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Abstract. A collection of n sets A l, . . . ,  A, is said to be independent provided every 
set of the form X 1 c~... c~ X, is nonempty, where each X i is either A i or A~, We give 
a simple characterization for when translates of a given box form an independent set 
in R d. We use this to show that the largest number of such boxes forming an 
independent set in R d is given by [3d/2J for d >_ 2. This settles in the negative a 
conjecture of Griinbaum (1975), which states that the maximum size of an in- 
dependent collection of sets homothetic to a fixed convex set C in R d is d + 1. It also 
shows that the bound of 2d of Rtnyi et al. (1951) for the maximum number of boxes 
(not necessarily translates of a given one) with sides parallel to the coordinate axes 
in an independent collection in R d can be improved for these special collections. 

1. Introduction 

A finite col lect ion of  sets d = {A i, i = 1 . . . . .  n} is said to be independent if 
~ =  1 Xi # ~ ,  whenever  Xi = A~ or  A~ for i = 1 , . . . ,  n. 

Marczewski  (1947) describes how the not ion  of independence  is related to  the 
problem of  ex tending  measures.  Indeed,  d is independent  if and  only if the every 
choice of  P(A~) ~ [0, 1], i = 1 . . . . .  n, there exists a unique  p robab i l i t y  measure  P 
defined on the a lgebra  of  sets generated by d under  which At ,  . . . ,  A,  are  
(probabilistically) independent .  

Use of independence  leads to simplif ications to the classical inc lus ion-exclus ion  
identity. In fact, N a i m a n  and  W y n n  (1991b) show for any  collect ion of sets that  
if the max imum size of  an independent  subcollect ion is k, then the ind ica tor  
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function of any set in the algebra generated by the collection can be expressed 
as a linear combination of indicator functions of intersections of at most k of 
the sets. Naiman and Wynn (1991a) refer to such a formula as a 9eneraIized 
inclusion-exclusion formula of depth k, and demonstrate how the Voronoi decompo- 
sition can be used to find depth d + 1 formulas for indicator functions of unions 
of balls in Rq This has led to speculation as to whether a similar simplification 
holds for other types of sets. A consequence of Theorem 1 below is that there is 
a depth m3d/2J formula for the indicator function of any set in the algebra 
generated by the collection of boxes in R a, all of which are translates of a given box. 

R6nyi et al. (1951) show the maximum number of independent boxes (with sides 
parallel to the coordinate axes) in R d is 2d, the maximum number of independent 
balls of equal radius in R a is d + 1, and if n(k) denotes the maximum number of 
independent k-gons in the plane, then limk~(n(k)/log z (k)) = 1. Griinbaum (1975) 
shows that their proof of the third statement is incorrect by giving a counter- 
example to a condition they claim holds, and he provides a correct proof. Based 
on the results of R6nyi et al. he conjectures that the maximum number of 
independent sets in R J homothetic to a given compact convex set C is d + 1. 

The term box in R n is used for a set of the form I1 x -.. × I d, where each I t is 
a finite one-dimensional interval, and the intervals are in linearly independent 
subspaces. All intervals below are assumed to be closed. For any dimension d we 
let M(d) denote the maximum size of an independent family of sets in R n consisting 
of boxes, all of which are translates of a given one. Since a linear transformation 
can be applied, it may be assumed that the boxes in any such collection are unit 
cubes, that is, sets of the form x + [0, 1] d. Futhermore, a straightforward argument 
shows that we may restrict attention to collections of cubes in 9eneral position, 
meaning that the intervals obtained by projecting the cubes to any given co- 
ordinate axis have distinct endpoints. 

We give a simple characterization (Theorem 2) of when collections of unit cubes 
in general position form an independent family, and we use this to prove the 
following result: 

Theorem 1. The maximum number of boxes in an independent collection in R d, all 
of which are translates of one another, is oiven by M(d) = k3d/2J Jbr d > 2. 

Thus, we verify Griinbaum's conjecture is false for d > 4 even for this very 
special class of sets. Furthermore, we improve on the upper bound of R6nyi et aL 
(1951) for this special case. 

