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Abstract. Let ~f~ be a family of compact convex sets in the plane. We show that if 
every three members of ~ admit a common line transversal, then there exist four 
lines which together meet all the members of .;f. 

1. Introduction 

Let ~" be a family of compact convex sets in the plane. We say that ~fr has 
property T(r) if every r or fewer members of ~ admit a line transversal, that is, 
a straight line which intersects these members (and possibly other members of 
as welt). We say that ~ has property T if there exists a line transversal for all the 
members of ~6. Such a line is also called a common 1-transversal, or a stabbing 
line for ~ .  

Over the years, considerable effort has been devoted to finding general condi- 
tions on the family Jg which assure that if o,U has property T(r), for some fixed 
integer r, then ~ has property T. Such a result, if true, is said to be of Helly-type. 
We mention two prominent examples below, one going back to 1940, the other 
one dating from 1989. (For historical comments and a survey of the literature on 
transversals up to 1963, the reader is referred to [2]. Transversal problems are by 
no means restricted to the plane. A wealth of more recent results is documented 
in a new report by Goodman et al. [5].) 

Our first example is a special case of a theorem of Santal6 [13]. It asserts that, 
for any family of rectangles in the plane with sides parallel to the coordinate axes, 
T(6) implies 7". This is best possible in the sense that T(6) cannot be replaced by 
T(5) and that the conclusion fails for more general families of convex sets. The 
higher-dimensional version of Santal6's result deals with line (resp. hyperplane) 
transversals for families of parallelotopes in R d. (For an extension in the latter 
case, see [8].) 
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Our second example is supplied by the recent proof--due to Tverberg [14J--of 
a long-standing conjecture of Griinbaum [7]. This conjecture (now a theorem) 
claimed that, for any family of pairwise disjoint translates of a given compact 
convex set in the plane, T(5) implies T. Again, simple examples show that the 
weaker assumption T(4) would not suffice for the conclusion and that neither the 
disjointness hypothesis nor the requirement that the members be translates of one 
another can be dropped. We point out that Griinbaum's conjecture is far more 
difficult to prove than Santal6's result and, for that matter, most results in this 
area. (Compare the discussion in Section 4 of [5].) The conjecture had been verified 
earlier for disks (hence ellipses) by Danzer [1] and for squares (hence parallelo- 
grams) by Griinbaum [7]. A weaker form of the conjecture which assumed T(128) 
instead of T(5) had been established by Katchalski [11]. 

The above examples only serve to confirm the general rule that rather stringent 
conditions on the shape and the mutual position of the sets in Je" must be imposed 
in order to obtain a HeUy-type transversal theorem. In this paper, therefore, we 
are concerned with transversal problems of a different nature (to be explained in 
a moment). We thereby continue our research on line transversals in the plane 
begun in [3] and [4]. 

As before, let ~ be a family of compact convex sets in the plane, and let n be 
a positive integer. We say that )ff has property T" if ~ can be partitioned into 
n or fewer subfamilies, each of which have a line transversal. In other words, jd 
has property T" if n lines in the plane whose union meets every member of ~ff 
can be found. Occasionally, we say that )ff can be "stabbed" by those lines. Notice 
that T 1 is the same as T. The idea here is to make the "stabbing number" n as 
small as possible while allowing the members of ~¢d to be quite general. This leads 
to a class of transversal problems called Gallai-type problems (see [2]-[5] and 
[12]). A variant has been considered by Wegner [15]. 

For each r > 3, the problem is to determine the smallest possible integer n such 
that, for any family of compact convex sets in the plane, T(r) implies T". It will 
be seen shortly that such an integer always exists but that its value is only 
interesting for r = 3 and r = 4. The problem was first studied by Hadwiger and 
Debrunner (see Proposition 26 of [10]) who dealt with the case r = 4. To be 
precise, these authors restricted their attention to families of positive homothets 
(resp. translates) of a given compact convex set K. They proved that T(4) implies 
T 4 for families of homothets of K, whereas it implies T ~ for families of translates 
of K. Later it turned out that even T 2 can be achieved and, moreover, the special 
assumptions on the shape of the sets can be dropped altogether. This shows 

T(4) ~ T 2. (1.1) 

