m/__ rxl < 7r, x ~ ?U, or m / r x l  > 7r (since in the last case necessarily x 6 ~U). For  
any f 6 F, either .['~ g(x, r), f 6,q(x, I), or the closest shadow of g(x, f )  lies in 
?U[? , / ]  g ~?U[?, x*], so f 6  U[r, x], and F ~_ U[r, x]. Similarly, F ~_ U[x, l]. The 
argument that m Lrx l  = g implies F ~ U[r, I] is similar. (For an illustration of 
this somewhat unintuitive case, refer to Fig. 3, placing x at any point of segment 
ab other than a or h. For  such a point  x, r(x)-- 1, l(x)= 3, and indeed F = 
{1, 2, 3, 4, 5} ~_ U[ I ,  3]. On the other hand, F 7~ U[x, 3] = U[a, 3].) 

(2) Suppose l 4: r. If II- and r? met, either l would lie on g(x, r) or vice versa, 
contrary to the definition of r, I. The ordering of x, ~, and 1 follows immediately 
by definition. 

(3) We assume F c U[r, x], otherwise a similar argument  works using U[r, I]. 
To show r extreme, we need to show span(r, F) is connected and has measure 
less than ft. Whether or  not re?U,  O(r, U[r,x]) is connected. As F ~_ U[r,x], 
span(r, F) ~_ O(r, U[r, x]). Hence it suffices to show that, for f ~ F, O(r, f )  lies in the 
angle from O(r, x) clockwise to but not including - O(r, x). Now O(r, f )  cannot  be 
-O(r, x) else 9(x, f )  would extend g(x, r). Also O(r, f )  can be clockwise of -O(r, x) 
only in the case that r is a reflex corner of ?U  lying to the right of g(x, r); again 
this is impossible because 9(x, f )  would extend g(x, r). The possibility that span(r, F) 
has measure less than ~ but is not  connected is excluded by a similar argument.  

(4) By (1), F ~_ U[r, x]. For  any J'~ F not appearing on ,q(x, r), f. is in the relative 
interior of U[r, x]. Thus, by Lemma 2.2.3(1), the closest shadow of g(r, f )  lies on 
?'U[?, x*], where x* is the closest foreshadow of y(x, r). This implies x = l(r) = 
I(r(x)) by definition of counterclockwise extreme point. 

(5) Clearly, there can be at most  one point f in F satisfying "F _ U[f,  x] and 
g(x, f )  cannot  be extended to g(x, f ' )  for any f '  ~ F.'" Since f. = r(x) is one such 
point, the claim follows. [ ]  

Lemma 2.3.3. For any x ~ U, span(x, F) = O(x, R(F)). 

Proof. Suppose y, z ~ F are such that 0 < m/_yxz < rc and /_yxz is (locally 
around x) contained in U. By examining A x y z  and using g(y, z) c_ R(F) we see 
that L yxz ~_ O(x, R(F)). Hence span(x, F) ~_ O(x, R(F)). 

If span(x, F) has measure 2re, then it is immediate that span(x, F) = O(x, R(F)). 
Suppose x is an exterior point of F;  let r = r(x) and l =  l(x). If mL_rxl ¢ ~, 
then R(F) ~ U[r, x] c7 U[x, l] since F ~_ U[r, x] c7 U[x, 1] by Lemma 2.3.2(I), and 
U[r, x] and U[x, 1] are relatively convex. Hence 

O(x, R(F)) ~_ O(x, U[r, x] c7 U[x, 1]) = /__rxl = span(x, F), 

where the first equality follows by definition and the second by Lemma 2.3.2(1). 
If m L rxl = ~, then R(F) c_ U[r, l], so 

O(x, R(F)) ~_ O(x, U[r, l]) = /_rxl = span(x, F). 
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Finally, if x is a thin point of F, we can find a segment through x splitting U 
into two simple polygons, each containing one of the components of span(x, F). 
Let F~ and F 2 be the intersections of these two polygons with F, and let H~, H 2 
be their respective convex hulls (relative to U). It is easy to verify that x is an 
exterior point of both F1 and F 2 and thus, by the first part of the proof, 

span(x, F1) ~ span(x, F2) = O(x, H1) w O(x, H2) c_ O(x, R(F)). 

Since trivially span(x, F1)w span(x, F2)~  span(x, F), it is sufficient to show that 
the above inclusion is an equality. Suppose there is a point y e R ( F ) -  {x} such 
that O(x, y) ~ O(x, R(F)) - O(x, H1) w O(x, n 2). As y e R(F) = R(H I w H 2), there are 
two points, zl e H 1 and z2 e H 2 s o  that y e g(zl, z2). Notice x q~ g(z~, z2), hence 
/ xxz t z  2 ~_ H(F) is not degenerate and O(x,g(zl, z2))~_ span(x, F) is the angle 
between O(x, z 0 and O(x, z2), contradicting the assumption that x is a thin point 
and O(x, Zl) and O(x, z 2) lie in different components of span(x, F). [] 

It is immediate that any two sets with the same relative convex hull have the 
same extreme, exterior, and thin points. 

The next lemma is the main result of this section. It gives a characterization 
of the relative convex hull of F. In the Euclidean plane a convex hull is bounded 
by a chain of segments connecting extreme points of F. The hull can be constructed 
by intersecting all half-planes defined by pairs of consecutive extreme points. The 
analogue of the first statement holds in geodesic metric inside a simple polygon. 
The second statement, however, is false, if U[x, y] is taken to play the role of a 
half-plane defined by x and y. Instead we represent R(F) as the intersection of 
"geodesic cones" originating from each extreme point and containing F. More 
specifically, suppose m L xyz < n and z e U[x, y]. Let s be the segment from y to 
the closest foreshadow y* of g(Y, x), open at y and closed at y*. The geodesic cone 
U[x, y, z] is U[x, y] n U[y, z] - {s}. (This is an analogue of a Euclidean cone; 
see Fig. 4.) Notice that s intersects U[x, y] c7 U[y, z] only if s is also a foreshadow 
segment of 9(Y, z). It is easily checked that U[x, y, z] is relatively convex and that 
the boundary of U[x, y, z] consists of g(~, y), g(Y, Yc), and OU[2, 5], where 2 and 
are the closest shadows of g(y, x) and g(y, z), respectively. Furthermore, if f is an 
extreme point of F, then F ~_ U[r(f), f ,  l(f)]. 

Lemma 2.3.4. H = R(F) is a simply connected polygonal region. The extreme 

J 

Fig. 4. Geodesic cones U[2, 1, 3] (solid line) and U[3, 2, 1] (dashed line). 
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It-1 

$1 

Fig. 5. Illustration to the proof of Lemma 2.3.4. 

elements o f F  can be labeled f l ,  J'z = r( f l )  . . . . .  fo = f, .  = r(f , ._ O, f~ = f=+ , = rtf,.) 
so that H = ~ " = ,  C [ f / + , ,  f / , J ; -  t ]  and ~H = ~"=. 1 ,q(f~, f i+O- 

Proof  F must  contain some extreme element, since r(u) is extreme for any 
u e  OU. Let f~ be an extreme element of F, and consider the sequence f2 = r(fO, 
f3 = r(fz) . . . . .  Since F is finite and l o r is the identity (Lemma  2.3.2(4)), it must  be 
that f,, +, = f l  for some m with f l  . . . . . .  l,, distinct. If  F is degenerate,  then m = 2 
and the l emma follows easily. We assume F is nondegenerate ,  hence m > 2 and 
points in each triple f~_ i, f~, f/+ 1 are distinct. 

Let I = ~"=1 U[f , '+l ,  f/, f - , ] .  We first show that  ~?I = U~"=, .q(f/, f /+0 .  Let 
g(f~, f~+ ~) have closest foreshadow s~ and closest shadow tv A schematic  view of 
the si tuation is given in Fig. 5 which also indicates the relative posit ions of these 
points, to be justified below. Then 

c~(u[.~ + ~, f , ,  f , _  d )  = g(s,_ t ,  .~) v g (£ .  t l )  u # u [ t ,  s, d .  

By L e m m a  2.3.2(1) we have, for.j = 1 . . . . .  m, f j _  1 (~ U [ f j +  1, ,1)] = U[tj, Sj], SO using 
Lemmas 2.2.3 and 2.2.4, we have s t_ ~, s t, t j_ ~, tj in that  counterclockwise order  
on dU (possibly s t = t j_ 1). Consequently,  U~"= ~ OU[sj,  tj] = c~U. Hence 

aU[ty, S;_t] ~- ~ aU[tj, s;] c_ {s~ . . . . .  s,.,t~ . . . . .  t,.}. 
j = l  j= l  

We now claim that  OU[ti, si_ 1] m I ~_ UT= ~ g(sj, t fl. Suppose x ~ ~ U [ t  i, s i_ 1] fh l; 
either x ~ ~ =  ~ OU[tj ,  sj_ t],  in which case the claim is immediate ,  or  

x ¢E ~ ~UEt~, sj_ t]. 
j = l  
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In the second case, x ¢ OU[tj, ss_ ,] for some j ,  but x ~ UEfj+ l, fj, J i -  l] since x e I, 
and since x e 0U, it must be that x ~ t'~(U[fs + 1, f~, f j -  1]), so x e g(fj, t~) w 9(sj_ ~, fs), 
establishing the claim. We now show t3I = U7'=1 Y(.fl, f/+ 0. By elementary topo- 
logy, 

(t 
i = 1  

= t lot / i ,  t,) at f , ,  s,_ ,)) t)  st_ i)  
i = 1  i = 1  

= 0 g(s~, ti) c~ I, 
i = 1  

Since segments slfi and q_ ~f/are in U[f/+ ~, .~, fi_ 1] only if si = t~_ l = f/~ ?U, 
we have Ol = ~ ' =  1 g(fl, fi+ O. 

