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Abstract. It is proved that for n > 2 the Euclidean ball B, can be approximated up

to ¢ (in the Hausdorfl distance) by a zonotope having N summands of equal length
with N < c(n)e ™~ ?|log g|)t»~ D/in+2),

L. Introduction
A zonotope in R" is defined to be the Minkowski sum of segments [; in R™

N

N
Z = Z 11.:{
i=1 =

j=

Xj; xjelj,lﬁjs_iN}. (1.1
1

We deal here with the problem of approximating the Euclidean ball B, by
Zonotopes with as few as possible summands N. In [BLM] it was proved that if
azonotope Z has a Hausdorff distance <& from B,, then the number N appearing
i (1.1) has to satisfy

N = cy(n)e~2n Ditn+2), (1.2)

On the other hand, it was proved in [BL] that there is a zonotope approximating
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B, to within ¢ in the Hausdorff metric with N satisfying
N = [cy(nfe~ |log gy~ 1+ 2], (1.3)

Thus up to a possible logarithmic factor (1.2) gives the best result.

In the paper [BM] where the same problem is also considered it was asked
what can be said of N if we require that the segments appearing in (1.1) all have
the same length. In [W] the late G. Wagner showed that if n < 6, then with the
same estimate on N as that given in (1.3) B, can be approximated up to ¢ by a
zonotope having N summands of equal length. Wagner based his proof on a
formula for numeric integration with constant weights which he proved in an
earlier paper (the close relation between the topic of numerical integration with
equal weights and approximation by zonotopes with summands of the same length
will become clear below).

Qur aim here is to show that Wagner’s result is true without the restriction
n < 6. In other words, we prove here the following:

Theorem. For every n, there is a constant ¢,{n) so that the Euclidean ball can be
approximated up to ¢ > 0 in the Hausdorff metric by a zonotope having N summands,
all of the same length with N satisfying (1.3).

Our proof differs from that of Wagner (for n < 6). It is an adaptation of the
method we used in [BL]. In the rest of this introduction we review the approach
in [BL] and point out the place where the argument here has to differ from that
of [BL]. Details of the proof of the theorem are given in Section 2. The most
technical part of the proof (the proof of Lemma 4) deals with a topic very close
to numerical integration with equal weights of functions defined on an arc. The
proof of this part is given in Section 3. It should be pointed out that the proofs
given in Sections 2 and 3 are self-contained and can be read without reference to
[BL] or [W].

We first give the analytic expression for approximation by zonotopes. A
zonotope with N summands can approximate B, up to ¢ if and only if there ar¢
{z;}]=1 on the sphere $"~ ! and positive scalars {o;}}-, so that

<g xeSL (14)

N
DRACENES

The length of the segment I; is 2a;. Instead of (1.4) it is more convenient to deal

with a similar expression with 1 replaced by

Bn= f [<x, y>| du(y), (1.5
sn—l

where u is the normalized rotation invariant measure on S"~! (the passage from
1 to B, has effect only on the value of the constants ¢,(n) and c,(n) in (1.2) and
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(1.3) which are of no interest to us here). The question of approximating B, by
zonotopes with sides of equal length thus becomes the question of finding N and
{z;}¥-1 on 8"~ ! so that

Nt i IKx, 23] — Ba| <&, xeS L (1.6)
=1

J

Let us now explain our approach in [BL]. Let N be given by (1.3). We partition
S"~! into N parts {Qj}j."= , all having the same g measure and having a diameter
of the order of magnitude n = N~'“~1_On each such Q; we consider the set
%, of probability measures on Q; so that seX; has the form )X} i(0)d, ),
y{o)€ Q; (i.e., the support of ¢ consists of at most n + 2 points), and so that the
barycenter of ¢ agrees with that of Ny o . By using Caratheodory’s theorem (in
R"*!) and the separation theorem it is not hard to show that Z; is rich enough
to contain in the weak* closure of its convex hull the measure Nyo (the w*
topology on measures is the one induced by continuous functions on Q). Since
Z; is w*-compact it follows from the Krein-Milman theorem that there is a
probability measure v; on X; so that