Assertion (1.1) was proved by the author in 1969 (see [3] and [4]). As there 
are no Helly-type transversal theorems for general convex sets (i.e., T(r)4* T for 
r > 3), this settles the problem except for the case r = 3 which to this day is still 
open. A family of 14 convex sets having property T(3), but not T 2, is exhibited 
in [4]. It simplifies an earlier example of an infinite family with the same properties 
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described in [3]. Hence we have 

T(3) 4- T 2. (1.2) 

For some time, even the existence of a finite stabbing number for T(3) families 
was in doubt but in 1975 Kramer [12] was able to show that, in fact, T(3) implies 
T s. This result appeared in Kramer's doctoral dissertation (see also p. 257 of [6]) 
and has not been published elsewhere. Our goal in this paper is to improve on 
Kramer's upper bound (while employing his main ideas) by showing that 

r(3) ~ T 4. (1.3) 

In other words, we establish the following: 

Theorem. I f  a family of  compact convex sets in the plane is such that every three 
of its members admit a common line transversal, then the family can be stabbed by 
four lines. 

We do not know whether the stabbing number "four"  in this statement may 
be replaced by "three." 1 For additional remarks, see the final section of this paper. 

2. Preliminaries 

Before proceeding to the proof of our theorem, we need to establish some geometric 
terminology and describe certain reductions of the problem which will facilitate 
the ensuing discussion. 

In what follows, ~ff is always a family of compact convex sets in the plane, and 
n is a positive integer. The first reduction uses a compactness argument to show 
that it is sufficient to deal withfinite families Jd. 

I f  every finite subfamily of  ~ r has property T n, then so has Jd. (2.1) 

This was proved in a more general context in [3]. The proof is quite standard 
to anyone familiar with geometric transversals and is not given here. 

The second reduction allows us to work with convex sets which have a 
nonempty interior. Strictly speaking, this reduction is not essential for the proof 
but it saves us some extra considerations. For K a set in the plane and e a positive 
real number, let K(e) denote the Minkowski sum K + B~, where B~ is the closed 
disk of radius e centered at the origin. It is well known that if K is compact and 
convex, then K(~) is compact, convex, and smooth; in particular, K(e) has interior 
points. Set ~,Y~(e):= {K(e)[K ~ •}.  Then we have 

I f  ~ (e )  has property T ~ for every e > 0, then so has X .  (2.2) 

1 In the Proceedings of the Second Colloquium on Discrete Geometry, Salzburg (1980), pp. 45-49, 
we claimed to have proved that T(3) ~ T 3. Unfortunately, our proof was in error, 
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Fig. 1. The inner and outer common tangents of K and L. 

This is an easy consequence of assertion (2.1). Again, the proof is omitted. 
Our last reduction is almost trivial. It states that in proving the main theorem 

we may as well assume that v~ r contains pairs of disjoint sets. For, otherwise, 
would have property T. To see this, project the members of W orthogonally onto 
some fixed line. If every two members intersect, then the same is true of the 
resulting segments. Thus, by Helly's theorem on the line, there is a point common 
to all these segments and so the projecting line corresponding to this point is a 
stabbing line for ~rf. 

The following special terminology is used in this paper. Suppose K and L are 
two disjoint compact convex sets, both with interior points. There are exactly four 
lines in the plane which simultaneously support K and L (see Fig. 1), These lines 
are called the inner or outer common tangents of K and L, depending on whether 
they separate the sets or not. 2 The angle between the inner common tangents is 
denoted by a(K, L). To be precise, this is the interior angle of the closed double 
cone which contains K and L and is bounded by the inner tangents. This double 
cone is said to be associated with the pair {K, L}. The outer common tangents of 
K and L form two triangles (shaded in Fig. 1) with the inner common tangents. 
If these triangles are added to the double cone just mentioned, the resulting (closed) 
region is clearly the set of all points in the plane through which there passes a 
common line transversal of K and L. 

This observation leads at once to the following useful criterion. Suppose K, L, 
and M are three pairwise disjoint compact convex sets (not necessarily with interior 
points). If there exist three lines a, b, and c in the plane such that each of the sets 
is separated from the other two by one of these lines, while none of the lines 
intersects all three sets, then there is no line transversal for K, L, and M. 
(Incidentally, the converse is also true.) We refer to this condition by saying that 
K, L, and M are separated by a, b, and c. The lines must then be distinct but they 
are allowed to meet in a point. 