For  each i, we have H _c U[f/+ l, f ' ,  .11-1] since U[fi+ l, ./i, f - t ]  is relatively 
convex and contains F. Hence H ~_ I. Also c~l _~ H since each geodesic is contained 
in H; since H is simply connected, H = I. Every extreme element f of F must be 
in H and in fact on OH, since f is on the boundary of U[r(f),  f ,  l(f)]. Since no 
extreme element can lie on a geodesic between two other extreme elements, each 
extreme element is equal to Jl for some i. [] 

Since R(F) is a connected polygonal region, it can be decomposed into plateaus 
and bridoes as follows: a nondegenerate plateau is a maximal compact two- 
dimensional subset of R(F) whose boundary is a simple polygon and a bridye is 
either a maximal polygonal path of positive length not containing any plateau 
points in its interior or a single point shared between two plateaus. We require 
that both endpoints of a bridge lie in a plateau, thus introducing a deyenerate 
plateau at the endpoint of any positive-length bridge that does not end in a point 
of a nondegenerate plateau. In Fig. 3, point t and geodesic triangle A23a are 
plateaus (degenerate and nondegenerate, respectively); segment l a is a bridge. Each 
plateau is relatively convex and each bridge is a geodesic. Since R(F) is simply 
connected, this decomposition forms a tree, with plateaus taken as nodes and 
bridges as edges. An extreme point x of R(F) is a convex vertex of a plateau if 
span(x, F) has positive measure, or is a plateau itself if span(x, F) consists of a 
single direction. A thin point x of R(F) is an interior point of a bridge if span(x, F) 
consists of exactly two directions, an endpoint of a bridge of positive length if 
span(x, F) consists of two components only one of which has positive measure, or 
a bridge by itself if span(x, F) consists of two components both of positive measure. 

For  F labeled as in Lemma 2.3.4 and H = R(F), we define the counterclockwise 
traversal of c~H to be the circuit g(fl, f2) . . . . .  g(fm, ft). The counterclockwise 
traversal visits every thin point twice and other points once. Hence for x, y not 
thin points we can unambiguously define OH[x, y] to be the section of the 
counterclockwise traversal of OH from x to y. Similarly, if the points in H' ~- ~H 
are not thin points, they have an unamibiguous counterclockwise ordering on OH. 
If F is extreme, then the counterclockwise ordering covers every point of F. Even 
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if the sequence of points xl . . . . .  x k on t3H includes thin points, it is still meaningful 
to say that they appear in counterclockwise order, if they are visited in that order 
in a single counterclockwise traversal of OH. Of course, another order differing in 
the position of thin points may be consistent with a counterclockwise traversal as 
well. 

Corollary 2.3.5. The center of F is the center of R(F). 

Proof. It is sufficient to show that, for any x ~ U, tad(x, F) = tad(x, R(F)). A point 
of H = R(F) maximally distant from x must lie on OH. By the previous lemma 
any point on OH lies on a geodesic connecting two points of F; hence by Lemma 
2.2.1, the maximally distant point must be an endpoint of such a geodesic, that 
is, a point of F. Thus a point of H furthest from x is necessarily a point of F and 
rad(x, H) = rad(x, F). [] 

Lemma 2.3.6. I f  f ,  f '  are extreme points ofF,  then every extreme point counter- 
clockwise from f to f '  is in U[f,  f ' ] ,  and all but f and f '  lie in the relative interior 
of U[f, f '] .  

Proof. If r ( f ) =  f ' ,  the claim is vacuously true. Otherwise we prove it by 
induction on the extreme points of F lying in counterclockwise order between f 
and f ' .  If r(f) # f ' ,  then since f '  must lie in the relative interior of U[r(f),  f ] ,  
r(f) must lie in the relative interior of U[f,  f '] .  Now suppose f "  is counter- 
clockwise o f f  before f '  and r(f") # f ' .  Inductively, assume that f "  is in the relative 
interior of U[f,  f '] .  Again we have f '  in the relative interior of U[r(f"), f"], so 
r(f") must be in the relative interior of U[f", f '] .  Now U[f", f ' ]  is contained in 
U[f, f ' ]  except possibly for a region bounded by segments f 's '  and f 's" and 
OU[s',s"], where s' and s" are the closest shadows of g( f , f ' )  and g(f", f ') ,  
respectively. However, g(f", r(f")) cannot intersect segment f's', since f '  is extreme. 
Hence r(f") e U[f, f.']. Since r(f") cannot lie on O(f, f ' )  as f,  f ' ,  r(f") are extreme 
and distinct, in fact r(f") is in the relative interior of U[f, f ' ] .  [] 

An immediate consequence of Lemma 2.3.6 is that counterclockwise order of 
extreme points is an absolute order, not depending on other extreme points: if a, 
b, c are extreme points of both sets A and B, then their order around A is the 
same as it is around B. 

Lemma 2.3.7. I f  points x, y, z, w (not necessarily all distinct) occur in that order 
in a counterclockwise traversal of the boundary of a relatively convex polygonal 
region R, then g(x, z) intersects g(y, w). 

Proof. By creating dummy plateaus if necessary, we can assume that x, y, z, and 
w each lie in a plateau. We proceed by induction on the number of plateaus in 
the decomposition of R. If there is only a single plateau, then R is a simple polygon 
and the claim is immediate. Otherwise there is some bridge g(a, b) whose removal 
splits R into relatively convex polygonal regions R1 and R2. If all of x, y, z, w are 
contained in one of R 1 or R2, the claim follows by induction. Otherwise, since x, 
y, z, w appear in that order in a counterclockwise traversal of the boundary of R, 
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there are up to symmetry two cases: x, y, a in Rt and z, w, b in R2, or x, y, z, a 
in Rt and b, w in R 2. In the first case g(x, z) and g(y, w) both contain g(a, b). In 
the second case x, y, z, a appear in that order in a counterclockwise traversal of 
Rt, hence by induction hypothesis, g(x, z) intersects g(y, a). Since g(y, a) ~_ ,q(y, w), 
g(x, z) must intersect g(y, w). [] 

We say segment f x  ~_ U connects a relatively convex set R to dU if f is an 
extreme point of R, x e dU, and f x  intersects R only at f (possibly f = x or some 
point of f x  besides x lies on t3U). 

Lemma 2.3.8 (Connection Lemma). Suppose f~ . . . . .  fm are extreme points of a 
relatively convex set R and segments f~x~ are pairwise disjoint and connect R to dU. 
Then the order of the fi's around dR is the same as the order of x~'s around dU. 

Proof. Suppose fi, f~, fk are in counterclockwise order around dR; we show 
x~ ~ c3U[xi, Xk], i.e., x~, x~, x k are in counterclockwise order around dU. By Lemma 
2.3.6~ f~ is in the relative interior of U[f~, f~]. Since g(f~, fk) -- R and f~x~ meets R 
only at f~, f jxj  cannot intersect g(f~, fk)" Clearly, f~ is in the region bounded by 
dU[xi ,  Xk] , segment fkXk, g(Jk, fi), and segment fixi. Since xj e dU and f~x~ does 
not intersect fkXk, g(fk, f~), or ~xi, x~ ~ dU[xi, Xk] and x~ # x~ and x~ ~ Xk. [] 

Lemma 2.3.9. Mappings r and 1 restricted to dU preserve order. 

Proof. Suppose u 1, u2, u3 ec3U are in that counterclockwise order and r 1 = r(u0, 
r2 = r(uz), and r 3 = r(u3) are distinct. Let ri be the closest shadow of g(u~, r~). 

We show that ~x, f2, ~3 lie in that counterclockwise order on dU; this follows 
from the claim that dU[uj, ~j] ~ dU[u~, f~] for all i # j .  To establish this claim, 
suppose for the sake of contradiction that dU[uj, f~] ~_ dU[ui, ~] for some i # j .  
Then r i ~ U[ul, ri] since uj, ~ ~ U[ui, rJ, but rj e F ~_ U[ri, ui] by Lemma 2.3.2(1), 
so r~e g(ui, ri). In fact, rjeg(ui, ri) since rj cannot lie past r i on g(u~, ri). If r je dU, 
then r~ ~ g(u~, ri) and r i #  r~ imply that rj is a reflex corner of c~U; using uj e U[ui, ri], 
we have that g(uj, rj) could be extended to g(u i, ri), a contradiction. If rj ~ dU, then 
neither g(ui, ri) nor g(uj, f~) can bend at rj. Since u~, rj ~ U[ui, rJ, the two geodesics 
must overlap in some link containing rj. Furthermore, the link must be traversed 
in the same direction in both geodesics, since uj, u~, r~, rj appear in that 
counterclockwise order on c3 U, However, then y(uj, r j) could be extended to g(uj, r~), 
a contradiction. 

We claim that r~  i and r ~  are disjoint whenever i # j ;  the lemma then follows 
immediately by the Connection Lemma. Suppose r~f~ intersects r~j.  The intersec- 
tion must be a single point distinct from both ri and rj. Hence, either r~ ~ U[r~, u~] 
or ri ~ U[r~, u~], contradicting Lemma 2.3.2(1). [] 

To summarize, we have described the general form of a polygonal relatively 
convex region and its boundary. This yields a natural notion of ordering on the 
boundary of the set, consistent with the ordering around dU. 
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2.4. Far Sides 

We consider the notion of the "far side" of a set F from a point. Informally, an 
extreme point f e F is on the far side of F from x if the geodesic O(x, f )  leaves 
R(F) after f.  There are two main reasons for studying far sides. First, we use this 
notion to relate the order of extreme points of F with the order of points on c~U 
(Corollary 2.4.2). Second, we are able to compute relative convex hulls efficiently 
using far sides (Lemma 2.4.3). 

Let F be a finite set of points in U and x e OU. The far side of F from x is the 
list of all extreme points of F counterclockwise from r(x) to l(x), inclusive. Here 
r(x) and I(x) are the clockwise and counterclockwise extreme points of F from x, 
as before. 

Lemma 2.4.1. Suppose f is an extreme point of F, x e OU, and f # x. Then the 
following are equivalent: 

(1) f is on the far side of F from x. 
(2) f is an extreme point of F w {x}. 
(3) f f  connects R(F) to c?U, for any shadow f of g(x, f) ,  and there is no geodesic 

extending g(x, f )  to an extreme point f '  (~ F distinct,from f. 

Proof It is possible that x ~ R(F) if x e c ~)U is a boundary point of R(F); then all 
three conditions are satisfied. So assume x ~ R(F). Then x is an exterior point of 
F. Set r = r(x) and l = l(x). By Lemma 2.3.2(1) f E U[r, x] c~ U[x, l]. 

(l ~ 2) If f is on the far side of F from x, then f e  U[r, l] by Lemma 2.3.6. If 
f # r and f # l, then, by the Triangle Lemma, g(x, f )  intersects g(1, r) at some 
point x', where x' # f since f is extreme. Hence 

O(f, x) = O(f, x') ¢ O(f, g(r, l)) ~_ span(f, F), 

and span(f, F w {x}) = span(f, F), so f is extreme in F w {x}. If f = r, then, by 
the definition of clockwise extreme point, r(x) is unchanged if F is replaced with 
F w {x}, so r is extreme by Lemma 2.3.2(3). The case f = I is similar. 