Ny = J‘ o dvjo), 1<j<N.
21

By choosing on each Q; a measure o; in Z; according to the distribution v;, doing
itindependently in each j, and using a standard inequality from probability theory
(Lemma 3 below) it follows that, with a positive probability,

n+2

N
!N“‘ ST Ao)l<x wadl - B

j=1i=1

<e, xeS" L 1.7)

The fact that N is replaced by N(n + 2) does of course not matter in view of the
form of (1.3). The reason that (1.7) is not of the desired form (1.6) is because of
the presence of the weights A{c,). They enter via the use made of Caratheodory’s
theorem. A point in the convex hull of a set 4 in R"*! can be expressed as a
tonvex combination of n + 2 points out of A but of course in general not as an
arithmetic mean of such n + 2 points.

~ This difficulty is overcome below by proving (using a lemma on numerical
integration with equal weights) that, if Q is a “nice” subset of $* !, the normalized
surface measure ji on Q is in the weak* closed convex hull of arithmetic means
of L(n) dirac measures which (i.e., the arithmetic means) have the same centroid
as i. Moreover, $"~! may be partitioned into subsets so that the large majority
of them are “nice” in the sense above.

Let us point out that this proof strongly depends on the specific geometric
Structure of $"~1, It does not generalize in an obvious way to the setting of
approximating other zonoids (=Hausdorff limits of zonotopes) by zontopes with
4 small number of summands of equal length. This is in contrast to the argument
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in [BL], where general zonoids were treated, or to the arguments in Wagner’s
paper [W] which, as stated there, apply also to zonoids sufficiently close to balls.

2. Proof of the Theorem

The proof of the theorem is based on three lemmas. The first lemma is geometric
in nature and for its formulation we need the notion of a good spherical
parallelopiped (GSP in short) in $”” . We introduce in the usual manner spherical
coordinates in $"71:

ki1 i T
—n<b,<n, —--<0,<—,..., =<8
TEUSh TRy 2

<

N

n—1

A GSP set in §"" ! is a set of all the points so that 0, € [a,, §,] for some a; < f;
and for j > 2, 0;€ [}, B;] for some a; < f; with

0<a;<B;<mn/2(resp. —n/2 <a; < f; <0),

and moreover

<1+p, TS iy b)), 21
w2 g, P (“Sp 2, + 12 Pi @1

where the {p;}}_, are specific positive numbers to be determined in the proof of
Lemma 2 below.

Lemma 1. Let N be an even integer, and put n = N~ Y®~V_It is possible to find
N compact subsets {Q;}}= of " ! so that:

wQ)=N"" foreveryj,  wQ@;NQy)=0 for j#Jjs 22)
The diameter of each Q; is at most cs(n). (23)
The Q; are GSPs except at most c,(m)Nn* of them. (24)

The constants c,(n) and c,(n) are, as usual, constants depending only on the
dimension.

The next lemma deals with a subject closely related to integration formulas
with equal weights.

Lemma 2. There is an integer L{n) so that if Q is a GSP on "™, then thlel
probability measure Q)™ 'p,q is in the w* closed convex hull of the set T of a
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probability measures o satisfying

L(n)

o= Ln)"! ‘Zl )01 vio)eQ, 1<i<Ln), 2.5)

i

j fdo= Q) ? j fdu  for all linear functions f on R”. 2.6)
Q 4]

The third lemma is a standard inequality in probability theory (Bernstein’s
inequality).

Lemma 3. Let {g;}]- be independent random variables with mean 0 and uniformly
bounded by 1 on some probability space. Then for Q0 < § < 1 we have

2
Prob{ > 8J } <2 exp(— %) 2.7

We prove Lemmas 1 and 2 below and show next how to derive the theorem
from the three lemmas above.

J
Z g

i=1

Proof of the Theorem. Let &> 0 and let N be an even integer. We partition $"*

into sets {Q;})~ as in Lemma 1. We assume that for j < N the sets Q; are GSPs.
Recall that by (2.4)

N — N < cy(mNn*. 2.8)
Let T; be the set of probability measures on Q;, 1 <j < N, given by Lemma 2.

