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Abstract. It is NP-complete to recognize whether two sets of points in general 
space can be separated by two hyperplanes. It is NP-complete to recognize whether 
two sets of points in the plane can be separated with k lines. For every fixed k in 
any fixed dimension, it takes polynomial time to recognize whether two sets of 
points can be separated with k hyperplanes. 

!. Introduction 

The following problem is well known in computational geometry. 

Problem (Linear Separability). Given two sets of points with integer coordinates 
P = { rr ~ , . . . ,  Ir p } c R a and Q = {p ~ , . . . ,  p q } c R d, recognize whether there exists 
a hyperplane H = { z e  Rd: zTX=Xo} (characterized by a nonzero vector x e R  d 
and a scalar Xo) that separates the sets P and Q in the sense that for each point 
zri e P, ~r rxi < xo and for each point pie  Q, prxi > xo. 

It is obvious that the linear separability problem can be formulated as a linear 
programming problem, and hence is solvable in polynomial time. When two sets 
cannot be separated by a hyperplane, a natural problem is to find the minimum 
number of hyperplanes that is required for the separation. Very interesting results 
were recently obtained by Edelsbrunner and Preparata [3] for the convex two- 
dimensional case, that is, for the problem of  separating two sets of points in the 
plane by a convex polygon with a minimum number of  edges. Also, [1] deals 
with the problem of  separating two nested convex polygons by a polygon with 
a minimum number of  edges. The problem of  separating two sets of  points in 
R 2 by a circle was first considered in [4]. It turns out that separability of  two 
sets of  points in R d by a sphere can be decided in linear time if d is fixed [8], 
using methods like the one in [5] and [6]. 
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It is interesting to examine the generalization of linear separability where one 
is interested in separating two sets of points with k hyperplanes rather than one. 
We discuss the general case later but first we consider the case k = 2. 

Problem (2-Linear Separability). Given two sets of points with integer coordin- 
ates P = {or t . . . .  , ¢r p} ~ R d and Q = {pl . . . . .  pq} c R d, recognize whether there 
exist two hyperplanes HI = {z: xrz  = Xo} and H2 = {z: y rz  = Yo} (x, y ~ R d, Xo, Yoe 
R) that separate the sets P and Q in the sense expressed by the following 
conditions: 

(i) For each point ~r i c P, both (~ri)rx < Xo and ( i)ry < Yo. 
(ii) For each point p~s Q, either (p~)rX>Xo or (p~)Ty>y o. 

Note that in the definition of  2-linear separability the sets P and Q do not 
play symmetric roles_ Surprisingly, the 2-linear separability problem is NP- 
complete as we show in Section 2. Next we consider the general case of k 
hyperplanes (a precise definition is given in Section 3). We show that already in 
R E the problem of separating two sets of points by k lines (not necessarily forming 
a convex polygon) is NP-complete. We then argue that separability with any 
fixed number of hyperplanes (not necessarily forming a convex polyhedron) in 
any fixed dimension can be decided in polynomial time. 

2. Separability with Two Hyperplanes 

It is easy to show that if two sets of points in R d with integer coordinates are 
separable by two hyperplanes then there exist such separating hyperplanes with 
rational coefficients, so that the size of the binary representation of  the hyperplanes 
is bounded by a polynomial in the size of  the binary representation of  the points. 
Thus it is obvious that 2-linear separability is in NP. 

To prove the NP-completeness of  2-linear separability, we first introduce a 
subclass of  satisfiability problems, which we call reversible satisfiability. 

Definition. Let ~p be a boolean formula and let ~ denote the formula obtained 
from ~ by negating each variable. For example, if ~ = (x v fiv z) ^ (£ v £) then 

= (£ v y v ~) ^ (x v z). The formula ¢ is called reversible if either both ~ and 
are satisfiable or both are not satisfiable. 

An obvious example of  a reversible formula is (x v y v z) ^ (~ v )7 v ~,). The 
reversible satisfiability problem is to recognize the satisfiability of reversible for- 
mulae in conjunctive normal form (CNF). It is easy to prove that the reversible 
satisfiability problem is NP-complete. 