2. Preliminaries 

Definition 1. The diaoram of an indexed collection of sets A i, i ~ I, is the collection 
of index sets J for which 

N 
i~J f~J 

Thus, N sets are independent if and only if the cardinality of their diagram is 2q 
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Remark 1. If A1 . . . . .  AN is a collection of boxes in R d having d iagram 9 ,  and if 
ltrJ denotes the projection of Aj onto  the rth coordinate  axis, then a simple 

3 

argument shows that  ~ consists of  all index sets of  the form ~d= i Jt'~ where 
Jt'~e ~(r), r = 1 . . . . .  d, where ~( r )  denotes the d iagram corresponding to the 
collection I~ r~ . . . . .  I~ ~. 

Definition 2. A sequence m 1, m 2 . . . . .  m2N, where each integer in {1 . . . . .  N} 
appears exactly twice, is said to be an admissible sequence of length 2N if it contains 
no subsequence of the form ijji. 

Remark 2. Given unit intervals 11 . . . . .  IN in general position in the real line, the 
sequence of indices obta ined by ordering the endpoints  of  the intervals in 
increasing order,  and replacing the endpoints  by their indices, is easily seen to be 
admissible. It is equally easy to verify that  every admissible sequence arises in this 
manner. 

Lemma 1. Let l j, j = 1 . . . . .  N, be a collection of unit intervals in general position 
whose diagram is 9 .  Then { 1 . . . . .  N} E ~ if and only there is a permutation ~1 . . . . .  rtN 
for which the associated admissible sequence is given by 

rr 1 . . . . .  rcN, rq . . . . .  rc~. (1) 

Proof. This is an immedia te  consequence of Helly 's  theorem in one dimen-  
sion. [ ]  

Definition 3. A ray of  a pe rmuta t ion  rc I . . . . .  rcu is a subset of  {1 , . . . ,  N} which is 
either of the form {rci: i < k} or of  the form {rci: i _> k} for some k e {0, . . . ,  N + 1}. 

Note that  Cf and {1 . . . . .  N} are rays since we allow k = 0 and k = N + 1. Also, 
the complement  of a ray is a ray. 

The following result is elementary.  

Lemma 2. Suppose I j, j = 1 . . . . .  N, is a collection of unit intervals in general 
position with { 1 . . . . .  N} ~ 9 ,  the diagram of the collection. Then J ~ ~ if and only 
if J is a ray of r h . . . . .  nN, the permutation obtained from the associated admissible 
sequence. 

3, Combinatorial Characterization and a Proof of Theorem 1 

Now we characterize when an independent  family of  unit cubes (in general 
position) of  a given size exists. 
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Theorem 2. There exists an independent collection o f  N unit cubes in general 
position in R a if  and only i f  there exist d permutations rc ~'~ = rr~ "~ . . . . .  r~ ~, r = 1 . . . . .  d, 

I la t ( , )  j(r) such that every J ~_ {1 . . . . .  N}  can be expressed as L2,= ~ ," , where each is a 
ray o f  rr ('). 

When such permuta t ions  exist, it is easy to construct  an independent  collection 
of cubes for which nt'~ gives the ordering of the intervals obta ined by projecting 
the cubes on to  the rth coordinate  axis. 

Proof. First  suppose At, i = 1 . . . . .  N, is an independent  collection of unit cubes 
in general posit ion in R d, and  let I~ "~ denote  the unit interval obta ined by projecting 
A~ onto  the r th coordinate  axis. Since ~ ' = 1  A i v  ~ f~ we have ~ = ~  I~ "~ # ~ for 
r = 1 . . . . .  d. By L e m m a  1, the admissible sequence associated with the collection 
P~ i = 1, N, is of  the form (1) for some permuta t ion  rt t'~ 7tt( ~, rc~ ~. 

For  any J ~_ { I . . . . .  N} independence of the cubes guarantees  that  J¢ ~ ~ .  Let 
~(r)  denote  the d iagram of the collection I~ '~, i =  1 . . . . .  N. Using Remark  1 
J¢ = ~ =  l J~'~, where each Jt'~ ~ ~(r),  and, by L e m m a  2, each d~'~ is a ray of rc t'~. 
Since the complemen t  of  a ray is also a ray, J is a union of  rays of  the rt t~. 

