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Abstract. Given n hyperplanes in E a, a (1/r)-cuttin9 is a collection of simplices with 
disjoint interiors, which together cover E d and such that the interior of each simplex 
intersects at most n/r hyperplanes. We present a deterministic algorithm for comput- 
ing a (1/r)-cutting of O(r d) size in O(nr a- 1) time. If we require the incidences between 
the hyperplanes and the simplices of the cutting to be provided, then the algorithm 
is optimal. Our method is based on a hierarchical construction of cuttings, which 
also provides a simple optimal data structure for locating a point in an arrangement 
of hyperplanes. We mention several other applications of our result, e.g., counting 
segment intersections, Hopcroft's line/point incidence problem, linear programming 
in fixed dimension. 

1. Introduction 

Let H be a set of n hyperplanes in E d. A (1/r)-cutting for H is a collection of 
(possibly unbounded) d-dimensional closed simplices with disjoint interiors, which 
together cover E d and such that the interior of each simplex intersects at most n/r 
hyperplanes [19]. Spurred by the works of Clarkson [8-1, [9] and Haussler and 
Welzl [17], cuttings have proven very successful in solving all kinds of geometric 
problems; see, e.g., [41, [8-1, [9-1, [11], [14], and [16,1. The reason for this success 
is that cuttings play a role analogous to separators in graph algorithms: they set 
the grounds for efficient divide-and-conquer schemes. Predictably, the cardinality 
of a cutting (which we call its size) is a critical parameter. A simple probabilistic 
argument shows that a size of O(r d log d r) is achievable. Actually, with a little more 
effort, the size can be reduced to O(rd), which is optimal [5,1. If, for each simplex 
of the cutting, we need to keep a list of all the hyperplanes crossing it (which often 
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is the case in practice), then ~(nr ~- t) can be easily shown to be a lower bound on 
the complexity of computing a (l/r)-cutting. While this bound can be easily 
attained using randomization [5], the search for an optimal deterministic algo- 
rithm has been more difficult. An efficient algorithm for computing O(r2)-size 
cuttings in two dimensions was given by Matou~ek [18] and then improved by 
Agarwal [1]. Chazelle and Friedman [5] showed that O(ra)-size cuttings are 
computable in polynomial time in any dimension d. Recently, Matou~ek [20], 
[21], [19] came close to putting the whole question to rest by exhibiting several 
efficient algorithms for computing (1/0-cuttings of size O(rd), provided that 
r < n 1 -~, for any fixed 6 > 0. We bridge this gap by relaxing the restriction on r. 
Specifically, we show how to compute a (1/r)-cutting for H of size O(r ~) in time 
O(nr a- 1), for any value of r < n. The running time is optimal if we require the lists 
of simplex/hyperplane incidences to be part of the output. If we do not, then a 
result of Matougek [21] shows how to compute a (1/r)-cutting in O(n log r) time, 
for any r <_ n 1/~2J- ~. Extending his result to all values of r remains open. 

Interestingly, our method provides a new, simpler proof of the existence of an 
O(r~)-size cutting. The reason why Matou~ek's bound does not extend to large 
values of r is that standard cuttings do not "compose" very well. Indeed, suppose 
that we attempt to refine a cutting by taking each simplex in turn and applying 
Matougek's algorithm to the set of hyperplanes intersecting its interior. This 
produces a (1/rZ)-cutting for H of size O(r2a). However, the big-oh notation conceals 
the fact that the constant in the original O(r d) space bound gets squared in the 
process. Because it is greater than one, further iteration of this composition process 
is risky. For example, it might lead to extra multiplicative factors of the form n ~ 
(for arbitrarily small fixed ~ > 0) in the running times of cutting-based algorithms, 
e.g., [4], [8], and [9]. 

