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Abstract. It is proved that for n >_>_ 2 the Euclidean ball B, can be approximated up 
to e (in the Hausdorff distance) by a zonotope having N summands of equal length 
with N <_ c(nXe- 2 l log e I) ("- 1)/(, + 2). 

1. Introduction 

A zonotope in R" is defined to be the Minkowski  sum of segments I t in R": 

j = l  j = l  

We deal here with the problem of  approximat ing the Euclidean ball B, by 
zonotopes with as few as possible summands  N. In [ B L M ]  it was proved that if 
a zonotope Z has a Hausdorff  distance _< e from B,, then the number  N appear ing 
in (1.1) has to satisfy 

N > c 1 (n)e- 2(n - l ) / (n  + 2) ( t . 2 )  

On the other hand,  it was proved in [BL]  that  there is a zono tope  approximat ing 
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Editors' note on the first page of the preceding paper.] 
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B, to within e in the Hausdorff metric with N satisfying 

N = [cz(nXe- 21log et)~"- 1)/~. + 2)3. (1.3) 

Thus up to a possible logarithmic factor (1.2) gives the best result. 
In the paper IBM] where the same problem is also considered it was asked 

what can be said of N if we require that the segments appearing in (1.1) all have 
the same length. In [W] the late G. Wagner showed that if n < 6, then with the 
same estimate on N as that given in (1.3) B, can be approximated up to ~ by a 
zonotope having N summands of equal length. Wagner based his proof on a 
formula for numeric integration with constant weights which he proved in an 
earlier paper (the close relation between the topic of numerical integration with 
equal weights and approximation by zonotopes with summands of the same length 
will become clear below). 

Our aim here is to show that Wagner's result is true without the restriction 
n < 6. In other words, we prove here the following: 

T h e o r e m .  For every n, there is a constant c2(n ) so that the Euclidean ball can be 
approximated up to e > 0 in the Hausdorff metric by a zonotope having N summands, 
all of the same length with N satisfying (1.3). 

Our proof differs from that of Wagner (for n < 6). It is an adaptation of the 
method we used in [BL]. In the rest of this introduction we review the approach 
in [BL] and point out the place where the argument here has to differ from that 
of [BL]. Details of the proof of the theorem are given in Section 2. The most 
technical part of the proof (the proof of Lemma 4) deals with a topic very close 
to numerical integration with equal weights of functions defined on an arc. The 
proof of this part is given in Section 3. It should be pointed out that the proofs 
given in Sections 2 and 3 are self-contained and can be read without reference to 
[BL] or [W]. 

We first give the analytic expression for approximation by zonotopes. A 
zonotope with N summands can approximate B. up to ~ if and only if there are 

N S . - 1  ~ N {z j}i= 1 on the sphere and positive scalars { ~}j= ~ so that 

j=X 

x ~ S"- 1. (1.4) 

The length of the segment I~ is 2ctj. Instead of (t.4) it is more convenient to deal 
with a similar expression with 1 replaced by 

fl" = fs,- ,  ]<x, Y>I dl.t(Y), (t .5) 

where kt is the normalized rotation invariant measure on S"-x (the passage from 
1 to ft, has effect only on the value of the constants cl(n) and c2(n) in (1.2) and 
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(1.3) which are of no interest to us here). The question of approximating B, by 
zonotopes with sides of equal length thus becomes the question of finding N and 
{zj}~Y=l on S"-1 so that 

N -t  ~ ](x, z j ) l - f l , , ]<e,  xES "-1 (1.6) 
j = l  

Let us now explain our approach in [BL]. Let N be given by (1.3). We partition 
N S n- 1 into N parts ~Q.i}j= 1 all having the same/~ measure and having a diameter 

of the order of magnitude r /=  N-l/(n-1). On each such Qj we consider the set 
Y.j of probability measures on Qj so that t r eZ j  has the form x-'n+2 /_,i= 1 ,li(~)(~,,(o), 
yi((r) e Qj (i.e., the support of a consists of at most n + 2 points), and so that the 
barycenter of (r agrees with that of N#1Q. By using Caratheodory's theorem (in 
R n+l) and the separation theorem it is not hard to show that Y.j is rich enough 
to contain in the weak* closure of its convex hull the measure N/tIQ ' (the w* 
topology on measures is the one induced by continuous functions on Q j). Since 
Zj is w*-compact it follows from the Krein-Milman theorem that there is a 
probability measure vj on Y.j so that 

NI~IO., = fz, tr dvj(tr), I < j < N .  