2 In this paper, separation by lines is always understood to be weak separation, 
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3. Proof of the Theorem 

We are now ready to prove our main result. 
Let o,ug be a family of compact convex sets in the plane, and suppose ~ has 

property T(3). We must show that ~ has property T 4. In view of the reductions 
described in the preceding section, we may assume that ~ is finite and that every 
member of ~ r  has a nonempty interior. Furthermore, we may assume that ~"  
contains at least one pair of disjoint sets. Among all such pairs choose one, say 
{Ko, Lo}, for which the interior angle a(K o, Lo) defined in Section 2 is minimal. 
These assumptions imply that cr(K o, Lo) > 0 and that any member  of #g which 
lies in the double cone associated with {Ko, Lo} meets both the inner common 
tangents of Ko and L o, In particular, no member of J~ff is contained in the interior 
of that cone. 

Denote the inner common tangents of K o and L o by b o and c o and their 
intersection point by A o. The complement of the double cone above consists of 
two opposite open cones Rx and R 2, say, bounded by bo and c o and separated 
by the common apex A o. Let Off1 and ~2  be the subfamilies of dug whose members 
lie entirely in R~ and R 2, respectively. Of course, X~ or J l  z may be empty. Each 
set in o,~f'\(:,~ffl w ,~("2) meets one of the lines b o and c o (or both). The following 
observation was already made by Kramer  [12]. 

Let g be a line throuyh A o. l f  9 separates two members of YY~, 
say, then g is a stabbing line for ~ .  

(3.1) 

Suppose this is not true. Then, without loss of generality, g separates two 
members KI  and Lt of o,~ffl and misses some member K2 of ~ z ,  where K o, Kt,  
and K z lie in one of the closed half-planes bounded by 9 and L o and L~ lie in the 
other (see Fig. 2). It  follows at once that K~, K 2, and L o are separated by bo, Co, 
and 9, even though it may happen that Lo touches ,q at the point Ao. This violates 
the hypothesis of a common line transversal for K~, K z, and L o, and so the 
assertion is proved. []  

RI 

) 
A0 

R2 

g 

Fig. 2. Two members K t and Lt of,~l separated by ,q. 
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Assume, for the moment, that every two members of XI admit a line transversal 
passing through Ao. Then ~1 has a stabbing line through Ao. To see this, map 
the sets in )f-~ onto a suitable line which cuts through the cone R~, using central 
projection with center A o. By Helly's theorem on that line, the resulting segments 
have a common point and so the line connecting that point to A 0 is the desired 
stabbing line for .,~t. If, in addition, every two members of ~:2 admit a line 
transversal through A o, then ~2  also has a stabbing line passing through A o. 
Consequently, each set in ~ meets bo or c o or one of the stabbing lines for ~1 
and )if2. This would conclude the proof of our theorem. 

For  the remainder of the proof it therefore suffices to assume that one of the 
families o~ff 1 and ~2  contains two members without a common transversal through 
A o. In fact, it is enough to require that there is some line through Ao which 
separates the two sets. Without loss of generality, suppose it separates two sets in 
g,. 

Let a o denote the outer common tangent of K o and L o which cuts through the 
cone R1, and let B 0 and Co be its intersection points with c o and b o, respectively. 
To simplify the following discussion, we assume that the ordered triple (A o, Bo, Co) 
is clockwise oriented and that Ko touches Co between the points A o and B o (see 
Fig. 3). This can always be achieved by relabeling the pairs b o, c o and K o, L0, if 
necessary. Denote the dosed triangle with vertices Ao, Bo, and Co by Ao. Every 
member of J : \ J ( 2  not contained in the interior of Ao meets one of the lines ao, 
b o, and c o. 

We now proceed as follows. We rotate the line Co clockwise around Ao until 
it is about to leave--for the first t ime--some member of :,~ffl. Let cb denote the 
rotated line at this point, and let K'  be such a member. Since J~f'~ is assumed to 
be nonempty, K' and c~ clearly exist. By construction, no member of o,~(~ lies in 
the open wedge formed by Co and c~ and contained in R r  This means that cb 

C1 

AI 

Fig. 3. The ordered triple (Ao, Bo, Co), 
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must separate K' from some member of ~ ;  otherwise, no two sets in ~'~ could 
be separated by a line through A o, contrary to the assumption on Jd t made earlier 
in the proof. Thus, by (3.1), c~ is a stabbing line for .X 2. With A~ denoting the 
dosed triangle formed by a o, b o, and c~, the four lines ao, bo, Co, and c~ clearly 
intersect all the members of X except those lying in the interior of Ab (if such 
members exist at all). 