(2 --, 3) Trivial. 
(3 ~ 1) We argue the contrapositive. If f is not on the far side of F, then, by 

Lemma 2.3.6, f ~ U[l, r]. Since f cannot be on O(l, r), f e ~rxl .  If f e g(x, r) or 
f e g(x, l), then g(x, f )  can be extended to an extreme point of F distinct from f .  
Otherwise by the Triangle Lemma, for some shadow f of g(x, f),  g(x, f )  intersects 
g(r, l) at a point distinct from f,  thus f f  cannot connect R(F) to c~U. []  

Corollary 2.4.2. Suppose {fi} is a set of  distinct points on the far side of F from x 
and, for each i, f i  is a shadow of g(x, fi). Then the order of  f i  on t?U is the same as 
the order of fl on OR(F). 

Proof If i # j, then g(x, fi) and g(x, f~) must diverge before reaching .fi or fj. 
Hence f i l l  does not intersect f j f j .  The result then follows from the Connection 
Lemma. [ ]  
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Putting convex hulls together: Dashes outline R(F w ~U[u, v]). Fig. 6. 

Lemma 2.4.3. Suppose u, v ~ OU, u # v, F ~_ U[v, u], F ~ g(u, v), and H = R(F). 
Then a counterclockwise traversal of  the boundary of  R(F w OU[u, v]) is OU[u, v], 
g(v, r(v)), On[r(v), l(u)], g(l(u), u). 

Proof In this proof we write ru (X  ) and lu(x) for the clockwise and counter- 
clockwise extreme points of M from x. This indicates the dependence upon 
M explicitly. Thus in the statement of the lemma, r(x) really refers to re(x). 
We also assume OU[u, v] ~ R(F), hence some point of OU[u, v] is extreme in 
R(F w OU[u, v]). If OU[u, v] ~ R(F), a similar and easier argument suffices. 

Refer to Fig. 6. Let G be {u, v} together with the set of convex corners of 
OU[u, v]. Clearly, R(F w OU[u, v]) = R(F w G). We first show that rFu~(V) = re(v); 
we use Lemma 2.3.2(5). Some point of F is in the relative interior of U[v, u] by 
assumption; it is easy to check that in fact re(v) must be in the relative interior of 
U[v, u]. Hence F w OU[u, v] ~_ U[re(v), v]. Any geodesic extending g(v, re(v)) must 
stay in the relative interior of U[v, u], hence must avoid OU[u, v], and must also 
avoid any f '  ~ F distinct from re(v) since re(v) is extreme in F. Hence, by Lemma 
2.3.2(5), rF~(V) = re(v). By Lemma 2.3.2(3), re(v) is extreme in F w G. By a similar 
argument, Ivu~(u) = le(u) is extreme in F w G. 

We claim h = IFu~(re(v)) is the most counterclockwise point of G (ordered along 
OU[u, v]) that is extreme in F w G: h is either v, the convex corner immediately 
clockwise of v, or possibly u if dU[u, v] contains no convex corners. We have 
h ~ U[re(v), v] and v ~ U[re(v), h]. This is only possible if v, h, and re(v) lie on a 
common geodesic. Since h and re(v) are extreme in F u G, they must be the 
endpoints of the geodesic. Hence either h = v, as desired, or v ~ g(re(v), h). In the 
latter case, by definition of counterclockwise extreme point, the shadow h of 
g(re(v), h) has to be as counterclockwise as possible; using h ~ U[v, re(v)] and the 
assumption that some point in OU[u, v] is extreme in F w G, it follows that h =/~ 
and h is either u or the convex corner of G immediately clockwise of v. 

Set f l  = re(v), f2 = re(A) . . . . .  fh = le(u) = r e ( f h -  1)" Let G' = {01,... ,  Or} be the 
subset of G - F extreme in F w G, where the index is given by the ordering along 
OU[u, v]. We want to show that rr~z maps f l  ~ f2 ~ " "  ~ fh --* el  - * " "  ~ 9Z ~ fl" 
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We have already shown that IF~c , maps .['1 to gt, hence rv,o(gt) = f~. By a similar 
argument  rF,.~c,(.fh) = g~. It is easy to see that rv~c,(gi) can only be g~+ 1, for 1 < i < I. 

It remains to show that rv~6(f~ ) = .['~+ 1 for 1 < i < h. This follows if we establish 
span(Jl, F w G) = span(fi, F) (which also establishes f~ extreme in F w G). Since 
fh = lr(u) is extreme in F w G, fh is extreme in F u {v}, hence fh is on the far side 
of F from v, and hence .f~ . . . . .  J~, are on the far side of F from v. Similarly, f~ . . . . .  fn 
are on the far side of F from u. Since r and l preserve order on c~U, the far side 
of F from any w e PU[u, v] includes j] . . . . . . .  fh" In particular, for any w e OU[u, v] 
and any i, 1 < i < h, we have f~ ¢ g(l(w), r(w)) since fi is extreme in F and f~ # l(w), 
r(w). Moreover,  as in the p roof  of Lemma 2.4.1, 

O(fl, w) e 0(.~, ,q(l(w), r(w))) c O(ji, R(F)) = span(fi, F). 

Hence span(.~, F w G) = span(]i, F). 
Now if 91 = u and gt = v, we are done. If, say, gl ¢- u, then u must  appear  on 

g(Jk, gl)- To  obtain the lemma split 9(fk, g 0  = g(Iv(U), gl) into g(lv(u),u) and 
g(u, gl), then merge ~j(u, gl) with i~U[.ql, gk]. A similar split applies if g~ ~- v. [ ]  

2.5. The General Position Assumption 

For the remainder of the paper we make the following general position assump- 
tion: no corner of ?U is equidistant from two sites. This condit ion can always be 
satisfied by applying a slight perturbation to the positions of the sites or  corners. 
If this assumption is not made, then it is possible for the set of points equidistant 
from two sites to include a two-dimensional region (see Fig. 7), introducing 
considerable complexity to the definition of bisectors and Voronoi  cells, which we 
wish to avoid. This section contains some consequences of  the general position 
assumption that are critical to the rest of the paper. We emphasize that none of 
Lemmas 2.5.1, 2.5.2, and 2.5.3 holds if the assumption is removed. 

Lemma 2.5.1. I f  s and t are distinct sites, x ~ U, and d~(x) = d,(x), then O(x, s) 
O(x, t). 

Pro(~f. Suppose O(x, s) = O(x, t). Then the geodesics g(s, x) and g(t, x) share their 
final link yx. Point  y must be the anchor  of x with respect to both s and t. Now 

Fig. 7. A configuration not 
Section 2.6). 

in general position. The entire shaded region is contained in b(s, t] (see 
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y ~ s, t since otherwise d(s, y ) =  d(t, y) would imply s = t. Hence y must be a 
reflex corner  of  dU equidistant from s and t, contradicting the general position 
assumption. 

Lemma 2,5.2. Suppose u, v ~ U, u ~ v, and each of  u and v is equidistant from 
distinct sites s and t. Then g(s, u) does not intersect g(t, v). 

Proof  Suppose x lies on both g(s, u) and g(t, v). Without  loss of  generality, assume 
d(x, s) <_ d(x, t). Observe that 

dr(t) = d~(s) <_ do(x) + d(x, s) <_ do(x) + d(x, t) = do(t). 

Hence d(x, s) = d(x, t), path g(s, x) w g(x, v) is in fact geodesic g(s, v), and similarly 
g(t, x) w g(x, u) is g(t, u). Since x lies on both  geodesics g(s, u) and g(s, v), x must 
be a reflex corner  of t~U or an interior point  of a common  link of the two geodesics 
connecting two reflex corners of ~U. In the second case the link must be common 
to g(t, u) and g(t, v) as well, hence in either case we can find a reflex corner  of OU 
equidistant from s and t, violating the general position assumption. []  

Lemma 2.5.3. There is at most one point equidistant from three distinct sites. 

Proof Suppose to the contrary  that  points u and v are both  equidistant from 
sites r, s, t. First note  that r, s, t cannot  lie on a common  geodesic, for if say 
r ~ g(s, t), then, by Lemma 2.2.1, du(r) < max(du(s), d,(t)). Hence r, s, t are extreme 
points of {r, s, ~}. 

We claim that r, s, t are extreme points of {r, s, t, u} (and also of  {r, s, t, v}). In 
order  to demonst ra te  this, we show r ¢ R({s, t, u}). Now r does not  lie on g(u, s) or 
g(u, t), else s or t would be further from u than r. As argued before, r does not lie 
on g(s, t). If r is in the interior of R({s, t, u}), then, by the Triangle Lemma, g(u, ~) 
intersects g(s, t), where ~ is a shadow of g(u, r). However,  then using Lemma 2.2.1 
again, we would have d,(r) < max(du(s), du(t)). 

Now suppose one of u and v, say u, is extreme in R({r, s, t, u, v}). Hence r, s, t, 
u are extreme in R({r, s, t, u}); assume that they appear  in that  counterclockwise 
order.  By Lemma 2.3.6, r ~ U[u, s], t ~ U[s, u], and r, t ¢ ~(u, s). It must be that 
~(u, s) = g(u*, g) intersects either g(v, r) or g(v, t); assume it is g(v, t). To obtain a 
contradict ion of Lemma 2.5.2, we show g(u, s) in fact intersects g(v, t). Now uu* 
intersects R({r, s, t, u, v}) only at u since u is extreme in R({r, s, t, u, v}). Hence uu* 
is disjoint f rom R({r, s, t, v}). Also sg intersects R({r, s, t, v}) only at s, since s is 
extreme in R({r, s, t, v}) and some por t ion of g(u, s) must  lie in R({r, s, t}), hence 
in R({r, s, t, v}). Since g(v, t) _~ R({r, s, t, v}), g(v, t) must  intersect g(u, s). 

If neither u nor  v is extremal in R({r, s, t, u, v}), then both  u, v ~ R{(r, s, t}) and 
the proof  is similar. Geodesics g(u, r), g(u, s), and g(u, t) split R({r, s, t}) into three 
geodesic triangles. Hence v lies in one of the triangles which again implies a 
contradict ion of Lemma 2.5.2. 
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b(2, 3) 
(1,2 

: 
1,3) 2 

Fig. 8. Bisectors; dots indicate breakpoints. 