By choosing on each Qj a measure aj in z j  according to the distribution v j, doing 
it independently in each j, and using a standard inequality from probability theory 
(Lemma 3 below) it follows that, with a positive probability, 

N -1 N n + 2  I ~, ~ 2i(%)l(x, yi(%))l--fl,, <e, x e S  "-1. (1.7) 
j = l  i = 1  

The fact that N is replaced by N(n + 2) does of course not matter in view of the 
form of (1.3). The reason that (1.7) is not of the desired form (1.6) is because of 
the presence of the weights 2,.(a j). They enter via the use made of Caratheodory's 
theorem. A point in the convex hull of a set A in R "+~ can be expressed as a 
convex combination of n + 2 points out of A but of course in general not as an 
arithmetic mean of such n + 2 points. 

This difficulty is overcome below by proving (using a lemma on numerical 
integration with equal weights) that, if Q is a "nice" subset of S"- 1, the normalized 
surface measure/]  on Q is in the weak* closed convex hull of arithmetic means 
of L(n) dirac measures which (i.e., the arithmetic means) have the same centroid 
as/~. Moreover, S"-1 may be partitioned into subsets so that the large majority 
of them are "nice" in the sense above. 

Let us point out that this proof strongly depends on the specific geometric 
structure of S ~-1. It does not generalize in an obvious way to the setting of 
approximating other zonoids (=  Hausdorff limits of zonotopes) by zontopes with 
a small number of summands of equal length. This is in contrast to the argument 
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in [BL], where general zonoids were treated, or to the arguments in Wagner's 
paper [W] which, as stated there, apply also to zonoids sufficiently close to balls. 

2. Proof  of  the Theorem 

The proof of the theorem is based on three lemmas. The first lemma is geometric 
in nature and for its formulation we need the notion of a good spherical 
parallelopiped (GSP in short) in S "- ~. We introduce in the usual manner spherical 
coordinates in S"- ~" 

- n N O l < n , - ~ N O z N ~  . . . . .  2 N 0 . _ ~ N 2  

A GSP set in S"- 1 is a set of all the points so that 01 e [~1, fl~] for some el < fll 
and for j > 2, Oj e [c 9, flj] for some ~j < fl~ with 

and moreover 

0 < ej < Bj < n/2 (resp. - n / 2  < ~tj < flj < 0), 

~/2 - ~ ( ) < 1 + pj resp. flj + 7t/2 _ < 1  + p i  , (2.1) 
~/2 flj ~j + n / 2 -  

where the {p j}7= 1 are specific positive numbers to be determined in the proof of 
Lemma 2 below. 

L e m m a  1. Let N be an even integer, and put r I = N-1/(,-t) .  It is possible to find 
N compact subsets {Qj}j=I of S"-1 so that: 

/~(Q~)=N -~ forevery j ,  #(Qj, c ~ Q ~ ) = 0  for J lCJ2 .  (2.2) 

The diameter of each Qj is at most c3(n)~l. (2.3) 

The Q~ are GSPs except at most c4(n)Nq 2 of them. (2.4) 

The constants c3(n ) and c,(n ) are, as usual, constants depending only on the 
dimension. 

The next lemma deals with a subject closely related to integration formulas 
with equal weights. 