One possible interpretation of this problem is that composing cuttings is a 
"nonstable" computing process. If the size of a cutting is cr d, for c > 1, then the 
factor c can be regarded as a multiplicative error term. The nonstable part of the 
composition process is that it amplifies the error. The remedy is to have the 
algorithm rely not so closely on the cutting of the previous generation but on 
some global quantity independent of the composition process itself, such as the 
number of vertices inside each simplex. Computing such quantities efficiently is 
hopeless, so we must devise a scheme for estimating them. Of course, this still 
means having to deal with errors, but those errors can be made to be additive 
and not multiplicative, which is good enough for our purposes. This leads to a 
kind of cutting which can be refined by composition. Besides providing a simpler, 
more efficient cutting construction method, our approach can be used to derive: 

1. A simple optimal algorithm for locating a point in an arrangement of n 
hyperplanes. The algorithm has O(log n) query time and requires O(ha) 
preprocessing time and space. This improves the preprocessing time of 
Chazelle and Friedman's solution [6]. (In fairness the solution in [6] also 
supports unidirectional ray-shooting, which this one does not.) If the query 
asks only whether a point lies on one of the hyperplanes, then the preprocess- 
ing can be reduced to O(nd/(log n) d- 1). 



Cutting Hyperplanes for Divide-and-Conquer 147 

2. A solution to Hopcroft's problem (i.e., detecting any incidence between n 
lines and n points) in O(n4/3(log n) 1/3) time and linear space, which slightly 
improves on the complexity of a solution by Agarwal [2]. (In a recent 
development following this result, Matou~ek [23] has further improved the 
time bound for the line/point incidence problem to O(n4/32°('°g*n)), by using 
a more complicated argument.) Our algorithm generalizes easily to higher 
dimensions. 

3. An algorithm for counting the number of intersections among n segments 
in O(n4/3(log n) I/3) time and linear space, which improves on the solutions 
of Guibas et al. [16] and Agarwal [2]. 

The theory of e-nets is used for two purposes in the cutting construction: one 
is to provide separation properties, and the other is to build efficient estimators. 
In the latter category we prove a lemma which says, roughly, that e-approxima- 
tions can be used efficiently to estimate how many vertices of a hyperplane 
arrangement lie inside a query simplex. Interestingly, e-nets are too weak to 
provide any kind of meaningful approximation for that quantity. In a different 
development, to be reported elsewhere, we have used the same vertex-count 
estimation lemma in the design of an optimal deterministic algorithm for comput- 
ing convex hulls in any fixed dimension [3]. Thus, we suspect that the lemma 
will have other useful applications in computational geometry. 

We introduce our notation and prove the vertex-count estimation temma in 
Section 2. Then we turn to the cutting construction proper in Section 3, and 
conclude with applications in Section 4. We also include a result which, although 
unrelated to cuttings, illustrates some of the same ideas: this is a straightforward 
linear-time algorithm for linear programming with a fixed number of variables, 
which greatly simplifies the methods of [7], [12], and [24]. This result, which was 
obtained independently by Matou~ek [22], is derived by direct derandomization 
of a probabilistic algorithm of Clarkson [10]. 

2. The Vertex-Count Estimator 

Let H be a collection of n hyperplanes in E d. For simplicity, we assume that the 
set H is in general position. Given a polytope (or a fiat) P of any dimension 
between 1 and d, let HIp be the set of hyperplanes of H that intersect the relative 
interior of P but do not contain P. We denote by v(H; P) the number of vertices 
in the portion of the arrangement of H in the relative interior of P. If P is of 
dimension k < d, the k-dimensional arrangement formed by H over the affine hull 
of p is understood. So, in particular, if P is a line segment, v(H; P) = IHle 1. 

The next definition is adapted from [28]. We say that a subset R of H is a 
(1/r)'approximation for H if, for any line segment e, the densities in R and H of 
the hyperplanes crossing e differ by less than 1/r, or, formally, 

b I 1 Inlel IRjel < - .  