2.6. Voronoi Cells 

The bisector b(s, t) of distinct sites s and t is {x 6 U: d~(x) = dr(x) } and the half-space 
closer to s, H(s, t), is {x e U: d~(x) < d,(x)}. Clearly, H(s, t), b(s, t), and n(t,  s) form 
a partition of U. A breakpoint of b(s, t) is the intersection of b(s, t) with a 
shortest-path partition edge from s or t. Figure 8 indicates the bisectors of three 
points, with breakpoints marked. 

The following two lemmas depend upon the general position assumption. 

Lemma 2.6.1 [A, 3.22]. Bisector b(s, t) is a smooth curve connecting two points on 
~U and having no other points in common with OU. It  is the concatenation of  
O(n) straight and hyperbolic arcs; the points where the arcs meet are precisely the 
breakpoints of  b(s, t). The tangent to b(s, t) at x bisects the angle between O(x, s) 
and O(x, t). 

In particular, together with Lemma 2.5.1 this implies that, given x ~ b(s, t), O(x, s) 
and -O(x, t) enter H(s, t) at x, while -O(x, s) and O(x, t) enter H(t, s) (if they stay 
within U, that is). 

Corollary 2.6.2. The relative boundary of  H(s, t) and H(t, s) is b(s, t). 

Lemma 2.6.3 [A, 3.17]. H(s, t) is connected. 

Recall that S is the set of sites. The (geodesic furthest-site) Voronoi cell of site s 
is V(s) = (']~,s H(t, s). The (geodesic furthest-site) Voronoi diagram V is 

{x e b(s, t): s, t e S and ds(x) = max,~ s dr(x)}. 

Figure 9 indicates the Voronoi diagram and Voronoi cells of the three points 
depicted in Fig. 8. A Voronoi edge e(s, t) is V n b(s, t) if the intersection consists of 
more than one point; else we say that e(s, t) does not exist. A (Voronoi) vertex is a 
point x e Vwhich has three or more sites furthest from it. By Lemma 2.5.3 above, 
there is at most one such point x for each triple of sites. A hitpoint is the intersection 
of a Voronoi edge with 0U. Intuitively, a hitpoint corresponds to the "point at 
infinity" of an infinite Voronoi edge in a Euclidean furthest-site Voronoi diagram. 
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V(2) 

V(3) 

1 

Fig. 9. 

V 3 
o 

A v(:) 

Voronoi cells of the sites of Fig. 8. 

Lemma 2.6.4. Voronoi edge e(s, t) is connected and has vertices or hitpoints as 
endpoints. 

Proof Suppose r, s, t are distinct sites. Since d, is continuous, a connected 
component  of b(s, t) c~ (b(r, s) u H(r, s)) must have for each of its endpoints either 
an endpoint of b(s, t), i.e., a hitpoint, or  a point equidistant from s, t, r. However, 
by Lemma 2.5.3, there is at most one point equidistant from s, t, r, so 

b(s, t) n (b(r, s) ~ H(r, s)) 

consists of a single connected component. Hence also 

e(s, t) = b(s, t) c~ ~ (b(r, s) u H(r, s)) 
rC-s,t 

is connected and has hitpoints or vertices for endpoints. [] 

Lemma 2.6.5. Suppose s: . . . . .  Sk, Sk + 1 = S l are the sites .furthest (and thus equi- 
distant) from vertex v, and directions O(v, st) . . . . .  O(v, Sk) are in counterclockwise 
order. Then, for each i, edge e(si, si+ 1) is incident to v and extends away from v in 
direction bisecting /__si+ lvsi, as long as that direction (locally) stays inside U. 

Proof Elementary analysis, using XTd,,(v) = -O(v, si). D 
If vertex v appears on c3U, then there is only one edge of V incident to v: as v 

cannot be a corner of OU by the general position assumption, it must be an interior 
point of a wall. (Of course, this means that v is not a vertex, but a hitpoint.) Hence 
only the edge bisecting / s v t  remains within U, where directions O(v, s) and O(v, t) 
are the most  clockwise and most  counterclockwise directions toward sites furthest 
from v, respectively. 

Lemma 2.6.6 (Extension Lemma). I f  x lies on g(s, y) and x e V(s) or x ~ e(s, t), for 
some other site t, then all of  9(s, y) past x lies in V(s). 

Proof Suppose x ~ V(s). For  any site r # s and for any z ~ g(x, y), 

ds(z ) = d~(x) + d(x, z) > d,.(x) + d(x, z) > dr(z), 
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so z ~ V(s). Suppose x ~ e(s, t) and y ~ x. By the general position assumption x is 
not a corner so O(x, y) = -O(x ,  s) stays in U at x. We show O(x, y) enters V(s) = 
(~r¢~H(r,s) at x; the result follows as before. Since xee ( s , t ) ,  for any r ¢ s ,  
dr(x) <_ d,(x). If dr(x) = d~(x), -O(x ,  s) = O(x, y) enters H(r, s); if dr(x) < d~(x), any 
direction locally stays in H(r, s). [] 

An immediate consequence of this lemma is that every point in a Voronoi cell 
is connected to 8 U: if x ~ V(s), then segment xYc c_ V(s), where ~ is a shadow of 
g(s, x). 

Lemma 2.6.7. Both V(s) n 8U and V(s) are connected. 

Proof Since every point of V(s) is connected to a point of V(s) n 8U, it suffices 
to show V(s) c~ OU is connected. To prove it, we show that H(r, s) n H(t, s) c~ OU 
is connected for every r, t ~ s. Label the hitpoints of b(r, s) and b(t, s) as xr, Yr and 
x~, Yt, respectively, so that 

(~3U n H(r, s)) kJ {x,, Yr} = dU[xr, Y3 

and 

( S U n  H(t, s)) w {x,, y,} = OU[x,, y,]. 

The only counterclockwise ordering of these points that disconnects 

OU n H(r, s) ~ H(t, s) 

is x,, Yt, xt, Yr. In particular, this implies that H(r, s) u H(t, s) cover 8U. We show 
this is impossible; suppose this were the ordering. Since s f~H(r , s )u  H(t,s), 
H(r, s) w H(t, s) ~ U, so b(r, s) must intersect b(t, s) in at least two distinct points. 
However, this contradicts Lemma 2.5.3, since each of the two points would be 
equidistant from sites r, s, and t. []  

2.7. The Ordering Lemma 

Let C be the relative convex hull of S, the set of sites. The first lemma of this 
section shows that if V(s) is not empty, then s must be an extreme point of S and, 
in fact, lie on the far side of S from any point in the closure of V(s) n ~U. Hence 
we can assume that all sites are extreme and that they are ordered by the 
counterclockwise traversal of 8C. The main result of this section is the Ordering 
Lemma: the order of Voronoi cells around 8U is exactly the order of sites around 
0C. In addition we show that there is a collection of at most three geodesics 
separating every point of 8U from its furthest site(s). This is used to prove the 
rather remarkable fact that there are at most O(n + k) distinct links in all geodesics 
that connect corners of 8U to their respective furthest sites. The separating 
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geodesics are used in Section 3 to partition the problem of computing V w ¢3U 
into three recursively decomposable subproblems. The ordering that allows us to 
use recursion is based on the Ordering Lemma. We remark that Lemmas 2.7.2, 
2.7.5, and 2.7.6 are generalizations of very similar lemmas proved by Suri [S]. 

Lemma 2.7.1. I f  V(s) is not empty, then s is an extreme point of  S on the far side 
of  C from any x in the closure of  V(s) n OU. 

Proof  Suppose s is a site furthest from x. If s ~ g(r, t), for r, t sites distinct from 
s, then, by Lemma 2.2.1, ds(x) < max(dr(x), dr(x)), a contradiction. Suppose the last 
segment of g(x, s) can be extended beyond s staying in C; let s' be a point lying 
on such an extension and on the boundary of C. Then ds,(x) > ds(x), s' must lie 
on 9(t, u) for some sites t, u, and d~,(x) <_ max(dt(x ), d,(x)), contradicting the choice 
of s. Hence s is not an interior point of C, so s must be an extreme point. By 
Lemma 2.4.1, s is on the far side of C from x. [] 

Lemma 2.7.2. Suppose s and t are furthest sites from u, v ~ U, respectively, with 
u ~ v, s ~ t. Then 9(u, t) does not meet 9(v, s). 

Proof  Suppose to the contrary that x ~ 9(u, t) c~ 9(v, s). By the triangle inequality 
we have d(s, u) <_ d(s, x) + d(x, u) and d(t, v) < d(t, x) + d(x, v). Adding, we obtain 
d(s, u) + d(t, v) < d(t, u) + d(s, v). However, since s and t are furthest sites from 
u and v, respectively, d(s, u ) >  d(t, u) and d(t, v)>_ d(s, v). Thus we must have 
d(t, v) = d(s, v) and d(s, u) = d(t, u). However, in this situation O(U, t) cannot intersect 
g(v, s) by Lemma 2.5.2, a contradiction. [] 

Lemma 2.7.3. Suppose V(t) n ~ U immediately follows V(s) n 8 U in counterclock- 
wise order around ~3U. l f  u v ~ s, t is another site on 8C[s, t], then V(u) is empty. 

Proof  Let x be the hitpoint of e(s,t) so that (near x) V(s), x, V(t) are in 
counterclockwise order along OU. Let g and i be closest shadows of g(x, s) and 
O(x, t), respectively, so O(x, g) = O(x, s) and g(x, t-) = O(x, t). (For a schematic dia- 
gram, refer to Fig. 10.) We show that x, 5, t are distinct and appear in that order 
counterclockwise around 8U. Note that, by Lemma 2.5.1, O(x, s) and O(x, t) are 
geodesics emanating from x with distinct initial directions; hence g 4= t. Near x, 
V(t) n 8U = H(s, t) n 8U and V(s) n 8U = H(t, s) n 8U; also O(x, s) enters H(s, t) 
and O(x, t) enters H(t, s). Since 0(x, s) does not intersect 0(x, t) again, the ordering 
of x, g, ~ must be counterclockwise around OU. 

We claim L fi, and t are in that counterclockwise order on 8U, where fi is the 
closest shadow ofg(x, u). Let r and I be the clockwise and counterclockwise extreme 
points of S from x, with f and i the closest shadows of g(x, r) and 9(x, 1), respectively. 
By Lemma 2.3.2(2), 0U[f, i] does not contain x. By Lemma 2.7.1, s, t are on the 
far side of S from x. Hence by Corollary 2.4.2, g, i~8U[~,7],  and in fact the 
counterclockwise order must be ~, g, t, i, since 8U[g, t-] does not contain x. By 
Corollary 2.4.2, r, s, t, l appear in that counterclockwise order on C; since u is 
extreme and appears on 0C between s and t, u is on the far side of S from x. Again 
by Corollary 2.4.2, g, t~, i appear in that counterclockwise order on OU. 
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lr 

Fig, 10. Illustration to the proof of Lemma 2,7.3. 