Proposition 1. The reversible satisfiability problem with six literais per clause is 
NP-complete. 
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Proof We show that the regular satisfiability problem for C N F  formulae with 
three literals per clause is reducible to the satisfiability problem o f  reversible 
C N F  formulae with six literals per clause ("reversible 6-SAT") .  The reduction 
goes as follows. For  each variable x, replace each occurrence o f  x by (x~ v x2) ^ 
(Xl V X2)" Similarly, replace each occurrence o f  ~ by (xl v X2) A (X 1 V "~2)" ThUS, a 
clause o f  the form x v 37 v z is replaced by 

[ (x ,  v x~) ^ (~, v ~ ) ]  v [ (y ,  v y~) ^ (y,  v y~)] v [ (z ,  v z~) ^ (z,  v z~)] 

which is equivalent to 

(x,  v x2 v 371 v Y2 v zl v z2) ^ (xl v x2 v )71 v Y2 v zl v z2) 

^ (xl v x2 v Yl v 372 v zl v z2) ^ (xl v x2 v Yl v 372 v zl v z2) 

^ ( x l  v x z  v Yl v Y2 v z ,  v z2) ^ (Xl  v xz  v Yl v Yz v z.l v z.2) 

A (X, V X2 V Yl V )7 2 V Z, V Z2) A (Xl  V X2 V Yl V )7 2 V ~, V Z2)- 

This establishes our  claim. []  

P r o p o s i t i o n  2. The 2-linear separability problem is NP-complete. 

Proof. The p roof  goes by reduct ion from reversible 6-SAT. Let (~:il v ~ v ~ v ~:~ v 
~:~ v ~:~) (i = I , . . . ,  m) be the clauses o f  the reversible 6-SAT problem, where 
~:~,~ U = { u ~ , . . . ,  u , , t ~ , . . . ,  a,} ( i =  1 , . . . ,  m, k =  1 , . . . , 6 ) .  We first note that a 
reversible 6-SAT problem can be formulated as follows. Let x l , .  • •, x,  denote 
variables such that for each j, 6 < ]xjl < 7, with the interpretation that uj is true 
if and only if xj > 0. The clauses are then formulated as linear inequalities as 
shown in the following example. Consider  the clause Ul v ti2 v u3 v ua v ti5 v u6. 
This clause can be represented by the inequality xl - x2 + x3 + x4 - x5 + x6 > -30 .  
I f  the clause is false then xl ,  x3, x4, x6 < 0 and x2, x5 > 0. Since 6 < Ixjl < 7, we 
have xl - x2 + x3 + x 4 -  x5 + x6 < -36 .  On the other  hand,  if the clause is true then 
xl - x2 + x3 + x 4 -  x5 + x6 > -29 .  We now relate the constraint 6 < I x~l < 7 to the 
2-linear separabili ty problem. Let e~ denote  the unit n-vector with 1 in the j th  
posit ion and  O's in all o ther  positions. Together  with every uj we associate two 
points  in the set P, namely,  (~)ej and -(~)ej, and  two points in the set Q, namely,  
(~)e: and -(~)ej. Also, we include the origin in the set P. Now,  if there exist 
hyperplanes  HI and H2 as required (see the definitions o f  2-linear separability), 
then Xo and  Yo are positive since 0 e P. Without  loss o f  generality, we may assume 
Xo = Yo = 1. Since (~)e~ ~ P, we have xj < 7 and yj < 7. Similarly, -(~)ej ~ P implies 
x~ > - 7  and  yj > - 7 .  On  the other  hand,  since (~)ej ~ Q, we have either x~ > 6 or 
y j > 6  and,  since -(~)e~e Q, either xj < - 6  or  y ~ < - 6 .  It follows that e i ther  
- 7  < X; < - 6  and 6 < yj < 7 or - 7  < y: < - 6  and 6 < x: < 7. This means that the yj's 
actually represent the negat ions o f  the corresponding x/s.  Of  course, we also 
include in the set P one point  per each clause as in the following example. Given 
the clause u~ v a2 v u3 v u4 v t75 v u6, consider the inequality x~-x2+x3+x4-xs+ 
x 6 > - 3 0 .  This inequality can be stated as the requirement that the point 
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(~)(--1, 1, --1, --1, 1, --1, 0 . . . . .  0) r belongs to P. Notice that if this point belongs 
to P then we must also have y t - y 2 + Y 3 + y 4 - y s + y 6  > -30.  We have argued 
before that the y / s  represent the negations of  the corresponding x/s.  However, 
since the formula is reversible, we may assume without loss of  generality that 
the clause ffl v u2 v u3 v ua v u5 v if6 is also one of  the conjuncts so the constraint 
y l - y 2 + y 3 + y 4 - y s + y r > - 3 0  does not affect the set of  feasible solutions. To 
summarize the reduction, we associate with each variable two points in P and 
two points in Q. Also, 0 e P, and also with each clause we associate one more 
point in P. [] 