IHI IRI r 
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We show that, given any simplex s, a (1/r)-approximation can be used as an 
accurate estimator for v(H; s). This is because the densities of the vertices formed 
by H and R that fall inside s differ by less than 1/r. The following lemma can be 
interpreted as generalizing the characteristic property of a (1/r)-approximation. 

Lemma 2.1 (Vertex-Count Estimation). Let R be a (1/r)-approximation for a finite 
set H of hyperplanes in E d. For any d-dimensional simplex s, we have 

I v(H; s) ~R;s) 1 

Inl a IRt a <-'r 

Proof. Let F be a k-flat equal to E a if k = d, or else formed as a (d - k)-wise 
intersection of hyperplanes in R. We prove by induction that, for k = 1 . . . . .  d, 

v(Hiv; s c~ F) v(Rle; s c~ F) ] 1 
(fill i I R I k < - (2.1) 

The lemma follows by setting k = d. The case k = I follows directly from the defini- 
tion of a (1/r)-approximation, so assume that k > 1. Let F~ (1 < i < IR] - d + k) 
be the intersection of F with a hyperplane of R (not containing F), and let Lj, for 

l <_ j <_ ( l H l k / l +  k ), 

be the line obtained by intersecting F with a (k - 1)-wise intersection of hyper- 
planes in H (not including those containing F). Since 

v(HtL~; s ~ L~) = kv(Hlv;  s n F) 
J 

and 

v~RIL,; s c~ Li) = ~ v(Hiv,; s c~ Fi), 
j i 

summing together the inequalities obtained from the fact that R is a (1/r)- 
approximation, 

] v(HILj; s c~ Li) v(RILj; s c~ Lg) I 1 

In[ IRt r 

yields 

[ kv(Hl~;snF) l Fl) (]H[k- / k)  
IHI IRI ~ v(Htr'; s n  < 1 + • 
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By induction, we know from (2.1) that 

l v(Htr,; s c~ Fi) v(Rle,; s n Fi) I 1 
[--H-~ --:~ IRI k-1 < -'r 

and therefore 

I kv(HiF; s n F) 1 s n Fi) 
- IHI k IRI k ~i v(RIF'; < 

I R I - d + k  

rlRI + rlnlk-1 

Since 

v(Rir,; s n Fi) = k v (R iF;  s n F),  
i 

we finally derive 

i ~  IRI k < rklRl + rklHI k-~ < ~ < -'r 

which establishes (2.1). [] 

It is useful to restate the lemma in a slightly more general form. Consider a 
simplex s of any dimension j ~ d and assume that s is not contained in any h ~ H. 
I f j  < d, then the cross-sections of the hyperplanes of R by the affine hull F of s 
form a (1/r)-approximation for the j-dimensional arrangement in F induced by H. 
Note that by our general position assumption, at most d hyperplanes of H can 
contain s, and, therefore, what we just said remains basically true (modulo a 
lower-order term). 

Corollary 2.2. Let H be a set of  n hyperplanes in E d for  which we have available 
a (1/r)-approximation for H of size r °(1). Given an arbitrary simplex s of  dimension 
j <_ d, let ~I(H, s) denote the j-dimensional arrangement induced by H over the affine 
hull of s. Then the number of vertices of az[(H, s) within the relative interior ors can 
be estimated in time r °(t) with an absolute error less than ~/r. 

3. Refining Cuttings by Composition 

The main idea here is to use a finer measure for the effectiveness of a cutting. The 
intuition is that in the composition process second-generation cuttings are only 
useful within the confines of the (first-generation) simplices for which they are 
defined. Thus, similarly to what Agarwal did in his construction of two-dimen- 
sional cuttings [1], we wish to keep their sizes in line with the complexity of the 
(partial) arrangements inside the first-generation simplices. What makes our task 



150 B. Chazelle 

harder is that in higher dimensions none of the clever geometric tricks used in [1] 
work any more, and completely general techniques must be developed. 