Now suppose cont rary  to the l emma V(u) is not  empty ;  we obtain a contradic-  
tion. Since Voronoi  cells are connected to ?,U, there is y ~ V(u) ~ ~3U. N o w  y # x 
since Voronoi  cells are relatively open, and x lies on the boundary  of V(s) (and V(t)). 

As s, u, and t are distinct extreme elements of  S, the set {s, u, t} is extreme. As 
x e c~U, it is impossible for x to lie in the interior of  Asut .  Moreover ,  s, u, and  t 
are on the far side of  {s, u, t} f rom x (in that  counterclockwise order). Thus  either 
x ~ g(s, t) or  {s, u, t, x} is extreme (with s, u, t, x, occurring in that  counterclockwise 
order). In either case g(x, u) intersects g(s, t) and enters U[s, t] at some point  u', 
as u is an extreme point  of  C lying counterclockwise between s and t. Assume 
y~ U[x, u], the case y~  U[u, x] is similar. L e m m a  2.7.2 implies that  g(y, t) does 
not intersect g(x, u). As t lies in the relative interior of  U[u, x] and y lies in U[x, u], 
g(y, t) must  intersect ufi at some point  u" 4: u. This implies that  the por t ion  of 
.0(x, u) from u' to u" inclusive is contained in the triangle ~ys t ;  in par t icular  
u ~ Ayst .  By L e m m a  2.2.1, this contradicts  the choice of  u 4: s, t as a site furthest 
from y. [ ]  

Corollary 2.7.4 (Ordering Lemma).  The ordering of sites with nonempty Voronoi 
cells around t?C is the same as the ordering of Voronoi cells around OU. 

Lemma 2.7.5. Suppose {u~ . . . . .  u,,} and {v l . . . . .  v,,} are separated by boundary 
geodesic g(x, y). Then there is a total of at most O(m + n) distinct links in paths 
g(ul, vi), i = 1 . . . .  , m. 

Proof By a p roof  essentially identical to L e m m a  4 of Suri [S], for each i there 
are at most  three links of  g(ul, vl) not  in T(x) ~ T(y). (Three links are needed ra ther  
than one because u, v need not be corners  of t?U.) [ ]  

Lemma 2.7.6. There are three boundary geodesics gl, g2, g3 so that, for any point 
u ~ aU and any site s furthest from u, one of the geodesics separates u from s. 
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Z w 

x Y 

Fig. 11. Illustration to the proof of Lemma 2.7.6. 

Proof Refer to Fig. 11. Fix x ~ S arbitrarily. Let y be a site furthest from x and 
let z be a site furthest from y. We argue the case that x, y, z are distinct and appear 
in that counterclockwise order around c~C; the case that x = z is easier and the 
case that the order is x, z, y is similar. 

We claim that we can choose a site w furthest from z in OC[x, y]. We first show 
that w can be chosen to lie in OC[x,z]: if all sites w furthest from z lie in 
OC[z, x] - {x}, then in particular d(z, w) > d(z, y). We also have d(x, y) > d(x, z) 
and d(y, z) > d(y, w), so adding all three we get d(x, y) + d(z, w) > d(x, z) + d(y, w). 
This contradicts the triangle inequality as can be seen by considering a point in 
the intersection of g(y, w) and g(x, z). Now w cannot be in ~C[y, z] - {y}, else 
g(x, w) intersects g(y, z), a contradiction of Lemma 2.7.2, taking u = x, t = w, v = z, 
and s = y. Hence we can choose w in OC[x, y]. 

Let x*, y*, z* and Y, :~, ~ be the closest foreshadows and closest shadows of 
g(x, y), g(Y, z), and g(z, w), respectively. We claim y* e t~U[x*, 9]: this is immediate 
if y e c~U or g(x, y) and g(z, y) share a common final link; othewise it follows from 
Lemma 2.2.4(1), since y* is the closest shadow of g(z, y). Similarly, z* ~ OU[y*, ~] 
and x* ~ OU[z*, ~]. 

Now, by the Extension Lemma, x*, y*, z* have y, z, w as their respective furthest 
sites. By the Ordering Lemma, all points in tgU[x*,y*] have furthest sites in 
OC[y, z]; clearly, O(x, y) separates OU[x*, y*] from OC[y, z]. Similarly, the sites 
furthest from c~U[y*, z*] lie in tgC[z, w] and these two sets are separated by ~(y, z). 
Finally, the sites furthest from tgU[z*, x*] lie in c~C[w, y] and these two sets are 
separated by ~(z, x). Note that in fact x* can have furthest sites both in c~C[y, z] 
and c~C[w, y], and similarly for y* and z*, while each of the remaining points of 
dU has its furthest sites in exactly one of OC[y, z], OC[z, w], or dC[w, y]. [3 

2.8. The Refined Voronoi Diagram 

The Voronoi diagram V clearly has O(k) edges, since together with ~ U it forms a 
planar graph with at most k bounded regions and all Voronoi vertices have degree 
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Fig. 12. 

• • 

2 

Refined Voronoi diagram of the sites of Fig. 8. 

three or more. However, this is not an accurate description of the size complexity 
of the Voronoi diagram, since each Voronoi edge may consist of sections of several 
different hyperbolic arcs. This section discusses a refinement of the Voronoi 
partition, obtained by further subdividing each Voronoi cell V(s) by the shortest- 
path partition from s. Each bounding edge of a refined Voronoi cell is a line 
segment or a section of a single hyperbolic arc. The main theorem is a linear 
bound on the size complexity of the refined Voronoi diagram. This implies an 
O(n + k) bound on the size complexity of the Voronoi diagram itself. 

The refined Voronoi cell of  site s with anchor a, V*a(S), is V(S) ~ P~(s). The refined 
bisector edge e*b(S, t) is e(s, t) c~ P,(s) c~ Pb(t). The refined partition edge (from s with 
anchor a), p*(s), is V(s) ~ p,(s). A refined Voronoi edge is a refined bisector edge or 
a refined partition edge. (Refer to Fig. 12.) Observe that distinct refined Voronoi 
edges are disjoint (except possibly at their endpoints). Empty refined Voronoi cells 
and edges and refined Voronoi edges consisting of a single point are disregarded. 

Suppose e*b(s, t) is not empty. It is easy to see that each endpoint of e*b(s, t) is 
either a vertex of V, a hitpoint, or a breakpoint. Moreover, e*b(s, t) does not contain 
breakpoints (except possibly as endpoints). Consequently e*b(S, t) is a hyperbolic 
arc or a line segment. 

Lemma 2.8.1. Either p*(s) is empty, or it is all of p,(s), or it has an open endpoint 
at a breakpoint f f  e(s, t) for some site t and closed endpoint on c?U. (The latter two 
cases are illustrated in Fig. 12.) 

Proof. Suppose p*(s) is not empty and is not all ofp~(s) = ay (where y ~ t3U). Then 
po(s) must intersect some edge e(s, t) before first entering V(s). By the Extension 
Lemma, the intersection is a single point x, and p*(s) = xy - {x} is contained in 
V(s). [] 

Suppose p*(s) is a refined partition edge of V(s). Let t(p*(s)) be the first link of 
the geodesic g(a, s), directed toward s. Then by definition of the refined partition 
edge p*(s), p,(s) and t(p*(s)) are collinear and meet at a. We claim that if p*(s) and 
p*,,(s') are distinct refined partition edges, then t(p*(s)) and t(p*,(s')) are distinct, at 
least as directed links. Clearly, p*(s) 4: p*,(s') implies either a 4: a' or s 4: s'. The 

t .  claim is immediate if a # a ,  otherwise suppose s # s'. Since p*(s) c V(s) and 
P*,(s') ~ V(s'), we must have O(a, s) # O(a, s'). Since t(p*(s)) and t(p*(s')) have these 
two directions, they must be distinct. 
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Lemma 2.8.2. Link t(p*(s)) is a link of g(v, s), where v can be chosen to be a corner 
tyino in ¢3U ~ V(s) or a hitpoint of V(s) (i.e., an endpoint of OU c~ V(s)). 

Proof Let pa(s) = ay, y ~ OU c~ V(s). Segment ay partitions U into two polygonal 
regions U~ and U 2 so that U~ contains s and every geodesic to s from a point in 
U 2 contains t(p*(s)). If we traverse t3U c~ U 2 starting at y, we must encounter either 
the endpoint of ~U c~ V(s) or a corner of t3U lying in V(s). [] 

The refined Voronoi diaoram, V*, is the union of all refined Voronoi edges. A 
vertex of V* is a vertex of V or a breakpoint. A hitpoint of V* is a hitpoint of V 
or the point of intersection of a refined partition edge with c~U (in the case when 
the refined partition edge consists of an entire shortest-path partition edge, only its 
nonanchor endpoint is considered a hitpoint). 

Lemma 2.8.3. There are at most O(n + k) refined Voronoi edges and eertices. 

Proof Clearly, V has at most k cells, hence k hitpoints and O(k) edges. We show 
that there are only O(n + k) refined partition edges. Since each refined partition 
edge contributes a single breakpoint, it follows that there are only O(n + k) refined 
bisector edges. By planarity, there are only O(n + k) vertices in V* as well. 

By Lemma 2.7.6, there are three boundary geodesics gt, 92, g3 and a partition 
of OU into three fragments Ut, U 2, U3 so that, for i = 1, 2, 3, Oi separates every 
point in Ui from its furthest site(s). (This is not strictly true for the endpoints of 
Ui, but the argument is similar.) Let Wj be the union of the sets of links of geodesics 
9(v, w), where v is a corner of OU lying in Ui and w is the unique site furthest from 
v or where v is a hitpoint of V lying in Ui and w is one of the two sites whose 
Voronoi cell boundary contains v. Since there are at most k hitpoints and n corners 
in all of 0U, there are certainly at most as many in each Ui. By Lemma 2.7.5, there 
are O(n + k) links in W~. Now modify W~ so that it contains for each link two 
oppositely directed links; this doubles its size. By Lemma 2.8.2, if p* is a refined 
partition edge, then t(p*) is in W~, for some i = 1, 2, 3. Since each t(p*) corresponds 
to a unique refined partition edge, there are at most O(n + k) such edges. [] 

2.9. Directin 9 Edyes of  the Refined Voronoi Diayram 

We let c be the center of C. Necessarily e lies on some Voronoi edge, since there 
must be (at least) two sites attaining the maximum distance from c. 