L e m m a  2. There is an integer L(n) so that if Q is a GSP on S"-1, then the 
probability measure/~(Q)-I#I Q is in the w* closed convex hull of the set Z of all 
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probability measures a satisfying 

L(n) 

a = L(n)- 1 ~, 6,.(,, y,(tr) e Q, 1 <_ i < L(n), (2.5) 
i=1 

f o  f da = #(Q)- 1 f o  f dlt for all linear functions f on R". (2.6) 

The third lemma is a standard inequality in probability theory (Bernstein's 
inequality). 

Lemma 3. Let {0r}J: x be independent random variables with mean 0 and uniformly 
bounded by 1 on some probability space. Then for 0 < 6 < 1 we have 

P r ° b { I j ~  t gJ >M}-<-2exp( - J~-~2)"  (2.7) 

We prove Lemmas 1 and 2 below and show next how to derive the theorem 
from the three lemmas above. 

Proof of  the Theorem. Let e > 0 and let N be an even integer. We partition S "- 1 Q,, into sets { ~}j= 1 as in Lemma 1. We assume that for j < / ~  the sets Q~ are GSPs. 
Recall that by (2.4) 

N - A7 < c4(n)Ntl z. (2.8) 

Let E~ be the set of probability measures on Q~, 1 < j < ~7, given by Lemma 2. 
Since Ej is w*-compact it follows from Lemma 2 and the Krein-Milman theorem 
that there is a probability measure vj on Xj so that 

f. 
= Jzj a dvj(a), 1 <_j <_ N. (2.9) NPiOj 

Let f s C(S ~- l) and consider the following N independent random variables 
(on the obvious product space): 

L(n) fQj 
hi.f (a) = L(n)- 1 ~ f(yi(tr)) _ N f d#, 

i = l  

a e E j ,  j _< ~7, (2.10) 

hj, i ( y ) = f ( y ) - N  f Q f d / ~  , y~Qj ,  ~ , < j < _ N .  

All these variables have mean 0. Observe next that by (2.3) if f satisfies 

(2.11) 

I f ( u ) -  f(v)l ~ I l u -  vll2, u, v ~ S  "-1, (2.12) 
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then 

Ithj,1.tl ~ ~ c3(n)r/, 1 < j  _< N. (2.13) 

Also, in view of (2.6), if the restriction of f to Qi is linear for some j < 57, then 

hi.y = 0. (2.14) 

Now fix x e S  "-1 and let f ( y ) =  fx(Y)= I<x,y>l for y e s  "-1. By (2.14) the set 
of indices j for which hi,i~ does not vanish identically consists of at most the 
57 < j  < N and those j < ~ for which Q~ intersects {y; <x,y> = 0}. Hence by 
(2.3) and (2.8) the cardinality J of this set is at most cs(n)Nr I. Also fx clearly satisfies 
(2.12); thus (2.13) holds for every j and f = f~. By applying Lemma 3 to the J 
nonvanishing hHJca(n)r l we get for 0 < 6 < 1 

Prob h~,e~ > c3(n)cs(n)(~2N < 2 exp . (2.15) 
• ~. I j =  1 

We now take 6 so that 

_ = c3(n)cs(n)&12N 
2 

(for N satisfying (1.3) we have 6 < 1 for e < eo(n)). By using (1.5), (2,10), and (2.11), 
formula (2.15) becomes 

Prob N -1 L(n) -1 ~ l<x, yi(tr~)>l + ~ l<x, yj>j - fl~ > 
k j = l  i=1 j=bT+ 1 

< 2 exp c6(n) " 

We now let x vary on an e/4 net in S n- 1. The number of points in such a net 
is < (cT(n)/e)"- 1. Hence if 

(and this is the case if N is of the form (1.3) for suitable c2(n)), then there is a choice 
of o'~ ~ Y.j, 1 < j < 57, and of yj e Q j, 57 < j < N, so that 

1 ( ' 

N-1L(n)  -1 ~'. I<x, yi(aj)>t+ ~ L(n)l(x,  y j) i  - <- ~ 
\ j = l  i=1 j = ~ + l  

for every x in an e/4 net on S n-l.  This clearly implies that (2.17) holds for every 
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x e S "- 1 if e/2 is replaced by e. Thus we get that a formula of type (1.6) holds with 
NL(n) where N is given by (1.3). This concludes the proof of the theorem. []  