3. Separability with Many Lines in the Plane 

We now turn to the k-polyhedral separability problem with a general k. The 
problem can be formulated as follows. 

Problem (k-Polyhedral Separability). Given two sets of  points with integer 
coordinates P = { l r i , . . . ,  zr p} c R d and Q = {p~ , . . . ,  pq} c R d, and an integer k, 
recognize whether there exist k hyperptanes H / =  {z: (x~)rz = x~} ( x ~  R d, xJo~ 
R , j =  1 , . . . ,  k) that separate the sets P and Q through a boolean formula as 
follows. Associate with each hyperplane ~ a boolean variable ~.i- The variable 

is true at a point z if  (x-J)rz>x~o and false if (xJ)rz<xJo. It is not defined at 
points lying on the hyperplane itself. A boolean formula ~o = ~o(~:l, •. •, ~:k) separ- 
ates the sets P and Q if ~0 is true at each of  the points rr ~ . . . . .  ~r p and false at 
each of  the points p l , . . . ,  pq. 

Notice that we can distinguish here two types of  problems, depending on 
whether the boolean formula is given or not. In the latter case we ask whether 
there exist a formula and hyperplanes that establish the separation. The NP- 
completeness of  the case of  a given formula (in general dimension with k fixed) 
follows from NP-completeness of the 2-linear separability problem. The other 
case can be proven NP-complete  using similar methods and a characterization 
given below the 2-linear separability problem and is hence NP-complete in 
general dimension. It is interesting to consider the complexity of  this problem 
also in fixed dimension. We first prove that already in two dimensions the problem 
with general k is NP-complete.  

Proposition 3. The hyperplanes H i , . . . ,  Hk separate the sets P and Q in the sense 
of  k.polyhedral separability through some boolean formula if  and only if for every 
pair o f  points, ~ e P and p e Q, there exists an l (1-<l<-k)  such that lr and p lie 
on different sides of  the hyperplane lit. 

Proof. Given the hyperplanes H ~ , . . . ,  Hk, consider the boolean variables 
~:t . . . .  , ~k used in the definition of k-polyhedral separability. I f  two points z I, 
z 2 lie on the same side of  each of  the hyperplanes then the truth values of  these 
boolean variables are the same for both of the points. If  the hyperplanes separate 
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the sets P and Q in the sense of the definition then for any two points 7r:, pi  
there is at least one of  the variables that has different truth values at ~r ~ and pJ. 
This implies that at least one of the hyperplanes separates the two points. We 
now prove the converse. Suppose every two points 7r ~, pi are separated by at 
least one hyperplane. Let ~ be any point in P u  Q. Let i t , . . . ,  is denote the indices 
of  the variables ~:i which are true at ~, and let i s+~, . . . ,  ik denote the indices of  
those which are false at ~ ' (0-  < s<_ k). Let 