Lemma 2.9.1. Suppose s is a site furthest from x ~ U. Then the angle between O(x, s) 
and O(x, e) is less than r~/2. 

Proof Suppose the angle between O(x, s) and O(x, c) is at least rt/2. By Lemma 
2.2.2, d(c, s) > d(x, s). However, since s is a furthest site from x, tad(x, C) = d(x, s). 
This contradicts the choice of c as the center of C, i.e., the point minimizing 
rad(c, C). 
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We use this lemma to direct each refined Voronoi edge toward c; if there is a 
Voronoi edge containing c in its interior, we split the edge at c. We show how to 
direct an edge e(s, t) of the (unrefined) Voronoi diagram; this direction extends to 
each refined bisector edge. A similar argument directs each refined partition edge. 
Suppose x e e(s, t), x v~ c. Since e(s, t) bisects /_sxt and both the angle between 
O(x, c) and O(x, s) and the angle between O(x, c) and O(x, t) are less than 7t/2, it is 
not possible that O(x, c) is perpendicular to e(s, t) at x. Hence we can direct e(s, t) 
toward c locally at x. If c ¢ e(s, t), this direction extends globally to e(s, t), since 
direction toward c is a continuous function away from the corners and can never 
be perpendicular to e(s, t). If c e e(s, t), then e(s, t) is split at c into two pieces, each 
of which is consistently directed toward c. 

Lemma 2.9.2. Suppose v q~ OU is a vertex o f  V* different f rom c. Then there are at 
least two edges o f  V* entering v and exactly one edge o f  V* leaving v. 

Proof. We consider the case that v is in fact a vertex of V; the case that v is a 
breakpoint is similar. For simplicity assume there are exactly three sites equidistant 
from v. Label the sites r, s, t so that O(v, r), 0(v, s), and 0(v, t) are in counterclockwise 
order leaving v so that m/._rvt < it. (This is possible by the previous lemma as 
each of the angles formed between O(v, c) and O(v, r), O(v, s), or O(v, t) has measure 
less than ~/2.) By Lemma 2.6.5, Voronoi edges e(r, s), e(s, t), and e(t, r) are incident 
to v and extend in directions bisecting angles /_svr, /__ tvs, and / r v t ,  respectively. 
Hence edges e(r, s) and e(s, t) enter v and e(t, r) leaves v. The general case of a vertex 
of arbitrarily high degree is handled analogously. Vertices v ~ dU of degree two or 
less do not occur by definition of V*. [] 

Suppose Voronoi edge e(s, t) intersects ~'~U at hitpoint x; recall that, by the 
general position assumption, x is not a corner of 0U. Then e(s, t) is directed into 
the interior of U, because O(x, c) makes an angle strictly less than rt/2 with both 
O(x, s) and O(x, t), e(s, t) bisects the angle between O(x, s) and O(x, t), and none of 
O(x, s), O(x, t), and O(x, c) can leave U at x. A similar argument shows that refined 
partition edges are directed away from c~U at hitpoints. 

Corollary 2.9.3. The unrefined Voronoi diagram V forms a tree with root c and 
edges directed toward c. 

Proof. No cycles are possible because otherwise some Voronoi cell would be 
separated from ~3U. Only c has out-degree zero; every other vertex or hitpoint of 
V has out-degree 1, so V is a root-directed tree. [] 

The refined Voronoi diagram V* consists of V together with refined partition 
edges. Each such edge must lie entirely within a single Voronoi cell, having one 
endpoint on t~U and the other endpoint at a reflex corner or on V (by Lemma 
2.8.1). However, V* will not in general be connected, see for example Fig. 12. 
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Procedure gfv 
Input: A polygon U with n sides and a set S ___ U of k sites. 
Output: The refined furthest-site geodesic Voronoi diagram V*. 

I. Triangulate U. 
2. Compute C, the relative convex hull of S, and discard all nonextreme sites of S. 
3. Determine two or three two-fragment instances so that the union of the source fragments 

is OU. 
4. Compute V* n OU by calling rafs(u, v, s, t) for each two-fragment instance (u, t,, s, t). 
5. Call sweep to extend V* to the interior of U. 

Fig. 13. The algorithm. 

3. The Algorithm 

This section describes the algorithm for computing V*. An outline of the algorithm 
is given in Fig. 13. It suffices to triangulate the polygon in time O(n log n) [GJPT]. 
The relative convex hull computation of the second step can be accomplished in 
time O((n + k) log(n + k)) IT]. The third step also takes time O((n + k) log(n + k)) 
and is described in Lemma 3.1.1 below. The fourth step, the most difficult of the 
algorithm, is the computation of V* n 0U, i.e., V* restricted to 0U. It is discussed 
in Sections 3.1-3.4. The last step is the extension of V* to the interior of U. This 
is done using a "reverse geodesic sweeping" algorithm, discussed in Section 3.5 
below. Both the fourth and fifth steps take time O((n + k) log(n + k)). 

The computation of V* n OU is quite similar in outline to Suri's algorithm for 
furthest geodesic neighbors inside a simple polygon [S]. We first reduce the 
computation of V* c~ OU to at most three instances of the "two-fragment prob- 
lem." Roughly, an instance of the two-fragment problem consists of a fragment 
of 0U and a fragment of 0C so that all furthest sites of points in the fragment of 
c~U are contained in the fragment of 0C. Such a pair must also satisfy a technical 
condition given below; this reduction appears in Section 3.1. The algorithm to 
solve the two-fragment problem is based on a divide-and-conquer schema that 
splits an instance into two smaller instances. The basic properties of the divide- 
and-conquer schema appear in Section 3.2. Section 3.3 contains the exact splitting 
method and the procedures for handling the base cases of the recursion. The 
complexity analysis appears in Section 3.4. We show that the sum of all instance 
sizes at each level of recursion is linear in n + k. This implies a total running time 
of O((n + k) log(n + k)). 

We work with polygonal relatively convex sets in addition to simple polygons. 
Any such relatively convex set Q can be decomposed into a collection of plateaus 
and bridges. Clearly, a triangulation of Q can be obtained just by triangulating 
each plateau in the decomposition. This is easily done in time O(m log m) [GJPT] 
if m is the number of segments in the boundary of Q. Similarly, a shortest-path 
partition of Q from an arbitrary point in it can be obtained by using a shortest- 
path-partition algorithm in each plateau of the decomposition. If Q has been 
triangulated, this takes time O(m) [GHL+] .  
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3.1. The Two-Fragment Problem 

A two-fragment instance is a quadruple (u, v, s, t) where u, v E ~U, u # v, s is a site 
furthest from u, t is a site furthest from v (possibly s = t), and g(u, v) separates 
?;U[u, v] from OC[s, t]. The two-fragment problem is "Given a two-fragment 
instance (u, v, s, t), compute V* c~ ?U[u, v]." Observe that, by the Ordering Lem- 
ma, only the Voronoi cells of sites in t3C[s, t] can intersect ?,U[u, v]. The source 
.fragment of the two-fragment instance (u, v, s, t) is c3U[u, v]; the target fragment is 
~C[s, t]. 

Lemma 3.1.1. There exists a set oj at most three instances of the two-fragment 
problem so that the union of the source [ragments is ?U. The instances each have 
size O(n + k) and can be computed in time O((n + k) log(n + k)) given a triangulation 
of U. 

Proof Choose x, y, z, w, x*, y*, z* as in the proof  of Lemma 2.7.6. It is clear 
that (x*, y*, y, z), (y*, z*, z, w), and (z*, x*, w, y) are two-fragment instances each 
of size at most O(n + k); their source fragments cover OU. As for computing them, 
the choice of x was arbitrary. Site y can be determined in time O((n + k) log(n + k)) 
by computing the shortest-path tree from x, then determining the distance from 
every site to x using a planar point-location algorithm in the resulting shortest- 
path partition. Sites z and w can be determined similarly. The points x*, y*, z* 
can certainly be computed in additional time O(n). The case when x = z is handled 
similarly. []  

In the following pages we perform a rather detailed analysis of the "ana tomy"  
of an instance of the two-fragment problem. The next few definitions set the ground 
for this analysis, Let D be the relative convex hull of the sites on dC[s, t]. Clearly, 
the ordering of sites on D is the same as on C, with the addition that s immediately 
follows t in counterclockwise order. Let R(u, v, s, t) be the relative convex hull of 
OU[u, v] and D. See Fig. t4. 

L 
Fig. 14. 

l = t = l  r 

I " - -  J 
U 

(~) (b) 

Convex hull of a two-fragment instance. Dashes outline R(u, v, s, t). 
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We say (u, v, s, t) is degenerate if D is contained in g(u, v). If (u, v, s, t) is 
degenerate,  there can be no sites in D besides s and t and, by L e m m a  2.7.2, the 
order  a long g(u, v) must  be u, t, s, v. In this case we define 1 = t and r = s. 

Suppose  (u, v, s, t) is not  degenerate.  Let I be the counterclockwise extreme point 
of D from u and  let r be the clockwise extreme point of  D from v. By L e m m a  2.4.3, 
~U[u, v], g(v, r), ~D[r, l], and g(l, u) consti tute a counterclockwise traversal  of  the 
bounda ry  of R(u, v, s, t). It  is an immedia te  consequence of the following lemma 
that  dD[r, t] is a subpa th  of  PC[s, t]. 

L e m m a  3.1.2. Sites s, r, 1, t are in that counterclockwise order on D, not necessarily 
all distinct. 

Proof The  l emma is trivial if r = l, s = t, or  if (u, v, s, t) is degenerate,  so assume 
s # t and (u, v, s, t) is not degenerate.  We show that  if s appears  on ~3D[r, l], then 
r = s and if t appears  on OD[r, l], then t = I. Since s is the extreme point of D 
immediate ly  counterclockwise from t, this implies the lemma. 

Suppose  t appears  on t3D[r, l] and t # I. Since s is immediately counterclockwise 
from t, s is also an extreme point  of  D lying on c3D[r, l] and thus an extreme point 
of R(u, v, s, t). Then t, s, u, and v appea r  in that  order  on a counterclockwise 
traversal  of  OR(u, v, s, t), which by L e m m a  2.3.7 implies that  g(t, u) meets g(v, s), 
cont ra ry  to L e m m a  2.7.2. [] 

We wish to give a definition of "left side connec tor"  and "r ight  side connector"  
to capture  the bounding  edges of R(u, v, s, t) not in OC[r, l] and dU[u, v]. The 
obvious  definitions are g(u,/) and g(v, r), respectively. Unfortunately,  these defini- 
t ions are not  adequate.  In Section 3.4 we analyze the size of side connectors;  one 
crucial p roper ty  used in our  a rgument  is that  if s # t, then the left and right side 
connectors  are disjoint except possibly at their endpoints  (Lemma  3.1.3 below). 
Unfor tunate ly ,  this is not  true for side connectors  defined as g(u, l) and g(v, r). See 
Fig. 14(b). 