Proof o f  Lemma 1. The proof is by induction on n (starting with n = 3). Let us 
first consider the case n = 3. Let N be an even integer and let r /=  N-1/2. We 
divide the equator (02 = 0) of S 2 into arcs AJ all of an equal length between r//2 
to r/. We next find 91 so that the spherical parallelograms 01 e A J, 0 < 02 < 91, 
all have area N -  1. We next divide the circle 02 =/31 into arcs A] all of an equal 
length between ,//2 and r/ and find a 92 so that the parallelograms 01 e A 2, 
fll -< 02 < f12, all have area N-*.  We continue in an obvious manner and find 
f13 . . . . .  /~k. We do this as long as the parallelograms we get are "good," i.e., 
according to (2.1), as long as 

=/2 - / h - ,  
< t  +P2-  

~/2 - flk 

It follows that if we have to stop with ilk, then n/2 -- flk < dz r/, where d 2 is a 
constant determined by P2 (which in turn will be determined in the proof of Lemma 
2). The cap around the north pole which remains uncovered has an area of the 
order of magnitude r/2 and thus can be divided into sets Q~ satisfying (2.2) and 
(2,3) whose number is of the order r/2N (in this case, i.e., n = 3, actually an absolute 
constant). In the lower hemisphere the partition is the reflection of what we did 
in the upper hemisphere. 

We pass now from n = 3 to n = 4 (the general induction step is the same). We 
first partition the 2-sphere 03 = 0 as above into parts QJ of equal two-dimensional 
measure between ~/2/2 and r/2. We find Y, so that the sets 0,, 0 z e Q~, 0 < 03 < )h, 
all have p measure N - ' .  We continue in the same way finding ~2, 1'3 . . . . .  74 as 
long as the sets 

01 , 02 ~: h-  1 Qj , ?h-,  < 03 < Yh, 

are GSPs whenever Q~- 1 is a GSP of one lower dimension. In other words, we 
continue till r e /2 -  7h < dar/  for a certain d 3 which is determined by P3. The 
remaining cap around the point 03 = ~/2 with radius <d2q we divide into sets 
Q~ satisfying (2.2) and (2.3). By reflection we deal with the part 03 _< 0 of S"- 1. It 
is clear that the number of sets obtained in this way which fail to be GSPs is at 
most c(3)Nr/2. [ ]  

The main part of the proof of Lemma 2 is the proof of a one-dimensional result 
which we state here as Lemma 4. First we need some notation. Let A be an arc 
of length 1 of a circle (typically with a large radius) in the plane. We assume that 
the origin in the plane is the center of gravity of A (we equip A with the 
homogeneous arc length measure ds). We assume also that A is symmetric with 
respect to the y axis. The parts into which A is cut by the coordinate axes are 
called At, A2 ' Aa ' and A4, respectively. The y coordinate of the top of the circle 
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is denoted by 0. We prefer to use 0 as a parameter rather than the radius of the 
circle. The picture is thus: 

With this notation in mind we state 

Lemma 4. There are absolute constants 6 > 0 and c > 0 and an interger L so that 
the following holds. Let f ~ LI(A ) satisfy 

I U A 2  2UA3 3 u A 4  4 UAI  

(2.18) 

and let u o = (Xo, Yo)~ Rz satisfy 

lxoJ ~< ,5, lyol ~ O& (2.19) 

Then there are L points {Ui}/L= t on A with 

L 
u o = L -  1 ~ ui, (2.20) 

i=1 

L -1 ~ f(ui)>>-cllfl[, = c  ;a  I f l  ds. (2.21) 
i=1 

The point in the lemma is that 6, c, and L are independent of the parameter 0 
of A and also o f f  and that no smoothness conditions are imposed on f.  