Since I, is w*-compact it follows from Lemma 2 and the Krein-Milman theorem
that there is a probability measure v; on Z; so that

Npjo, = J odve), 1<j<N. 29
2}

Let fe C(S" ') and consider the following N independent random variables
(on the obvious product space):

Lim} ~
hi o) =Lim)* Y f(yi(a))—Nj fdu, oeZ, j<N, (210
) ,

hj,f(y)=f(y)-NJ fdu, yeQ;, N<j<N. (2.11)
0

All these variables have mean 0. Observe next that by (2.3) if f satisfies

[f(w) — f@) < lu—rvll,, wves (2.12)
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then

I fle Scsmy,  1<j<N. (2.13)

Also, in view of (2.6), if the restriction of f to Q; is linear for some j < N, then
h;,; =0. 2.14)
Now fix xe §""! and let f(y) = f(y) = |<{x, y>| for ye S"~1. By (2.14) the set
of indices j for which h; ; does not vanish identically consists of at most the
N <j < N and those j < N for which Q; intersects {y; (x, y> = 0}. Hence by
(2.3) and (2.8) the cardinality J of this set is at most c5(n)N7. Also f, clearly satisfies

(2.12); thus (2.13) holds for every j and f = f,. By applying Lemma 3 to the J
nonvanishing h; ; /c,(n)n we get for 0 <6 < 1

Prob{

We now take J so that

N
Z hj.f;
j=1

2
> ca(n)cs(n)équ} <2 exp(— fﬁf%ﬂé—) 2.15)

it

= c3(n)es(m)onN

[ 3]

(for N satisfying (1.3) we have § < 1 for £ < g4(n)). By using (1.5), (2.10), and (2.11),
formula (2.15) becomes

N Ln) N 3
Prob{ N"’(Z Lm™ Y Kxyedl+ Y IKx, ypi)—lh >§}
j=1 i=1 j=N+1

(n+2)(n— 11,2
u) (2.16)

=? eXp(”' celn)

We now let x vary on an ¢/4 net in §"~*. The number of points in such a net
is <(c,(n)/e)"~'. Hence if

n~1 N(n+2)/(n—~1) 2
2 EZ@ exp(— i ) <1
e ce(n)

(and this is the case if N is of the form (1.3) for suitable c,(n)), then there is a choice
of6;€Z;,1<j< N, and of y,eQ;, N <j< N, so that

N L N & 7
IN'*L(n)"(z vl + 3 Unicx y,->t)—ﬁn <5 @
j=1i=1 j=R+1

for every x in an ¢/4 net on $"~ . This clearly implies that (2.17) holds for every
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xe 8" ifg/2 is replaced by & Thus we get that a formula of type (1.6) holds with
NL{n) where N is given by (1.3). This concludes the proof of the theorem. O

Proof of Lemma 1. The proof is by induction on n (starting with n = 3). Let us
first consider the case n = 3. Let N be an even integer and let = N~'2 We
divide the equator (8, = 0) of S? into arcs A} all of an equal length between 7/2
to 7. We next find B, so that the spherical parallelograms 6, e 4}, 0 < 8, < §,,
all have area N ~!. We next divide the circle 6, = f, into arcs A7 all of an equal
length between 7/2 and # and find a B, so that the parallelograms 6, € A,
B, <8, < B,, all have area N~!. We continue in an obvious manner and find
Bs...., Bx. We do this as long as the parallelograms we get are “good,” ie,
according to (2.1), as long as

/2 — By ¥

It follows that if we have to stop with f,, then n/2 — f, < d,n, where d, is a
constant determined by p, (which in turn will be determined in the proof of Lemma
2). The cap around the north pole which remains uncovered has an area of the
order of magnitude n*> and thus can be divided into sets Q; satisfying (2.2) and
(2.3) whose number is of the order 2N (in this case, i.e., n = 3, actually an absolute
constant). In the lower hemisphere the partition is the reflection of what we did
in the upper hemisphere.