~ : ~ A ~ , , . . . ,  ~D : ~,, ^ " " "  ^ ~,. ^ ~,,+, ^ " "  "^6, 

denote a boolean formula associated with ~. Obviously, ~o~ is true at ~'. Consider 
the formula 

7 r E P  

Obviously, ~o is true at each point of  P. On the other hand, for every p e Q, ~o, 
is false at p for every ,r e P since at least one of the variables has different truth 
values at ~r and p. In other words, the formula 

--,~ = A - ~  
~ E P  

is true at every p e Q. This proves that the sets P and Q are separated in the 
sense of  the definition through the formula ~o. [] 

We now discuss the complexity of  separability in the plane. We are interested 
in recognizing whether two sets of  points in the plane can be separated by k 
straight lines. A related problem was considered in [7]: 

Problem (Point Covering). Given a finite set of  points in the plane and a number 
k, recognize whether there exist k straight lines such that each point lies on at 
least one of the lines. 

The point covering problem was shown in [7] to be NP-complete. The proof  
can be adapted to establish the following: 

Proposition 4. The problem of recognizing whether two sets of points in the plane 
are separable by k lines is NP-complete. 

Proof. Membership in NP follows from the fact that if two sets are separable 
then there exist separating lines where the length of the binary representation of  
the coefficients is bounded by a polynomial in the length of the binary representa- 
tion of the input points. The proof  of  completeness for NP will be established 
by the construction described in the remainder of  the present section. [] 

Proposition 3 hints that the point covering problem is closely related to the 
separation problem with k lines. The construction here is in a sense an adaptation 
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of  the construction of  [7]. The reduction is from the 3-satisfiability problem. 
Consider a formula ~ = E I ^ ' - ' ^ E , ,  where Ej=x~vy~vzj ,  {xj, yj, z~)c  
{u~, t i~ , . . . ,  u,,  t~,}, j = 1 , . . . ,  m. Without loss of  generality, assume that none of  
the clauses contains both ut and fit for any i. We shall construct a family of points 
and lines in the plane. Throughout the construction process, whenever a new 
point has to be picked (rather than be determined by the previously constructed 
objects), it is chosen to be in general position relative to the previously constructed 
objects. The exact sense of  general position is explained later. We first describe 
the construction for the point covering problem. It is convenient to separate the 
process into steps: 

1. The first step is to pick 2(m + n) "locations" as follows. Together with every 
clause E~ ( j  = 1 . . . . .  m), we associate a point ~ e R 2. We also associate 
with each clause Ej another point ~'j ~ R 2 whose role is explained later. 
Similarly, for every variable us (i = 1 . . . .  , n), we associate a point cr~ ~ R 2 
with ut and a point #t ~ R2 with t~t. 

2. The second step is to determine lines Lt~ and /S 0 as follows. For every i 
( i = l , . . . , n )  and j ( j = l , . . . , m ) ,  if ut~{Xi ,  yj,  zj} then L o. is the line 
determined by cr~ and ~ ;  otherwise, ~ is the line determined by o'~ and 
~'j. Analogously, if a~ c (x~, y~, z)} then Lt~ is the line determined by ~t and 
~j; otherwise/7 0 is the line determined by 6"t and ~. 

3. The third step is to determine for every i (i = 1 , . . . ,  n) a grid of  m 2 points 
t as follows. For every j ( j  = 1 , . . . ,  m) and k (k = 1 , . . . ,  m), denote by 7rjk 

the point of  intersection of  the line L o with the line /S~k. 