The proof of Lemma 4 is the most technical part of this paper and is presented 
in Section 3. Here we assume Lemma 4 and deduce from it Lemma 2. 

Corollary 5. Let A be a circular arc of length 1 in the plane. Let c, 6, and 
L be the constants given in Lemma 4 and put p = min(c, 6). Then any probability 
measure v on A which is absolutely continuous with respect to ds and satisfies 
Hdv/ds - 11I~ <- P is in the weak* closed convex hull of  the set [2 of measures a on 

L A of the form a = L -1 ~i=1 6u,, ui = (xi, yi)~A, for which 

L - t  ,=~ x~= fa  x(s)dv(s), L-1 ,=~ Y' = fA y(s) dv(s). (2.22) 

Proof Assume that v does not belong to the w* closed convex hull of ft. By the 
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separation theorem there is a continuous function f on A so that 

f a f dv > sup f a f (2.23) 

We may clearly choose the coordinate system in R 2 a s  in the setting for Lemma 
4. Because of (2.22) we may add to f any restriction to A of a linear function on 
R 2 without affecting (2.23). Hence there is not loss of generality to assume that 
the f in (2.23) also satisfies (2.18). By our assumption on dv/ds we have 

Similarly [Sa Y dv(s)l < 06. Hence by Lemma 4 there is a t r  e f~ so that 

On the other hand, 

fa f da > P fA I f l  ds. 

and this contradicts (2.23). []  

Remark. Corollary 5 is evidently valid for an arbitrary circular arc A in the 
plane provided we take as ds the normalized arc measure on A (which gives to A 
mass 1). 

Proof of Lemma 2. The proof  is by induction on n. The number L(n) we get is 
L"-~ where L is the integer appearing in Lemma 4. 

For n = 2 Lemma 2 is just the special case dv = ds of Corollary 5. 
We pass from n > 2 to n + 1 and determine at the same time the constant p. 

appearing in the definition of GSP. Let Q. c S" be the spherical parallelopiped 
~i < 0~ < fl~, 1 < i < n. We may assume that a~ > 0 for all i > 2. We assume also 
that 

n/2 -oti 
- - - <  1 +p~, 
re/2 - fl~ - 

2 < i < n - l .  

For each fixed 0. in [~,, ft.] the spherical parallelopiped Q,_ ~.0. (= those  points 
in Q, whose last coordinate is 0,) is a GSP in S"-1. By the induction hypothesis 
the normalized (n - 1)-dimensional measure of Q,_ t.0, is in the w* closed convex 



140 J. Bourgain and J. Lindenstrauss 

hull of measures of the form 

LIn) 

I-.(n) -1 ~., ~y,, Y i e g . - l . o . ,  
i=1 

whose barycenter agrees with the barycenter of Q._ 1. o.. The barycenters of Qn - 1,0., 
0t n < 0. _< fin, form an arc A of a circle (natually parametrized again by 0n). Let ds 
be the normalized arclength measure on A and let v be the measure induced on 
A by the normalized n-dimensional surface measure/~ on Qn (i.e., for ct. < 7' < 
~," < p.): 

v[7', 7"] = ~{ye  Q., O,,(y)e [7', 7"]}- 

We have 

[ maxo a(dv/ds)(O)-] 1 - --  1 ]  

for a suitable constant c(n). Hence if p. is defined by c(n) ((1 + p.)n- 1 _ 1) = p, 

where/9 is the constant appearing in Corollary 5, then by this corollary v is in 
L the w* closed convex hull of measures of the form L -  1 ~-/= 1 ~, with z-/~ A which 

have as their barycenter the barycenter of Q.. By using these facts (and Fubini's 
theorem) it follows that the normalized surface measure on Q. is in the weak* 
dosed convex hull of measures of the form 

L L(n) 

I4n)- 1L- 1 y~ Y~ ,~,,,-/. y,,-/~ e Q._ ~,o,, 
.i=1 i=1 

which have the same barycenter as Q.. E3 

3 .  P r o o f  o f  L e m m a  4 

We now pass to the proof of Lemma 4. We use the notion of equivalence ~ to 
denote two positive quantities whose ratio is bounded from above and below by 
absolute positive numbers. The symbol < has a similar obvious meaning. 