We pass now from n = 3 to n = 4 (the general induction step is the same). We
first partition the 2-sphere 63 = 0 as above into parts Q] of equal two-dimensional
measure between 1°/2 and n%. We find y, so that the sets 6,, 6,€Q},0 <6, <y,,
all have u measure N~ !. We continue in the same way finding y,, y3,..., 7, as
long as the sets

0y, OZEQ?"I’ Th-1 <03 <,

are GSPs whenever Q™! is a GSP of one lower dimension. In other words, we
continue till n/2 — y, < dyn for a certain d; which is determined by p,. The
remaining cap around the point 6, = n/2 with radius <d,n we divide into sets
Q; satisfying (2.2) and (2.3). By reflection we deal with the part 6; <0 of "~ 1. It
18 clear that the number of sets obtained in this way which fail to be GSPs is at
most ¢(3)Ny>. O

The main part of the proof of Lemma 2 is the proof of a one-dimensional result
which we state here as Lemma 4. First we need some notation. Let 4 be an arc
of length 1 of a circle (typically with a large radius) in the plane. We assume that
the origin in the plane is the center of gravity of A (we equip A with the

Omogeneous arc length measure ds). We assume also that A is symmetric with
fespect to the y axis. The parts into which 4 is cut by the coordinate axes are
called 4,, A,, A5, and A,, respectively. The y coordinate of the top of the circle
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is denoted by 8. We prefer to use § as a parameter rather than the radius of the
circle. The picture is thus:

A4, As

7 <

With this notation in mind we state

Lemma 4. There are absolute constants 6 > 0 and ¢ > 0 and an interger L so that
the following holds. Let f € L{{A) satisfy

J fds:tj fds=f fds=J‘ fds=0 (2.18)
Ayv A A0 A3 Az Ay Agw Ay

and let ug = (x4, yo) € R? satisfy
|xol < 8, | yol < 66. (2.19)

Then there are L points {u}f., on A with

L
uo = L~ ! Z ui, (2.20}

i=1

L™t i fw) =l fll =cf |f1ds. (2.21)
i=1 A

The point in the lemma is that J, ¢, and L are independent of the parameter
of A and also of f and that no smoothness conditions are imposed on f.

The proof of Lemma 4 is the most technical part of this paper and is presented
in Section 3. Here we assume Lemma 4 and deduce from it Lemma 2.

Corollary 5. Let A be a circular arc of length 1 in the plane. Let ¢, 9, and
L be the constants given in Lemma 4 and put p = min(c, 3). Then any probability
measure v on A which is absolutely continuous with respect to ds and satisfies
lldv/ds — 1l|, < p is in the weak* closed convex hull of the set Q of measures o 0"
A of the form ¢ = L™ Y 1| 8, u; = (x;, ) € A, for which

L L
L'y x = j x(s)dv(s), L°'Y y= J y(s) dv(s). (222)
i=t i=1 A

A

Proof. Assume that v does not belong to the w* closed convex hull of Q. By the
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separation theorem there is a continuous function f on A so that

f fdv > sup J‘ f do. (2.23)
A A

aeQ
We may clearly choose the coordinate system in R? as in the setting for Lemma
4. Because of (2.22) we may add to f any restriction to A of a linear function on

R? without affecting (2.23). Hence there is not loss of generality to assume that
the f in (2.23) also satisfies (2.18). By our assumption on dv/ds we have

dv dv
d ——1]d ——=11}d
J‘Ax S+J‘A x<ds ) * J‘A x(ds 1) ’

Similarly lj' 4y dv(s)] < 86. Hence by Lemma 4 there is a ¢ € Q so that

j‘ fdapr | ]| ds.
A A
On the other hand,

jfdv Jf(%—-l)ds

and this contradicts (2.23). O

<.

J x(s) dv(s)
4

Spj [f]ds

Remark. Corollary 5 is evidently valid for an arbitrary circular arc A in the

plane provided we take as ds the normalized arc measure on A (which gives to 4
mass 1).

Proof of Lemma 2. The proof is by induction on n. The number L(n) we get is
L""! where L is the integer appearing in Lemma 4.

For n =2 Lemma 2 is just the special case dv = ds of Corollary 5.