t and be in general position We require that all the points of  the type "lTjk "ITj 
(subject to the rules above) in the sense that, except for the lines of the types L~ 
and Le, no other line in the plane contains more than two of  these points, and 
none of  these points lies on any line of those types unless it is required to by 
definition. It is easy to satisfy these requirements, for example, by small perturba- 
tions. Note that the locations are constructed so that for every j ( j  = 1 , . . . ,  m), 
the location 1rj l ieson a line/-,/k if and only i f j  = k and u~ e {x~, yj, zj}; the location 
erj lies on a line Ltk if and only if j = k and at e {xj, yj, z~}. It turns out that the 
minimum number of  lines required to cover the locations "ggjk (in the sense that 
each location belongs to at least one line) is precisely mn. The covering lines 
have to be of  the types L o and/So, where for each i a unique type of  line has to 
be chosen, that is, either {L~l, • • •, L~m} or {/S~,.. . , /St,,}. It follows that the entire 
collection of  locations (that is, including the locations of the type ¢rj) can be 
covered by m n  lines if and only if the given formula is satisfiable. A satisfying 
assignment corresponds to the choice of  type of  lines for each of the "grids." It 
is shown in [7] that the locations can be constructed so that their coordinates 
are bounded by a polynomial in m and n. So far we have essentiall~¢ repeated 
the reduction of  3-satisfiability to point covering. 

For the separability problem we do as follows. We have to construct two sets 
of points P and Q and consider the problem of separating them with a given 
number of lines. We use the convention that points denoted with the letter rr 
belong to the set P while those denoted with the letter p belong to the set Q. 
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Intuitively, the covering problem can be related to the separability problem by 
splitting pcfints of the covering problem into pairs of points to be separated. 
However, the requirement in the separation problem is that every point of P be 
separated from every point of Q and this necessitates several modifications and 
additions to the construction. 

Suppose we have constructed N' = m + n m  2 points 7r~, . . . ,  ~rN as explained 
above for the reduction of 3-satisfiability to the covering problem. We split each 
point 7rj into two points ~rj and pj close to the previous ~rj. A solution to the 
covering problem will yield a set of lines that separate every pair (~rr, Pr) but not 
necessarily every pair (~rr, Pk). To overcome this difficulty, we use auxiliary sets 
of  points pO and QO such that a family of lines separating pO and QO also separates 
every ~r r from every PR such that k ~ j. 

Without loss of generality, suppose the coordinates of all the points are 
divisible by 6 and are pairwise distinct. We now construct auxiliary points as 
follows. Let N = 2N'. Let U -- 6u denote an upper bound on the absolute value 
of the coordinates of any point ~r r. Also, define a sequence {dr) by setting 
d~= U + 6  and dj+~=3dj+2U+5. The set pO consists of all points of the 
forms ( + ( 6 k - 3 ) , + d  r) or ( + d r , + ( 6 k - 3 ) ) ,  where 1 - < k - < u + l  and I<-j<-N. 
We also construct the set Q0 of all the points of one of the following 
forms: ( + ( 6 k - 4 ) ,  +dr), ( + ( 6 k - 2 ) ,  +dr), (+dj, + ( 6 k - 4 ) ) ,  and (+dr, ± ( 6 k - 2 ) )  
with k and j as above (see Figs. 1 and 2). 

We refer below to groups of intervals which we call the auxiliary intervals. A 
group of auxiliary intervals is of one of the four types listed below. Each group 
contains 4N  intervals and includes for a fixed k (k = 1 , . . . ,  u + 1) all the intervals 
of  one of  the forms defining the type. The types are as follows: 

Th+( k ) = { ( (6k -4 ,  dr) , ( 6 k - 3 ,  dr) ): j = 1 , . . . ,  N} 

w {( (6k-3 ,  dj), ( 6 k - 2 ,  dj)): j = 1 , . . . ,  N} 

w { ( ( 6 k - 4 , - d r ) ,  ( 6 k - 3 , - d r ) ) :  j = 1 , . . . ,  N} 

w { ( ( 6 k - 3 , - d j ) , ( 6 k - 2 , - d r ) ) : j = l , . . . , N  } ( k = l  . . . .  , u + l ) ,  