We next apply a technique which was introduced by Kramer [12] and played 
a central role in this proof that T(3) implies T 5. (A brief description of Kramer's 
approach is given in Section 4.) Since our goal here is to improve on Kramer's 
result by replacing T 5 with T 4, we find it necessary to modify and at the same 
time extend his method. The general idea is to move the lines ao, b0, and c~ from 
their original position to a more tractable "extremal" position, making sure that 
the property stated in the last sentence of the preceding paragraph is preserved 
during the transition. 

To be specific, we rotate ao about B o and cL about A o, both in a clockwise 
direction, while translating bo toward Bo. We continue to do so as long as the 
equivalent of the above condition holds, that is as long as Co and the three moving 
lines intersect all the members of a'V except those lying in the interior of the triangle 
formed by the moving lines. For convenience, and only in the present context, the 
latter condition is called the "stabbing condition." 

Two cases can occur. 
In the first (and easy) case, the lines in question can be moved in such a way 

that the triangle formed by them degenerates, i.e., shrinks to a point, with the 
stabbing condition being satisfied all the time. Clearly, every member of ) t  ~ is then 
intersected by c o or one of the three versions of the moving lines passing through 
that point. Hence off can be stabbed by four lines, and we are done. 

In the contrary case, no matter how the three lines are moved, they will always 
reach a position in which a nondegenerate triangle is formed, the stabbing 
condition is satisfied but fails if any of the lines is moved any further. This case 
is more difficult to analyze and occupies us for the rest of the proof. 

Let al, bt, and c t be versions of the original lines a0, bo, and c~ which form a 
"limit triangle" as described above. (It may happen, of course, that a t = a o, 
bt = bo, or cl = cb.) Obviously, each of these lines must be "fixed" by some 
member of X~, or else we would be back to the first case. That  is to say, there 
exist sets Ka, Kb, and K~ in Jd such that a t, bt, and c t are tangent to Ks, Kb, 
and Kc, respectively, while after a (small) further rotation of at or ct or a further 
translation of b t, the contact is lost; moreover, each of the sets Ka, K b, and Kc 
misses c o and intersects only the line having the same label. 

It follows immediately that K c belongs to Jd t or to ~2  and that Ka and K o lie 
on different sides of Co. Indeed, if Ka and Ko were on the same side of Co, then 
Ka would have to intersect bo since otherwise the interior angle ~r(K~, Lo) would 
be smaller than a(Ko, Lo), a contradiction. Afortiori, K s would have to intersect 
b~; however, this is excluded by the choice of K~. 

Let A t denote the dosed triangle formed by al, bt, and c t, and let At, Bt, and 
Ct be its vertices, where the labeling is such that A t lies across from at, and so 
on. We claim that At does not contain any member of X in its interior. This 
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will conclude the proof, as is evident from the construction of A 1. So assume, 
contrary to the claimed result, that there do exist members of ~ which lie in the 
interior of At. Let Kt be such a member. We then consider the six unbounded 
(closed) polygonal regions in the plane generated by the arrangement of lines am, 
b t, and c~ (see Fig. 3). For  brevity, these regions are called pointed or blunt, 
depending on whether they intersect the triangle A t in a single vertex or a full 
side. Each of the sets Ko, K b, and Kc lies entirely in one of these regions but of 
course a given region may contain more than one of the sets. We now show that 
of all the combinatorially distinct ways of assigning the sets to the regions, none 
can actually occur. 

To this end, consider first K~. It is clear that K o cannot lie in the pointed region 
with vertex Bt. For, otherwise, sets K~, K t, and Ko would be separated by lines 
at, c~, and c o and so would not admit a line transversal. (Here and in similar cases 
below we invite the reader to make the necessary verifications.) This is impossible. 
On the other hand, K~ cannot lie in the pointed region with vertex C~ either 
because this would mean that a(K 1, Ka) < a(K o, Lo), contrary to the assumption 
that the latter angle is minimal. Since K a and Ko are separated by c o, we conclude 
that K~ is contained in the blunt region with vertices BI and C~. 