Once again, we assume that the set H of n hyperplanes in E d is in general 
position. This can be relaxed without difficulty by using the perturbation techni- 
ques of [15] and [29]. A subset R of H is called a (1/r)-net for H if, for any line 
segment e, the inequality IHLe I > n/r implies that IRlel > 0. A (1/0-net plays the 
same intersection detection role as a (1/r)-approximation, but it is not nearly as 
powerful: in particular, it cannot be used as a vertex-count estimator. A beautiful 
result of Matou~ek [20] says that, if r is a constant, it is possible to compute a 
(I/0-approximation as well as a (1/r)-net in linear time. 

We need to strengthen the notion of a (l/r)-net a little by requiring that the 
facial complexity of the portion of the arrangement that it forms within a given 
d-dimensional simplex s is not too large. We say that a (1/r)-net R is sparse for s if 

v(R; s) _ 4( IRI~  a <  
v(1 ; s)  " 

Lemma 3.1 [20]. Given a collection H of n hyperplanes in E a, it is possible to 
compute a (1/r)-approximation for H of  size O(r 2 log r) in time nr °~1). 

Lemma 3,2. Given a collection H of n hyperplanes in E d and a d.dimensional 
simplex s, it is possible to compute a (1/r)-net sparse for s of size O(r log n) in time 
polynomial in n. 

Proof. The lemma is not as strong as it could be, but it is easier to prove that 
way and still powerful enough for our purposes. To begin with, we show that a 
random sample R of size p = min{l-(2d + 1)r log n-I, n} constitutes a (1/r)-net 
sparse for s with nonzero probability.1 We can obviously assume that p < n. The 
expected value E[v(R; s)] is 

n - d n ( n )  V(H; s), 

therefore, by Markov's inequality, 

Prob[v(R; s) > 4 n v(H; s) < ~4(p/n)%(H; s) <- 1/4. 

Next, pick a point inside each ceU of the arrangement formed by H and let S be 
the set of all segments connecting pairs of these points. It suffices to ensure that, 
for each e e S, I H t e [ > n/r implies [Rtet > 0. The probability pe of e failing that test is 

( n - - / l e [ ) / ( : )  < ( 1 -  !)P < e_a/r 1 
< n2a+~.. 

All logarithms are to the base 2. 



Cutting Hyperplanes for Divide-and-Conquer 151 

Since the number of segments in S is O(n2d), for n large enough, we 
~e~s P~ < 1/4, and, therefore, 

Prob[r~R; s) > 4  n v(H;s) + ~,, p~< 1/2. 
e ~ S  

have 

It follows that a random R is a (l/r)-net sparse for s with probability greater than 
1/2. 

To convert this existence proof into a polynomial-time algorithm, we use 
Raghavan's and Spencer's method of conditional probabilities [25], [27] (see also 
[5] and [20] for previous applications of the method to cuttings). We pick sample 
elements one at a time, always making sure that the sample can be completed into 
a (1/r)-net sparse for s. Let R' be a partial pick; the next sample element h is chosen 
in H\R'  so as to minimize the value of 

E[L#R; s)IR' u {h}] 
+ ~(pelR '  u {h}), 

4(p/n)~v(H; s) ~s  

where the expectation of v(R; s) and the probabilities p~ are conditioned upon 
including R' w {h} as part of the sample. 

Each conditional probability Pe can be expressed by means of binomial 
coefficients and thus can be computed effectively. Note that as in [5] and [20] we 
can limit the size of the arithmetic operations by rounding off the calculations 
appropriately, as long as the final absolute error is less than ½. Because the 
conditional probability that a given vertex is to be eventually created by R depends 
solely on how many of its defining hyperplanes have already been selected, it is 
equally easy to evaluate the conditional expectations of v(R, s) in polynomial time. 
When R' reaches size p, all the conditions for a sparse (1/r)-net are met and we 
can set R = R'. []  

We use the two previous lemmas to compute a (l/r)-cutting for H of size O(r~). 
Because a (1/r)-cutting is also a (l/r')-cutting for any r' < r, we can assume that r 
exceeds some appropriate constant to. For k = 0 . . . . .  I-log,0 r'], we compute a 
(1/rko)-Cutting Ck for H by successive refinement. The last Ck is a (1/r)-cutting for H. 