We pass from n > 2 to n + 1 and determine at the same time the constant p,
appearing in the definition of GSP. Let Q, < S” be the spherical parallelopiped

4 <6, < B;, 1 <i<n We may assume that o; > 0 for all i > 2. We assume also
that

p R
/ o&sl+p,~, 2<i<n-—1

m/2 — B;

For each fixed 6, in [«,, B,] the spherical parallelopiped Q,_, , (=those points
In 9, whose last coordinate is 6,) is a GSP in §"~'. By the induction hypothesis
the normalized (n — 1)-dimensional measure of Q,_ 4, is in the w* closed convex
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hull of measures of the form

L{n)

Lm)~* Z Jy,» Yi€Qu 10,
i=1

whose barycenter agrees with the barycenter of Q,_, 4 . The barycenters of @, _, , ,
o, < 6, < B,, form an arc A of a circle (natually parametrized again by 6,). Let ds
be the normalized arclength measure on 4 and let v be the measure induced on
A by the normalized n-dimensional surface measure y on @, (ie., for ¢, <y <

Y < B

Iy, Y1 =u{yeQ, 8,(mely, v}

max,, 4(dv/ds)6) /2 — o, \" !

e L — 1 () — -1

ming, ((dv/ds)6) /2 — B,
for a suitable constant c(n). Hence if p, is defined by c(n) (1 + p,)" ' — 1) =p,
where p is the constant appearing in Corollary 5, then by this corollary v is in
the w* closed convex hull of measures of the form L™* }'[..; 4, with z;e A which
have as their barycenter the barycenter of Q,. By using these facts (and Fubini’s

theorem) it follows that the normalized surface measure on @, is in the weak*
closed convex hull of measures of the form

We have

L L

L™ 'L~ Y Y iy Yan€C@u-r.0p

j=1i=1

which have the same barycenter as Q,. O

3. Proof of Lemma 4

We now pass to the proof of Lemma 4. We use the notion of equivalence ~ 10
denote two positive quantities whose ratio is bounded from above and below by
absolute positive numbers. The symbol < has a similar obvious meaning.

We start by pointing out some absolute constants which can be obtained from
the setting of Lemma 4 and which are used later in determining J, c, and L.

(i) Let @ be the map from 4 x A into R? defined by ®{v, w} = (v + w)/2. On
the subset 4 of A, consisting of those pairs for which the x coordinatﬁ‘ef
v is smaller than that of w, the map ® is one to one. The range of @ contaifts
a rectangle [ — B, ] x [ —0B, 66] for some absolute § > 0. The Jacobian (}f
® on the intersection of A with the inverse image of this rectangle 18
equivalent to 6.
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(i) Let K = {he L,(A4); 3a, b, h(x, y) < ax + by, ¥(x, y)€ A}. Then for every f
satisfying (2.18) we have

d(f, K) = ¢l fll (3.1)

for some absolute constant c,.

The verification of (i} is obvious. Let us check (ii). Assume that he K then
h(x, y) = ax + by + k(x, y) with k(x, y) < 0 for all {x, y)e A. By (2.18)

1 —hlL zf (f — h) ds = —J k ds = kI,

Again, by (2.18),

If—h+ki 2

j (f —(ax + by)) ds
Az Ay

= |b| yds

Az Ay
and hence |by|l, < ||f — h + k||,. Similarly, |lax]l, <] f — h + k|,. Inequality
(3.1) is a direct consequence of these inequalities.

We now divide each of the subarcs {4,}{-, of A into consecutive arcs of length

between & and §/2 (4 is determined later). A typical arc obtained this way is denoted
by W. Each such W is partitioned into two subsets W' and W” so that

{Wl~o~|W| (3.2)

(IW’| means the ds measure of W') and

j S ds ~f If1 ds, j fds
W w w”

The collection of all subsets of A obtained in this way is denoted by {T}ic; The
conditional expectation of f with respect to this partition is denoted by g:

~ f ) | flds. (3.3)

g=2|7}!“1'Lde'xT,» (34)

iel

_ From (3.3) it follows that || f]|, ~ |lgll,. It is clear from the construction that g
like f satisfies (2.18) and hence by (3.2) there is an absolute positive ¢, so that

d(g, K) = ¢, f1,.
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By the separation theorem we deduce that there is a Ae L _(A) with A >0 and
1Al = 1 so that