Next consider Kc. Recall that Kc is a member of )e'~ or o,~ 2. If Kc e .~], then, 
for the same reason as above, K~ cannot lie in the pointed region with vertex By 
Furthermore, it cannot lie in the pointed region with vertex A~ since in that case 
K~, K~, and L o would be separated by bo, cl and the line connecting A t and Co, 
again a contradiction. If, on the other hand, K c e J d  2, then Ko, Kt,  and K~ are 
separated by the concurrent lines b o, c o, and cl (compare the proof of (3.1) above). 
Hence K~ belongs to Jd 1 and must be included in the blunt region with vertices 
A t and Bp 

Finally, what can be said about Kb? On the one hand, K b cannot lie in the 
pointed region with vertex Ct. This follows exactly as in the case of Ka above. On 
the other hand, K b cannot lie in the pointed region with vertex A t either. Here 
the argument is a little different. Since K b is not intersected by c o we know that 
K b is either contained in the triangle formed by b~, ct, and c o, or is separated 
from that triangle by c o. In the first case, K b, K 1, and L o would have no common 
line transversal, by the same reasoning as was used above for K~. In the second 
case, Kb, Kc, and L 0 would fail to have a line transversal because they are separated 
by b~, c~, and co. Therefore, both cases cannot occur and we conclude that Kb is 
contained in the blunt region with vertices C1 and At. 

To summarize the above discussion, it is found that the sets K~, K b, and Kc 
lie one in each of the three blunt regions surrounding the triangle A~. By 
construction, none of the sets touches the two infinite rays on the boundary of its 
region. Hence K,,  Kb, and K¢ are separated by a t, b~, and cl and so do not admit 
a common line transversal. However, this is forbidden by the basic assumption 
that • has property T(3). It turns out, therefore, that the geometric situation 
described above cannot arise after all. That is, Kj does not exist; in other words, 
the triangle At does not contain any member of # / i n  its interior. This means that 
every member of .~/intersects aj, b~, cl, or c o, whence .;¢ can be stabbed by four 
lines. This completes the proof of our theorem. [3 
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4. Remarks 

1. We like to comment on the way in which the stabbing lines at, bs, and c s are 
constructed in the foregoing proof. The reader has certainly noticed that our 
definition of these lines is not symmetric, in the sense that as and c s result from 
a clockwise rotation of ao about B o and cb about A o, respectively, while b t is 
obtained by translating b o toward B o, Why cannot bs be a clockwise rotation of 
bo around Co? The reason is that we want the set K b which fixes b s to be included 
in the blunt region with vertices Cs and A t. Ifb s were obtained from b o by rotating 
the latter instead of translating it, then it could happen that K b and L o tie on 
different sides of b t. In that case, K b would be contained in the blunt region with 
vertices B t and C t and so Ka, K~, and K¢ would not be separated by a t, b 1, and 
c t any more. Hence the ensuing argument which leads to the nonexistence of K 1 
would break down. 

In principle, the same kind of problem could arise with the set K~ which fixes 
ai. However, here the situation is different, due to the fact that we chose c o to be 
one of the stabbing lines for .X. It was shown in the proof that the presence of 
Co forces Ka and K o to be separated by Co and thus prevents K a from lying in the 
blunt region with vertices A~ and Bt. 

This seems a good place to point out the main differences between Kramer's 
method (as demonstrated in [12]) and the approach taken in this paper. 

Kramer starts out with a pair {Ko, Lo} having smallest interior angle a(K o, Lo) 

and defines ao, b0, Co, Ao, B0, Co, J:s, and •2 just as we do here. He assumes, 
as he may, that there is some line through A o which separates two members of 
offt. He then goes on to show that o~ff t can be stabbed by three suitable lines as, 
bs, and c s. These lines are obtained in a symmetric fashion by rotating ao, bo, and 
Co clockwise about Bo, Co, and A o, respectively. Except for the fact that b o is 
rotated and not translated, the procedure is completely analogous to the one used 
in defining the corresponding lines in this paper. However, the necessary case 
analysis is much easier because all that has to be cared about is the sets in J:t.  
It follows that every member of J:\J~f2 intersects b o, Co, as, bl, or c s. 