For k = 0, we simply view E d as one unbounded simplex, which forms C o. For 
k > 0, we refine Ck-i into Ck by cutting up its simplices into small pieces one by 
one. Let s be a simplex of Ck- 1 ; we assume that Hls is explicitly available for each 
s. We apply the following procedure for each s. If IHls I _< n/r k, then s stands as 
such. Otherwise, calling on Lemmas 3.1 and 3.2, we compute first a (1/2dpo)- 
approximation A for His and then a (1/2dpo)-net R for A that is sparse for s, where 

Po = - - [ H I l l .  
n 

We can ensure that I AI = O(p2o log Po) and I R] = O(po log Po). Finally, we compute 
the arrangement formed by R and the d + l hyperplanes bounding s and form its 
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canonical triangulation [5], [9]: this is obtained by first triangulating recursively 
the ( d -  1)-dimensional cross-section of the arrangement made by each hyper- 
plane, and then, for each cell of the arrangement, lifting all the k-simplices on its 
boundary (k = 0 . . . . .  d -  2) toward a chosen vertex (except for the simplices 
partitioning the faces incident upon the vertex in question). The set of d- 
dimensional simplices inside s constitutes the contribution of that simplex to Ck. 
We repeat the procedure for each s in Ck- ~. 

To see that Ck is, indeed, a (1/~o)-Cutting is immediate. It suffices to show that 
the interior of none of the new simplices s o created within s intersects more than 
n/r' o = IHl~l/po hyperplanes of His. First, observe that no segment e in the interior 
of s o can intersect more than IHl~l/(dpo) hyperplanes. Indeed, if that were to be 
the case, then e would intersect more than 

({Hl=l/dpo)IAl IAl IA[ 
= 

! HI, [ 2dpo 2dpo 

hyperplanes of A, and, hence, at least one hyperplane of R, which is impossible. 
Now, any vertex of So is defined by d hyperplanes of H (not necessarily bounding 
So) that avoid the interior of So. Therefore, by general position, any hyperplane of 
H meeting the interior of s o must avoid its vertices, and, hence, must meet one of 
d line segments in the interior of So infinitesimally close to, say, the d edges incident 
upon a given vertex of s o. This implies that at most d x IHisl/(dpo)= n/rko 
hyperplanes can meet the interior of So and therefore that Ck is a (l/rk)-cutting. 

To estimate the size of Ck is more subtle. We can check that Po < ro, and, 
therefore, [Ckl = O(iCk-tl(ro log ro)a), but this upper bound is too crude to do us 
any good. We can approximate v(H; s) fairly accurately on the basis of v(A; s) 
alone (Lemma 2.t). This, in turn, yields an upper bound on v(R; s), and, hence, on 
ICkl. We have 

I v(Hi,; s) v(A;s) I 1 
IHI~I d IAI d <--'2dpo 

and, because of the sparsity of R, 

v(R;s)_4(lRl~a 
v(A; s) \ t  A t/ 

This implies 

4 / IRI \a 21Rla (3.1) 

We are now in a position to show that the size of the last Ck is O(r d) and that 
it can be found in O(nr a- t) time. We need to derive an upper bound on the number 
of simplices that s e  Ck-t  can contribute to Ck. Consider the portion of the 
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arrangement of R within s. Every face is incident upon at least one vertex in the 
interior of s or on the boundary of s. Since, prior to triangulation, no vertex is 
incident upon more than a constant number of faces, the facial complexity of the 
portion of the arrangement of R within s is O(v(R;s)+ IRId-t). Note that 
triangulating the portion multiplies the facial complexity by at most a constant 
factor. It follows from (3.1) that the triangulation of s consists of a number of 
simplices at most proportional to 