We start by pointing out some absolute constants which can be obtained from 
the setting of Lemma 4 and which are used later in determining 6, c, and L, 

(i) Let ¢ be the map from A x A into R 2 defined by ¢{v, w} = (v + w)/2. On 
the subset .~ of A, consisting of those pairs for which the x coordinate of 
v is smaller than that of w, the map ¢ is one to one. The range of ¢ contains 
a rectangle [ -  fl, fl] x [ -  Off, Off] for some absolute fl > O. The Jacobian of 
¢ on the intersection of ,2/ with the inverse image of this rectangle is 
equivalent to O. 



Approximating the Ball by a Minkowski Sum of Segments with Equal Length 141 

(ii) Let K = {heLt(A); 3a, b, h(x, y) <_ ax + by, V(x, y)eA}. Then for every f 
satisfying (2.18) we have 

d(f, K) > c~ Ilflll (3.1) 

for some absolute constant Cr 

The verification of (i) is obvious. Let us check (ii). Assume that h ~ K then 
h(x, y) = ax + by + k(x, y) with k(x, y) <_ 0 for all (x, y)~ A. By (2.18) 

Ilf -hlll>- f, (f -h)ds=-fAkds=llkl,1. 

Again, by (2.18), 

] l f - h + k ] [ l >  fa ( f - ( a x + b y ) ) d s l = l b l f a  yds  
2~A3 2uA3 

and hence Ilbyllt ~< [If - h + kill. Similarly, Ilaxlll • Ilf - h + kill. Inequality 
(3.1) is a direct consequence of these inequalities. 

A 4 We now divide each of the subarcs { ~}i= 1 of A into consecutive arcs of length 
between 6 and 6/2 (6 is determined later). A typical arc obtained this way is denoted 
by W. Each such W is partitioned into two subsets W' and W" so that 

[ W'I "- 6 ~ [ W"I (3.2) 

([W'I means the ds measure of W') and 

(3.3) 

The collection of all subsets of A obtained in this way is denoted by {T~}~ t. The 
conditional expectation o f f  with respect to this partition is denoted by g: 

g = y" [Ti[-l"fT fds')~r,. 
i e l  

(3.4) 

From (3.3) it follows that ilflIl ~ IIolJ 1- It is clear from the construction that O 
like f satisfies (2.18) and hence by (3.2) there is an absolute positive c 2 so that 

d(g, K) > c2[[fl[ 1. 
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By the separation theorem we deduce that there is a A ~ L~(A) with A > 0 and 
IIAIlo~ = 1 so that  

;A gA ds = ~ IT~I-'-f f as. ;r A ds ~_ czllftl ~, 
i~ I d T, 

(3.5) 

fa A(s)x(s) ds = fA A(s)y(s) ds = 0. (3.6) 

By replacing A with A ' =  A/IIAII1 and noting that IIAtll ~ 1 we see that we 
can ensure that  (3.5) and (3.6) hold with a A satisfying A > 0 and IIAtlx = 1. 

F r o m  Cara theodory ' s  theorem (in R 3) it follows that there exist four indices 
• 4 ) '  4. {t2}i= t in I and scalars { j}j = 1 with 2j >_ 0 and ~ ).j = 1 so that  if we put  r~ = T~,, 

then S~, Ads  # 0 for all j and 

2~lzj1-1 f~, f ds > c2]Ifl]t, (3.7) 
j = l  

j=l  ~ It, Ads = j=l J I~ Ads 
(3.8) 

F r o m  (3.8) it follows that if uj is any point  in zj, then 

4 
~, )'jui~ [--6, 6] x [-06,  06]. (3.9) 

j = l  

T o  cont inue we point  out  ano ther  fact which follows easily from the geometry 
of A. There  are at least two indices out  of  the four (which we choose to take as 
1 and 2) so that  