The last step in Kramer's proof consists in rotating the line ct "backwards," 
i.e., counterclockwise around A o, until it is about to leave some member of f t  
for the first time. Such a member must exist. Let c'~ denote the rotated line at this 
point, where of course c'1 = ct is possible. As is readily seen, c'~ separates two 
members of ~ t  since otherwise no two members of ~1 could be separated by a 
line through Ao; the latter was excluded above. Hence by (3.1), c's is a line 
transversal for J:2. On the other hand, it is obvious that a t, bt, and c's still meet 
all the sets in ~f'l- Consequently, every member of ~ is intersected by one of the 
lines bo, Co , at , bt, and c~. This completes Kramer's reasoning. 

We gratefully acknowledge that without Kramer's pioneering work, this paper 
Would not have been written. 

2. As pointed out in the Introduction, the proof of our theorem (satisfying as it 
may be) leaves open the possibility that T(3) might imply not only T 4, but even 
T3. In fact, we believe that the latter is true although we cannot offer any 
SUpporting evidence for this except our inability to find a counterexample. 
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Part of the difficulty seems to lie in the fact that T(3) is a far weaker property 
than, say, T(4). To justify this statement, let us briefly recall (from [3] or [4]) how 
we proved that T(4) implies T 2. Consider a family ~f" of compact convex sets in 
the plane. A result of Hadwiger and Debrunner (see p. 62 of [10]) asserts that if 

satisfies T(4), then there are two directions in the plane such that any two 
members of ~'ff admit a line transversal in one or the other direction. More 
generally, let us say that ~ has property Din(r), with D representing direction, 
provided m directions in the plane can be found such that any r or fewer sets in 
~r" have a line transversal in one of these directions. (Transversal properties of 
this and a closely related type have been studied by Wegner [15].) Thus T(4) 
implies D2(2). In turn, D2(2) can be shown to be strong enough to imply T 2. 

It might be expected that similar (albeit weaker) conclusions can be established 
in the case when )ff has property T(3). For example, it is plausible that T(3) should 
imply D3(2 ). Since it is easily verified that properties T(3) and D3(2 ) combined 
imply T 3, this would settle the problem) Unfortunately, D3(2 ) is not in general a 
consequence of T(3). Wegner (personal communication) has constructed examples 
which show that T(3) does not even imply Din(2), no matter how large an m is 
chosen. For m = 3, Wegner's example is illustrated in Fig. 4. 

We must conclude, therefore, that the problem of finding the desired stabbing 
number cannot be tackled in the manner suggested by these (and similar) 
considerations. It seems safe to say that new tools and ideas are required to solve 
the problem. 

3. Gallai-type problems for line transversals in the plane can, of course, be 
studied in any sufficiently large "ground family" of compact convex sets. Apart 
from the family of all such sets considered in this paper, the most interesting and 
natural examples are supplied by the family of all (positive) homothets and the 
family of all translates of a given compact convex set K. As already mentioned, 
the stabbing numbers for these families were first investigated by Hadwiger and 
Debrunner [10]. 

Again, in view of (1.1) and the fact that there is no Helly-type transversal 
theorem for translates, the only unresolved problem in this context arises for r = 3. 
The following is known (see [4]): 

T(3) ~ T 4 

T(3) ~ T 2 

for families of homothets of K, 

for families of translates of K. 

Moreover, any family of translates of K satisfying T(3) can be stabbed by two 
parallel lines. Of course, the result for homothets is now superseded by the 
corresponding result for general convex sets, i.e., assertion (1.3). However, a direct 
proof is still of interest and, in fact, very easy. It proceeds as follows: 

Let ~ be a family of homothets of K having property T(3). It may be assumed 
that K has nonempty interior and that ~ is finite, hence contains a smallest 

3 Whether D3(2) alone is sufficient for T 3 is not known, it follows from a result of Gyfirf~s and 
Lehel [9] (see the note at the end of [15]) that D3(2) implies T 4. 
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Fig. 4. Wegner's example. 

homothet Ko, say. If every other member of ~ intersects Ko, then any two parallel 
supporting lines of K o suffice to stab ~ .  Otherwise, let L o be disjoint from K o 
and such that the interior angle a(Ko, Lo) defined in Section 2 is minimal. Then 
it is immediate that each set in ~f( intersects one of the four supporting lines of 
Ko which are laid out in the directions of the inner common tangents of K o and 
L0. Thus ~ satisfies T 4, as claimed. 

This straightforward argument is due to Wegner and was reported in [4]. It 
contrasts sharply with the rather complicated proof for general families of convex 
sets given in this paper. We believe that for any family of homothets of K, just as 
in the case of translates, T(3) implies T 2. 
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