(p  ologpo~d H . s) + p~-l(log po) d. 
(Po log po) d- '  + ~ IHlsl J ~ '~' 

Since Po -< ro we have 

P0 log P0 r k log Po ~ log r 0 

Intsl n n 

Now, because 

~, v(His;s)<-(n) 

we find that, for some constant c > 0 (independent of ro) and k > 0, 

(~0 log ro)an a c~- 1(log i I. ICkl ~ c + ro)dlCk_ 
n 

Since lCol = 1, we easily prove by induction that if r o is a large enough constant, 
ICkl < r~ ÷l)a. This implies that the last Ck is of size O(r~), as desired. 

What is the time needed to compute all the Ck'S? By virtue of Lemmas 3.1 and 
3.2, for each s it takes O([H,~l) time to compute A and constant time to get R and 
triangulate its clipped arrangement. The set of crossing hyperplanes is also 
obtained within the same amount of time, since R has constant size. Consequently, 
every time a simplex is created, in order to pay for its subsequent refinement, we 
should charge it a cost proportional to the number of hyperplanes intersecting its 
interior. The running time is therefore on the order of 

_--i tCkl </'lrko ( d - 1 ) + d  = O(nra-1), 
o < k ~ flo~orq\ro/ 

which completes the proof. We have thus achieved our goal. 
Note that the proof would not work if the facial complexity along the boundary 

of s was, say, on the order of p~, or if the size of R was a little bigger, e.g., p2. 
The latter is the reason why we could not use e-approximations directly but had 
to resort to sparse e-nets. 
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Theorem 3.3. Given a collection H of n hyperplanes in Ed,for any r < n it is possible 
to compute a (1/r)-cutting for H of size O(r a) in time O(nr ~- 1). 

4. Applications of the Cutting Construction 

One of the most interesting features of Theorem 3.3 is that it is achieved by refining 
cuttings of constant size. This allows us to simplify many of the applications for 
which cuttings have been used, and also improve their space and time complexity. 
All these applications are very similar in spirit. We use cuttings to break up a 
problem into a well-balanced set of subproblems, which we solve recursively. Since 
the cuttings have constant size, breaking up the problems is particularly easy. 
Moreover, by evaluating the recursion tree in a depth-first search manner, we can 
keep the storage linear. Also, by stopping the recursion shortly before it bottoms 
out, and then finishing the work naively, we can produce small additional savings. 
Many applications of cuttings have been given in the literature. Because most of 
them bear a certain family resemblance, we discuss only four fairly representative 
cases and briefly sketch their solutions. 

4.1. Point Location 

This is not an application per se. It is the mere observation that the hierarchical 
sequence of cuttings Ck is by itself a data structure for point location. The problem 
is to preprocess a collection H of n hyperplanes in E d so that given a query point 
finding any cell of the arrangement of H whose closure contains the point can be 
done efficiently. Set r = n in the construction. By tracing the query point from cell 
to celt across C o, C1, C2, etc., we eventually land in a simplex entirely contained 
in a cell. This simplex belongs to the last cutting. All we need to ensure is that 
the simplex in question is labeled with the name of the cell containing it. This is 
easy to do in O(n d) preprocessing and is left as an exercise. The storage requirement 
is O(n ~) and the query time is O(log n). This solution is much simpler than the one 
given in [6] and the preprocessing is faster. (In fairness the solution in [6] also 
supports unidirectional ray-shooting, which this one does not.) 

Theorem 4.1. Given a collection H of n hyperplanes in E d, we can preprocess it for 
point location in O(n d) time and space, so that any point can be located in O(log n) 
time. 

Note that by setting r = n/log n and pursuing the search naively at the bottom 
of the hierarchy, we can still detect whether a query point lies on any of the input 
hyperplanes in O(log n) time. This reduces the preprocessing to O(nd/(log n) d- 1). 