21 > c3, )'2 >- Ca, d(zl ' z2 ) >_ ca , (3.10) 

where c3 is an absolute positive constant.  F r o m  (3.10) it follows that  if W~ (resp. 
I412) are the arcs from which zl and z2 were formed then for every fixed p e R 2 the 
map  from W 1 x W 2 --. R 2 defined by 

{u,  u2} "* 21ul + 22uz + p (3.11) 

has a Jacobian (obviously independent  of  p) which is ~ 0. 
Let  M be an even integer and let , 4 {2~}~= 1 be nonnegat ive numbers  which sum 

4 to 1, which are close to {2j}j.--1, and are rat ional numbers  with /Q as the 
denomina tor  so that  

~ ).)l~jl -~ f~, f ds > c211fllx (3.12) 
j=~ 2 
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and for every choice of uj s z j, 1 < j < 4, 

4 
2 ) u j e [ - 2 6 , 2 6 ]  x [ - 2 6 0 ,  260]. (3.13) 

j= l  

In view of (3.7) and (3.9) we can ensure all this provided that 

M6 > c 4 (3.14) 

for some abosolute c4. Let M > 2 be another integer so that 

16M6 < fl, (3.15) 

where fl is the constant appearing in (i) at the beginning of this section. By our 
assumption on u o (see (2.19)) and (3.13) 

Mu o - (M - 1) 
4- 

j= l  

for all u i e r j ,  1 < j  < 4. Hence, by observation (i), we can define maps 
V(ul, u2, u 3, u4) and W(u 1, u2, u3, u4) from I4"1 x W 2 x "f3 × T4. into A so that 

4. 

M U o - ( M - - 1 )  Z 
j= l  

2)uj = ~(V(ul . . . .  , u4) + W(ul  . . . . .  u4)). (3.16) 

Moreover, by (i) and (3.14), for every fixed u3 and u 4 the Jacobian of the map from 
W i x  W 2 t o A  x A d e f i n e d b y  

{t~l' U2} "~ {V(I~I, u2,/13, u4.), W(Ul, / /2,  u3, u4)} 

is equivalent to M 2 (with the equivalence constant independent of u 3 or u,). The 
representation 

M - 1  4 1 
Uo = - -  ~, 2)uj + ~-M (V(ul, u2, u3, u4) + W(ul ,  u2, u3, u4)) (3.17) 

M j=l 

is of the form (2.20) with L = MM. We now use an averaging argument to find 
ujezj ,  1 _<j < 4, so that (2.21) holds (with a universal c) for the representation 
(3.17). By (3.12) 

MM- 1 ~=1 ~ 2)lrjl-I f~, f(u(s)) ds _> c211f11~4 
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We next show that on average If(V)] is not too big. More precisely, we estimate 
from above the expression 

(2M'jOl l'cj])-l f~4 f~ f~2 f~ lf(V(u(st), u(s2), u(s3), u(s4)))l ds~ ds2 ds3 ds4 . 

(3.18) 

For  a fixed s 3 and s ,  we get by the remark made above on the Jacobian that 

f~ f, ]f(V(u(s O, u(s2), u(s3), u(s4)))l dsl ds2 <_ csM-Zllf[I 1. 
2 I 

Hence, in view of (3.2), expression (3.18) is bounded from above by c 66-2M - 3 II f 111- 
The same estimate holds for lf(W)[. Hence if 

12 2 
- -  > 2 C 6 ~ - 2 M  -3  (3.19) 
8 -  

S 4 we can ensure that there are { j}j= t so that for u~ = u(s~)~ zj estimate (2.21) holds 
with c = c2/8 for the representation (3.17). Clearly, it is possible to find absolute 
M and 6 so that (3.15) and (3.19) hold. Once 6 is determined we determine M so 
that (3.14) holds. The lemma holds thus with c = c2/8, the 6 we determined, and 
L = M/~t. 
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