Conversely,  suppose we can find permuta t ions  n t'~, r = 1 . . . . .  d, with the stated 
property .  F o r  each r, the sequence (1) with n = n t'~ is admissible, so we can apply 
Remark  2 to conclude that  this is the associated admissible sequence for 
some unit intervals I~ '~, . . . ,  lt'~,N in general position. Applying L e m m a  1 gives 
{1 . . . . .  N} e ~(r),  the d iagram for I~ "~ . . . . .  I~ ). 

N o w  define unit cubes A~ = I~ t~ x --- × I~ a~, for i = 1 , . . . ,  N, and let ~ denote 
the d iag ram for the collection of  cubes. Fo r  any J ~_ {1 . . . . .  N} put  J¢ = ~,~= ~ J{'~, 
where each J{') is a ray of n ~'~. It  follows tha t  J = ~,~= ~ J{'~, and each J{'~ is a 
ray of  n ~'~, so L e m m a  2 gives J{')ce ~(r) .  By Remark  1 J e ~ ,  so the cubes are 
independent.  [] 

Proo f  o f  Theorem 1. We prove  this result in two steps. First we show the function 
M(d) defined above is an upper  bound  for the number  of elements in an 
independent  collection of cubes A t . . . . .  AN in general posi t ion in R d. For  such a 
collection use the permuta t ions  rc~t~,..., r~ td~ given in Theorem 2 to define two- 
element sets T~'~= {r~ "~, ~ }  for r = 1 . . . . .  d. Theo rem 2 guarantees  that  each 
singleton {j}, for j = 1 . . . . .  N, is a union of rays (some possibly empty)  of  the d 
permutat ions ,  so that  d = = U r = t  T~') {1 . . . . .  N}. Fur thermore ,  each T ~'~ {~t~'~, n~ ~} 
must  itself be a union of rays. Since N > 2 this implies some distinct T ~s~ contains 
either ~'~ or  n$ J. Thus,  for any r there exists s # r such that  T ~'~ c~ T Cs~ # ~ .  

In graph- theoret ic  terms, the sets T t'~ define a graph  with vertices 1 . . . . .  N and 
d edges, one for each T ~'~ connect ing its two elements, and this graph has the 
p roper ty  tha t  each edge has a vertex in c o m m o n  with some other  edge. It is an 
e lementary  exercise to check that  the n u m b e r  N of vertices in such a graph satisfies 
N < L3dl2j. 

N o w  suppose d is a positive integer and take N = k3d/2J. If  d is even there 
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exist d p e r m u t a t i o n s  of  { 1, 
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. . . .  N} whose  e lements  can  be cons t r a ined  as follows: 

. . . . . .  2 

1 . . . . . .  2 3 

4 . . . . . .  5 

4 . . . . . .  5 6 

7 . . . . . .  8 
7 . . . . . .  8 9 

N - 5  . . . . . .  N - 4  
N - 5  . . . . . .  N - 4  N - - 3  
N - 2  . . . . . .  N - - 1  
N - 2  . . . . . .  N - - 1  N 

Every subse t  of each of the sets { 1, 2, 3}, {4, 5, 6} . . . . .  {N - 2, N - 2, N} is a 
un ion  of rays,  so every J _~ { 1 , . . . ,  N} is a u n i o n  of rays. 

W h e n  d is odd  take  d p e r m u t a t i o n s  of {1 . . . . .  N} as follows: 

7 

N -  
N -  
N -  
N -  
N -  

' ' '  2 

. . '  2 3 
' ' '  5 

. . .  5 6 

. . .  8 9 

6 ' ." N - 5  
6 . . .  N - 5  N - - 4  
3 . . .  N - - 2  
3 . ' -  N - - I  
2 . . .  N - 1  N 

In this case, every subse t  
N - 1, N} is a u n i o n  of  rays, so every index set J is 

In ei ther  case T h e o r e m  2 gua ran t ee s  the existence 
of N = t 3 d / 2 J  cubes.  

of  each of the sets {1,2, 3} . . . .  , {N - 3, N - 2, 
a u n i o n  of  rays. 
of  a n  i n d e p e n d e n t  co l lec t ion  

[ ]  
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