Theorem 4.2. Given a collection H of n hyperplanes in E d, we can preprocess it in 
O(na/(log n) d- ~) time and space, so that given a query point, whether it lies on at 
least one of  the hyperplanes can be determined in O(log n) time. 
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4.2. Hopcroft's Problem 

The problem is to decide whether, among n lines and n points in the plane, at 
least one of the lines passes through at least one point. An earlier randomized 
expected complexity bound for this problem given by Edelsbrunner et al. [14] 
was later improved and made deterministic by Agarwal [2]. His solution requires 
O(n4/3(log n) l'7s) time. Our algorithm is also deterministic and further improves 
the time to O(n4/30og n)~/3). It also generalizes to any dimension d, where the 
problem is to detect incidence between n hyperplanes and n points. (We can also 
tailor the solution to the case of n hyperplanes and m ~ n points, and allow the 
explicit reporting of all incidences.) Our improvement is due to a combination of 
two factors: using optimal cuttings and replacing standard point location by the 
improved incidence detection method of Theorem 4.2. 

Theorem 4.3. Detecting any incidence between n hyperplanes and n points in 
d-space can be done deterministically in O(n 2d/{d+ 1)(log n) l/ta+l)) time and linear 
space. 

Proof In O(nr n- x + n log n) time we compute a (1/r)-cutting for the hyperplanes 
(for some chosen r) by applying the cutting refinement method, and we use the 
associated point-location structure to locate all the n points in their enclosing 
simplices. If any incidence can be discovered at this time, we stop. Else, we break 
up the subset of points within each simplex into groups of size roughly n/r d or 
less. Next, we apply the dual version of Theorem 4.2 to each group and we query 
each group with respect to each hyperplane cutting its enclosing simplex. The total 
number of queries is O(nr d- x). Setting r d2- 1 = n e- t/(log n)d gives a running time 
of O(nr d- 1 log n + ndr d-d2/(log n) d- 1), which is O(n 2e/td+ 1)(log n) 1/td+ 1~). To make 
the storage requirement linear, we refine cuttings in a depth-first search fashion. 
Aside from the storage for the input, the space requirement is dominated by the 
storage of a single point-location structure, which is easily seen to be O(n). [] 

Remark. In a recent development following this result, Matou~ek [23] has 
further improved the time bound for the line/point incidence problem to 
O(n4/32°t~°g*"~), by using a more complicated argument. 

4.3. Counting Segment Intersections 

Given n line segments in the plane, we wish to count how many pairwise 
intersections they form. A randomized algorithm by Guibas et al. [16] solves the 
problem in O(n 4/3+~) expected time, for any e > 0, and linear space. Agarwal 
[2] found a deterministic solution requiring O(n 4/3 log 1'7s n) time and using 
O(n¢/a/log2"S6 n) space. We slightly improve upon it. 

Theorem 4.4. The number of intersections among n segments in the plane can be 
determined in O(n4/a(log n) l/a) time and linear space. 
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Proof. The algorithm is similar to Agarwal's. We begin with a special case of the 
problem, where n segments intersect a triangle A and m of them have at least one 
endpoint in A: how many intersections fall inside A? The intersections among long 
segments, i.e., those crossing A through and through, can be counted in O(n log n) 
time [2]. The number of intersections between long segments and short (i.e., 
nonlong) ones can be found by dualizing the problem and counting the number 
of point/double wedge inclusions. More precisely, we are given a line arrangement 
formed by m double wedges, and, for each point obtained as the dual of the line 
supporting a long segment, we must count how many double wedges enclose it. 
By going back to the same idea used in the proof of Theorem 4.2, we construct 
a cutting of O(m2/log 2 m) triangles, each of which is crossed by at most log m lines 
bounding double wedges. In O(m2/log m) time, we can find all these triangles, and, 
for each of them, 

(i) set up a list of the double wedges partially overlapping it, and 
(ii) count how many double wedges completely enclose the triangle (using the 

hierarchy of cuttings). 