It  is clear that  geodesic g(v, r) has a connected intersection with OD; furthermore, 
if the intersection is more  than a point  it must  be some final por t ion  of geodesic 
g(r', r), r' the site of  D immediate ly  clockwise of  r. Let ? be r if r = s, otherwise let 
P be the first point  of  g(r', r) intersected by g(v, r). The right side connector of 
(u, v,s, t) is g(v, f). Similarly, we define the left side connector of (u, v, s, t) to be 
g(u, l) where 1 is I if I = t, otherwise I is the first point  of  g(l', l) intersected by g(u, l), 
where l' is the site of  D immediate ly  counterclockwise f rom I. See Fig. 14. A 
connector edge is a link in either the left or  right connector .  

The  size of(u, v, s, t), denoted I(u, v, s, t)l, is ]~C[s, t]] + I~U[u, vii plus the sizes 
of  the side connectors.  Since t3D[P, l] is a subpa th  of OC[s, t], it is clear that 
IOR(u, v, s, t)l < ](u, v, s, t)l. 

I . e m m a  3.1.3. I f  the side connectors of  a two-fragment instance (u, v, s, t) meet at 
a point other than one of  their endpoints, then s = t. 

Proof  If  (u, v, s, t) is degenerate,  then u, l = t, r = s, v appear  in that  order along 
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g(u, v), and the side connectors are disjoint unless l = r, which in turn forces s = t. 
So suppose (u, v, s, t) is not  degenerate and point a ¢ u, v, ?, l is c o m m o n  to both 
side connectors.  Without  loss of  generality we may assume that a is a reflex corner 
of c~U. Deleting a splits R(u, v, s, t) into two components ,  whose closures R 1 and 
Rz are relatively convex polygonal  regions with the property that a geodesic 
connecting two points of  R(u, v, s, t) - {a} passes through a if and only if one of  
the points lies in R t - {a} and the other  in R2 - {a}. Since a lies on the left 
connector and thus on g(u, l), either u e R 1 and l e R 2 or  vice versa (and similarly 
for v and r). Since OU[u,v], g(v,r), OC[r,l], g(l,u) constitute a traversal of  
OR(u, v, s, t) and such a traversal cannot  visit any point more  than twice, OU[u, v] 
and OC[r,/]  do not meet a. In particular, u and v lie in the same component .  
Similarly, r and l must  lie in the same component .  

Without  loss of generality, assume that R1 contains u and v and R z contains 
r and I. N o w  also s C R  1, else a would appear  on OD[s,r] and thus could not  
lie on a side connector.  Hence s e R 2, similarly t e R 2. Thus s is furthest from u, 
t is furthest from v, but both g(u, t) and g(v, s) pass through a, implying s = t by 
Lemma 2.7.2. [ ]  

3.2. The Recursion Scheme 

Figure 15 contains a recursive procedure rgJ's for solving the two-fragment 
problem. Section 3.3 discusses the base cases and the choice of the splitting point  
w, while the complexity analysis is contained in Section 3.4. We now discuss some 
basic data structures needed for the recursion. 

At each level of  recursion, we need to have available the boundary  of R(u, v, s, t) 
and a tr iangulation of its interior. For  the topmost  level, the boundary  of  
R(u, v, s, t) can be constructed using the relative convex hull algorithm of Toussaint  
[T]; this takes time O((n + k) log(n + k)). Then it can be triangulated in additional 
time O((n + k)log(n + k)) [ G J P T ] .  

For  the recursive step, we need to compute  f (w)  and the boundaries and 
triangulations of R(u, w, s, f (w))  and R(w, v, f(w), t) in total time O(](u, v, s, t)[). To 
compute f (w)  it suffices to know the geodesic distance dw(r) for every site r in 
~C[s, t-I; dw(r) can be determined in constant  time if the cell of the shortest-path 
partition of R(u, v, s, t) from w containing r is known. The cell containing r for all 
sites r in dC[s, t] can be determined in total time O(l(u, v, s, t)l) as follows. We 
assume the shortest-path partit ion of R(u, v, s, t) from w has been computed and 

Procedure rgfs(u, v, s, t) 
if aU[u, v] or dC[s, t] is a base case 
then compute ~U[u, v] c~ V* directly 
else choose w ~ OU[u, t;] 

locate a site f(w) furthest from w 
call rgfs(u, w, s, f (w)) and rgfs( w, v, f(w), t) 

end 

Fig. 15. Recursive procedure rgfs. 
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refined to a triangulation (this takes only linear additional time). First locate the 
triangle containing s; this clearly can be done in the allowed time bound. Then 
traverse OC[s, t], in one step moving to the next vertex of OC[s, t] or to the next 
intersection of the current edge of 8C[s, t] with the boundary 8A of the current 
triangle A of the shortest-path partition from w. Notice that the intersection of 
8C with A has at most three connected components, since C is relatively convex. 
Hence the traversal of PC[s, t] takes total time O(l(u, v, s, t)[), since the charge for 
a step to a vertex of PC[s, t] can be allotted to the vertex and the step to an 
intersection with A can be allotted to one of the at most three connected 
components of A c~ PC[s, t]. 

We compute the boundary and triangulation of R(u, w, s, f(w)) as follows; 
handling R(w, v, f(w), t) is similar. If (u, w, s, f(w)) is degenerate, the boundary of 
R(u, w, s, f(w)) can be easily obtained from the shortest-path partition of R(u, v, s, t) 
from w. Otherwise compute r', the clockwise extreme point of PC[s, f(w)] from w 
using the shortest-path partition from w. Similarly, l', the counterclockwise extreme 
point of OC[s, f(w)] from u, can be determined by computing the shortest-path 
partition of R(u, v, s, t) from u. Now since l' is extreme in R(u, w, s, f(w)), g(w, I') 
splits R(u, w, s, f(w)) into two pieces, one piece lying to the left and one to the 
right. (Possibly one or the other is just g(w, l').) A triangulation of the piece lying 
to the right can be obtained by refining the shortest-path partition of Rlu, v, s, t) 
from w. Similarly a triangulation of the piece lying to the left can be obtained by 
refining the shortest-path partition of R(u, v, s, t) from I'. Notice the links in g(u, l'), 
g(w, l'), and g(w, r') are used as triangle edges in this triangulation. The left and 
right side connectors of R(u, w, s, f(w)) are easily determined from g(u, I') and 
9(w, r'). This computation can clearly be done in time O(l(u, v, s, t)l). 

3.3. Choosin9 Splittin9 Points and the Base Cases 

We now discuss the recursion for an instance (u, v, s, t). There are two base cases, 
one easy and one hard, and two splitting cases, one easy and one hard. Except 
for the time required to sort "partition points," described below, the processing 
time for instance (u, v, s, t) is I(u, v, s, t)l, not counting the time for recursive calls. 

The easy base case corresponds to s = t; then all of 8U[u, v] lies in V(s). We 
need to find the refined partition edges of V* intersecting 8U[u, v]; it is sufficient 
to compute the shortest-path partition of R(u, v, s, t) from s, which can be done in 
time O(l(u, v, s, t)l) given the triangulation of R(u, v, s, t) [GHL+] .  

The easy splitting case is if s :~ t and u and v do not lie on the same wall of 
8U; then the splitting point w is chosen simply as a corner of 8U[u, v] so that 
tSU[u, w]l is within one of lSU[w, v]]. 

The harder splitting case is if s ~: t but u and v are the endpoints of the same 
wall of 8U. In this case there is no obvious splitting point w. We perform a 
"part i t ion" step: segment uv is split into subsegments so that within each 
subsegment the shortest-path tree from any point on the subsegment to the sites 
on 8C[s, t] is combinatorially invariant. This partitioning is described below. We 
introduce the partition points as dummy vertices, and use them as splitting points 
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in the divide and conquer, as before. Notice that the partitioning is performed at 
most once on a path from the topmost instance to a leaf instance in the recursion 
tree. We eventually show that we introduce only O(n + k) such points altogether. 

The remaining problem is to handle a base case instance (u, v, s, t), where s # t 
and the shortest-path tree is combinatoriaUy invariant on segment uv = ?.U[u, v]. 
Because of this invariance no refined partition edge of V* intersects segment uv, 
in other words u v n  V* = uv c~ V is the set of bisector hitpoints on uv. Notice that 
the partition induced on segment uv by V* is exactly the partition induced by the 
upper envelope of the functions dr, where r is a site in dC[s, t]. Again because of 
the combinatorial invariance of the shortest-path tree, each function d, is "simple" 

on segment uv; specifically d , (x ) i s  of the form c I + x/c2(x] where c 1 is constant 
and Cz(X) depends quadratically upon the position of x on segment uv. (Observe 
that the purpose of partitioning the original wall was to ensure that c 1 and c z are 
fixed over the length of uv. Their values for each site r e ?C[s, t] are defined by 
the identity of the anchor of x ~ uv with respect to r and the distance from r to 
this anchor; all of this information can be determined in linear time from the 
shortest-path tree of R(u, v, s, t) from, say, u.) Thus in constant time it is possible 
to determine, for a fixed pair of sites r and r', the unique point x ~ uv, if any, for 
which d , ( x )=  dr,(x). Now by the Ordering Lemma, Voronoi cells appear along 
segment uv in the same order as the corresponding sites appear along ?C[s, t]. 
This implies that the upper envelope of the functions d, on segment uv can 
be computed in time proportional to the number of sites (which is certainly 
O(l(u, v, s, t)l)). For example, an incremental algorithm is sufficient. Suppose that 
the partition of segment uv induced by an initial subsequence of the sites on ?C[s, t] 
has been computed. Then the partition induced by adding the next site in order 
can be determined in constant time plus time proportional to the number of cells 
deleted from the partition of segment uv computed so far. 