J gAdS=ZlT,-I”"J de‘J Ads = cll fll;s (3.9
A iel T, T,
J A(s)x(s) ds = j A(s)(s) ds = 0. (3.6)
A A

By replacing A with A’ = A/||A||, and noting that |Al, < 1 we see that we
can ensure that (3.5) and (3.6) hold with a A satisfying A > 0 and |Al], = L

From Caratheodory’s theorem (in R3) it follows that there exist four indices
{i;}}- 1 in I and scalars {4;}}-, with A; 2 0 and ) 4;=1so thatif we put7; =T,
then f, Ads # 0 for all j and

4
Y Al J fds=c,| fly, (3.7
i=1

4

— =0. (3.8)

From (3.8) it follows that if u; is any point in 7;, then

Me

Juze [ 5,581 x [—06,85]. (39)

j=1

To continue we point out another fact which follows easily from the geometry
of A. There are at least two indices out of the four (which we choose to take as
1 and 2) so that

)-1 > 63, /12 Z C3, d('tl, Tz) Z Cs, (310)

where ¢, is an absolute positive constant. From (3.10) it follows that if W, (resp.
W,) are the arcs from which t, and t, were formed then for every fixed pe R? the
map from W, x W, » R? defined by

{ug, ux} = Ayuy + Aup +p @310

has a Jacobian (obviously independent of p) which is ~8. )

Let M be an even integer and let {4}}*., be nonnegative numbers which sum
to 1, which are close to {4;}{-;, and are rational numbers with M as the
denominator so that

i Al J fds> % (3.12)
j=1 :

U]
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and for every choice of u;e1;, 1 <j <4,
4
Y. Aju;e[—26,268] x [—286,256]. (3.13)
j=1

In view of (3.7) and (3.9) we can ensure all this provided that
Mé>c, (3.14)

for some abosolute ¢,. Let M > 2 be another integer so that

16M3 < B, (3.15)

where B is the constant appearing in (i) at the beginning of this section. By our
assumption on u, (see (2.19)) and (3.13)

4
Mu, — (M — 1) ‘_[, Aju;e[—B, B1 x [—6p,66]

for all u;er;, 1 <j<4. Hence, by observation (i), we can define maps
Viuy, uy, us, u,) and Wiuy, uy, us, uy) from W, x W, x 15 X 1, into 4 so that

4
Mug — (M = 1) ¥ Xy = HV(uy, ..., u)) + Wuy, ..., up)). (3.16)
j=1
Moreover, by (i) and (3.14), for every fixed u; and u, the Jacobian of the map from
W, x W, to A x A defined by

{ub uZ} - {V(ul’ ul’ U3, u4)a W(“l’ uZ’ u3’ u4)}

is equivalent to M? (with the equivalence constant independent of u; or u,). The
representation

M—14 1
Uy = Y 21 Au; + M V(uy, uy, us, uy) + Wy, u,, uy, uy)) (3.17)

i

is of the form (2.20) with L = MM. We now use an averaging argument to find

Yi€1;, 1 <j<4, so that (2.21) holds (with a universal c) for the representation
(3.17). By (3.12)

M-1

& el Sl
Tjgl,ljhjl J.f(u(s))dsz——4 .

g
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We next show that on average | f(V}] is not too big. More precisely, we estimate
from above the expression

4 -1
(ZM 11 fr,-f) j f f J [f(V(ulsy), ulsy), ulsy), ulsa)) ds, ds, dss ds,.

j=1

(3.18)

For a fixed s; and s, we get by the remark made above on the Jacobian that

f J | f(V(uls,), u(sy), ulss), use)))| dsy ds, < csM™2fl],.

Hence, in view of (3.2), expression (3.18) is bounded from above by cs6 72M 73| f ;.
The same estimate holds for |f(W)]. Hence if

%zk@*M” (3.19)

we can ensure that there are {s;}}-, so that for u; = u(s;) € 7; estimate (2.21) holds
with ¢ = c¢,/8 for the representation (3.17). Clearly, it is possible to find absolute
M and § so that (3.15) and (3.19) hold. Once § is determined we determine M so
that (3.1~4) holds. The lemma holds thus with ¢ = ¢,/8, the § we determined, and
L=MM.
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