In this way we can compute the short-long count in O(n log m) time. To 
count short-short intersections we apply, say, Agarwars method, which 
takes O(m4/~Oogm)l"78) time. To summarize, the entire computation takes 
O(n log n + m2/log m) time and space. We can improve on it by partitioning the 

triangle A into Fm/(x/~ log n)] subtriangles, each containing at most 2v/n log n 
endpoints, and solving the problem separately in each subtriangle. This gives 

a solution requiring O(n log n + mv/-n ) time and O(m + n log n) space. 
To solve our original problem, we specialize the setting used in the proof of 

Theorem 4.3 to the case d = 2. In O(nr + n log n) time we compute a (1/r)-cutting 
for the lines supporting the segments (for some chosen r) and we use its associated 
point-location structure to locate all the 2n segment endpoints in their enclosing 
triangles. Next, we compute the intersection counts within each of the O(r 2) 
triangles. The total running time is 

where the mi's sum up to 2n. Setting r = nl/3/(log n) 2/3 gives a running time of 
O(n4/3(log n)l/a). Again, we can use depth-first search to keep the storage linear. 
Not too surprisingly, this is the same complexity as for our solution to Hopcroft's 
problem in two dimensions. [] 

4.4. Linear Programming 

We look at the problem of optimizing a linear function over a set of n linear 
constraints in d-space. A remarkable result of Megiddo [24-] states that if d is a 
constant, then the problem can be solved in linear time. The dependency on d is 
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rather steep, however. From doubly exponential, Clarkson [7] and Dyer [12] 
independently reduced this dependency to a multiplicative factor of roughly 3 e~. 
Still smaller dependencies can be achieved by allowing randomization [10], [26]. 
Unlike its deterministic counterparts, the probabilistic algorithm of Clarkson [10] 
is extremely simple. As it turns out, a straightforward variant of it can be 
immediately derandomized by using Matou~ek's algorithm for computing con- 
stant-size e-nets. (Note that we do not even need to use cuttings here.) This leads 
to a remarkably simple linear-time deterministic algorithm for linear programming 
when the dimension is fixed. (Matou~ek [22] has derived a similar linear pro- 
gramming algorithm independently.) 

We assume that the reader is familiar with Clarkson's algorithm. As explained 
in [10] we can assume that the system is feasible. Our variant is only a slight 
modification of it, so we only give a rough sketch. We take a random sample R 
of the constraints and solve the problem directly (say, by using the simplex 
method). If the answer satisfies all the constraints, then we are done. Else, we can 
easily argue that the set Vl of unsatisfied constraints contains at least one of the 
constraints defining the desired answer x*. At this point, Clarkson resamples, but 
we do not really need to do that in our case. We simply solve the problem 
recursively on R w Vt. Again, if no constraints get in the way of the answer, we 
are done. Otherwise, we argue that the new set V2 of unsatisfied constraints must 
now contain another constraint defining x* (different from the previous one). So, 
again we solve the problem recursively on R w V 1 w V 2, and we iterate in this 
fashion. After d stages the set of unsatisfied constraints V~, if nonempty, must be 
such that R w V1 w .." w Vd contains all the constraints defining x*, so one final 
recursive call will produce the solution. 

The two differences from Clarkson's algorithm are: 

(i) we begin with a sample of constant size, and 
(ii) we do not resample at every stage. 

If, instead of a random sample, we use a constant-size e-net for the range space 
induced by the action of line segments on hyperplanes, we have the property that 
no I V~l exceeds n/c,  for some arbitrarily large constant c. Thus, the running time 
T(n) of the deterministic algorithm follows a recurrence of the form T(n)  = O(1), 
for n = O(1), and 

where b is a constant dependent on c. Setting c large enough gives T(n)  = O(n). 
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