We now describe the partition step, which uses a technique similar to that of 
[GHL+].  We determine partition points, which are points of segment uv inter- 
sected by some shortest-path partition edge from some z in dC[s, t]. Notice that 
for each z it suffices to consider the shortest-path partition from z within geodesic 
triangle A u v z .  We can do this as follows. Compute T'(u), the shortest-path tree 
to all sites in dC[s, t] from u. T'(u) can be obtained from the shortest-path tree 
from u to dR(u, v, s, t) by adding links of geodesics from u to sites of dC[s, t] not 
appearing on dR(u, v, s, t) (there can be at most one such link per site not already 
in T'(u)) and by deleting links in the resulting tree that appear only on geodesics 
to nonsite vertices of OR(u,~, s, t). Tree T'(u) can be computed in total time 
O(l(u, v, s, t)l) using the technique described for computation of f (w)  in Section 
3.2. Similarly compute T'(v), the augmented shortest-path tree from v. For a site 
z in t3C[s, t], the geodesics g(z, u) and g(z, v) bounding geodesic triangle A u v z  are 
easily obtained from the shortest-path trees T'(u) and T'(v). The partition points 
resulting from A u v z  can be obtained by traversing g(z, u) and g(z, v) from z; 
eventually the two geodesics diverge and the required partition points are obtained 
by extending links of the two geodesics until they intersect segment uv. For a single 
site z, the time required is proportional to the size of ~ u v z ;  by appropriately 
pruning the construction on a repeat visit to a vertex, all partition points for all 
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z can be found in time O(IT'(u)t + tT'(v)l), which is clearly O(l(u,v,s,t)l). The 
number of partition points is bounded by IT'(u)[ + I T'(v)l. We give below a sharper 
bound on IT'(u)[ + [T'(v)[, when we also account for the time required to sort 
partition points along segment uv. 

3.4. Complexity Analysis 

Lemma 3.4.1. Let (u~, v~, s,, t~) be a topmost two-fragment instance. 7he total 
number of partition points created from subinstances of (ui, vi, sl, ti) is O(n + k). 

Proof Let a partition instance be an instance for which partitioning is performed. 
Each site of s can appear in at most two partition instances, since instances arising 
from the divide-and-conquer are disjoint except at endpoints and since partitioning 
is done at most once on a path from root to leaf in the recursion tree and is 
always applied to an instance that involves two or more sites. The number of 
partition points arising from a particular partition instance (u, v, s, t) is bounded 
by IT'(u) + T'(v)l, which is the number of distinct links in geodesics g(u, z), g(v, z) 
for sites z in dC[s, t]. Hence the total number of partition points arising from all 
partition instances is bounded by the number of distinct links in a set of geodesics 
connecting vertices in dU[u~, v~] to sites in ~C[s~, tJ, with at most four geodesics 
per site in the set. Now g(ui, vi) separates t3U[u~, v~] from t3C[s~, t~], so by Lemma 
2.7.5 the total number of links is O(n + k). Hence the number of partition points 
is O(n + k). [] 

Lemma 3.4.2. Let (ui, vi, si, ti) be a topmost two-fragment instance. There are at 
most O(n + k) distinct connector edges among all subinstances of (u~, vi, s~, t~). 

Proof The number of distinct subinstances is at most O(n + k), since O(n + k) 
bounds the number of vertices of U, sites in S, and partition points. Hence there 
are only O(n + k) connectors. Since g(u i, vi) separates t~U[ui, vJ from dC[si, ti], it 
separates the endpoints of each connector as well. Hence by Lemma 2.7.5, there 
are at most O(n + k) distinct connector edges. [] 

Lemma 3.4.3. Let (ui, v i, si, ti) be a topmost two-fragment instance. At each level 
of recursion, each connector edge appears in only a constant number of subinstances 
of  (ui, vi, si, t,). 

Proof We count the number of times edge ab can appear as a left connector 
edge directed from a to b. Notice a and b may be assumed to be reflex corners of 
OU, for otherwise ab is necessarily a first or last link on a side connector, and 
hence can appear in only one left connector (three if ab is the last link and the 
target fragment consists of the single site b in two of the instances). Let Q~ be the 
set of points x of U for which g(x, b) passes through a. Similarly, define Qb as the 
set of points that can reach a only through b. Clearly, Qa and Qb are nonempty 
and disjoint. Let A be OU[ui, v~] c~ Qa and let B be t3C[s~, t~] ~ Qb. It can be checked 
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that A is a single fragment of OU and that B is a single fragment of OC. Then, for 
u e OU[ui, vi] and t e ~3C[si, tl], link ab appears in g(u, t) exactly ifu e A and t e B. 

We first claim that at each level of recursion there are at most two nonleaf 
instances of the two-fragment problem for which both the source fragment 
intersects A and the target fragment intersects B. To see this suppose (u j, v j, sj, t j), 
j = 1,2, 3, are instances at the same level, ~U[uj, v~] m A -¢ ~ ,  OC[sj, ti] c~ B :/: ~ ,  
and us, u:, u 3 (and hence s 1, s2, s3) are in that counterclockwise order. Since these 
instances are all at the same level of recursion, v2 appears between u2 and u3 
(possibly vz = u3) and s2 appears between t~ and t2 (possibly s2 = tO. However, 
then v2 e A, s 2 e B, so the geodesic g(v2, s2) contains link ab. Recalling that the 
relative interior of ab does not tie in Qb and hence is disjoint from ?C[s 2, tz] ~_ B, 
we deduce that the right connector of (u 2, v 2, s z, t 2) contains the relative interior 
of ab. Since g(u2, tz) also contains ab, the relative interior of ab lies in the left 
connector of this instance as well. Hence s2 = t2 by Lemma 3.1.3 and (u2, v2, s2, t2) 
is a leaf instance. 

We now claim that at each level of recursion there are at most four instances 
of the two-fragment problem (leaf and nonleaf) with ab appearing as a left 
connector edge. Such an instance (u, v, s, t) must have u ~ A and t e B. This is 
only possible if, for its parent instance, the source fragment intersects A and 
the target fragment intersects B. As just argued there are only two such parent 
instances. [] 

Theorem 3.4.4. V* c~ ~U can be computed in time O((n + k) log(n + k)). 

Proof. Clearly, U can be triangulated in time O(n log n) [GJPT].  By Lemma 3.1.1, 
there are at most three two-fragment instances with the union of source fragments 
equal to c~U that can be identified in time O(n + k). We show that rgfs solves the 
two-fragment problem in total time O((n + k)log(n + k)) for each (top-level) 
instance, proving the theorem. 

Consider the work performed by rgfs for all instances at a particular level of 
recursion, ignoring recursive calls and the time required to partition walls as 
discussed in Section 3.3. It is linear in instance size which is the sum of the sizes 
of source and target fragments and the sizes of the side connectors. The total size 
of source and target fragments at a particular level of recursion is O(n + k), because 
source and target fragments are partitioned disjointly except for endpoints, and 
there are only O(n + k) possible endpoints. By Lemmas 3.4.2 and 3.4.3, the total 
size of all connectors at a particular level of recursion is also O(n + k). Hence the 
total work at a particular level of recursion, summed over all instances at the level, 
is O(n + k). 

The total depth of recursion is O(log(n + k)): at each step, except for partition 
steps, the size of a source fragment is split in half. At a partition step, the size of 
the source fragment increases to at most O(n + k), and a partition step happens 
at most once on a path in the recursion tree from topmost instance to leaf instance. 

The total work required for sorting partition points is O((n + k)log(n + k)), 
since there are only O(n + k) partition points. Hence the total work to solve a 
single top-level two-fragment instance is O((n + k) log(n + k)), []  
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Input: Triangulated polygon U, refined Voronoi diagram V* restricted to ?U. 
Output: V*. 
Data structures: 
L: a doubly linked circular list of refined Voronoi edges. 
Q: a priority queue of points of U, ordered by decreasing geodesic distance 
from c. 
procedure sweep 

Compute c, the center of C. 
Compute the shortest-path partition of U from c. 
Initialize L to be OU c--, I/*. 
Initialize Q to contain all pairwise intersections of refined Voronoi edges 
immediately adjacent in L and all anchors of the refined partition edges 
appearing in L. 
while Q 4: 

Extract from Q the point v of maximum geodesic distance from c. 
Delete from L all refined Voronoi edges with head v. 
Delete from Q any intersections and/or anchors involving just-deleted 
edges. 
if v is not an anchor then 

Insert into L the refined bisector edge e with tail v. 
Insert into Q any new intersections of e with adjacent refined Voronoi 
edges. 

end if 
end while 

end sweep 
Fig. 16. Procedure sweep. 

3.5. Computin9 V* 

V* is computed by the procedure sweep (Fig. 16), which is a "reverse geodesic 
sweeping algorithm"; it progresses from c~U toward c, the center of C. 

Theorem 3.5.1. Procedure sweep computes V*. It can be implemented to run in 
time O((n + k) log(n + k)) and space O(n + k). 

Proof For  positive real r, let Dc(r ) be the geodesic disk of radius r centered at 
c, i.e., the set of all points of U at geodesic distance at most r from c. We claim 
that the while loop maintains the invariant that L is exactly the refined Voronoi 
edges intersected by OOc(r ), in order around ODc(r). This follows from Lemma 2.9.2, 
using standard sweepline arguments [BO]. Hence procedure sweep computes V*. 

List L can be implemented simply as a circular doubly linked list, so each list 
operation takes constant time. Q can be implemented as a heap, so that each 
operation takes time O(log(n + k)). The geodesic center c of C can be computed 
in time O((n + k) log(n + k)) as follows. Pollack et al. [PSR] show how to compute 
the center of (the set of vertices of) a simple polygon; their algorithm extends easily 
to the case of a polygonal simply connected set. Since geodesics restricted to lie 
inside a relatively convex set with respect to U are identical to geodesics inside U, 
it suffices to compute the center of C = R(S) using this extended version of the 
algorithm of [PSR].  
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The shortest-path partition of U from c can be computed in time O(n) 
since U is triangulated [GHL+] .  Given the shortest-path partition from c, 
the geodesic distance from a point x ~ U to c can be computed in time O(log n), 
using a planar subdivision search algorithm to locate the shortest-path partition 
cell containing x such as that of[ST].  By Theorem 3.4.4, 0U c~ V* can be computed 
in time O((n + k)log(n + k)). Hence L and Q can be initialized in total time 
O((n + k)log(n + k)). 

Each iteration of the while loop uses a number of operations on Q and L 
proportional to the degree d,. of the current vertex v; each iteration also uses one 
geodesic-distance computation for each item inserted in Q. Hence each iteration 
takes time O(d v log(n + k)). Using Lemma 2.8.3, the total running time of the entire 
algorithm is O((n + k) tog(n + k)). Clearly, the space usage is O(n + k). []  
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