Th_(k) = { ( ( - 6 k + 4 ,  dj), ( - 6 k + 3 ,  dr)): j = 1 , . . . ,  N} 

u { ( ( - 6 k + 3 ,  dr), ( - 6 k + 2 ,  dj)): j = 1 , . . . ,  N} 

u { ( ( - 6 k + 4 ,  -d j ) ,  ( - 6 k + 3 , - d j ) ) :  j = 1 , . . . ,  N} 

u { ( ( - 6 k + 3 , - d j ) , ( - 6 k + 2 , - d j ) ) : j = l , . . . , N  } ( k =  1 , . . . , u + l ) ,  

T~+(k) = {((dj, 6 k - 4 ) ,  (dj, 6 k - 3 ) ) :  j = 1 , . . . ,  N} 

{((dr, 6k - 3), (d r, 6k - 2)): j = 1 , . . . ,  N} 

{((-dj ,  6k - 4 ) ,  ( -dr ,  6k - 3)): j = 1 , . . . ,  N} 

~ . , { ( ( - d r , 6 k - 3 ) , ( - d i , 6 k - 2 ) ) : j = l , . . . , N  } ( k = l , . . . ,  u + l ) ,  

Tt,_(k) = { ( ( d j , - 6 k - 4 ) ,  ( d j , - 6 k  +3)): j = 1 , . . . ,  N} 

u { ( ( d r , - 6 k - 3 ) ,  (dr, - 6 k  + 2 ) ) : j  = 1 , . . . ,  N} 

u { ( ( - d j , - 6 k + 4 ) , ( - d  r , - 6 k + 3 ) ) : j =  1 , . . . ,  N} 

u { ( ( - d r , - 6 k + 3 ) , ( - ~ , - 6 k + 2 ) ) : j = l , . . . , N  } ( k =  1 , . . . ,  u + l ) .  
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Note that altogether we have 4(u + 1) pairwise disjoint groups, each consisting 
of  4 N  auxiliary intervals. 

Proposition 5. 

(i) 8(u + 1) straight lines are both necessary and sufficient for separating the 
sets pO and QO. 

(ii) For ever), family of 8(u + 1) lines separating pO from QO and for each of 
the 4(u + 1) groups @auxiliary intervals Th+(k), th-( k ), T~+( k ), and To_(k) 
( k =  1 , . . . ,  u + l ) ,  all the 4N  auxiliary intervals in the group must be inter- 
sected by the same two lines of the family. 

Proof. (i) First, the 8 ( u + l )  lines { (x , y ) :x=+(6k-3 .5 ) } ,  { ( x , y ) : x=  
+(6k-2 .5)} ,  {(x, y): y = + ( 6 k -  3.5)}, and {(x, y): y = ± ( 6 k -  2.5)} (k = 1 , . . . ,  u + 
1) separate these points so 8 (u+  1) lines suffice. On the other hand, the union 
of  these groups of  intervals consists of 16N(u + 1) intervals all of  which must be 
intersected. It is easy to see that there exists no straight line which intersects 
more than 2N  of  these intervals and hence at least 8(u + 1) lines are required. 

(ii) Altogether we have 1 6 N ( u + l )  intervals which must be intersected by 
8(u + 1) lines. No line can intersect more than 2 N  intervals. Thus, each line must 
intersect exactly 2N  auxiliary intervals. It is easy to verify that if a straight line 
intersects 2N auxiliary intervals then all these intersected intervals must either 
be parallel to the x-axis and have pairwise distinct y-coordinates or be parallel 
to the y-axis and have pairwise distinct x-coordinates. It is also easy to check 
that if a straight line intersects 2N intervals then the same value of the index k 
must be involved in the specification of  all of  these intervals as described above. 
This completes the proof. [] 

The roles of the sets pO and QO will become clear later. Recall that we have 
constructed points ~ = (~, ~j) for the covering problem and have assumed that 
the coordinates of  these points are divisible by 6 and are pairwise distinct. We 
now split each such point in two. Before we continue with the construction it is 
essential first to prove the following fact about the point covering problem. 

Proposition 6. Let S be a set of points in the plane whose coordinates are integers 
between - K  and K. Suppose the minimum number of lines required for covering 
all the points o f  S is s. For each point p ~ S, let Ip denote a small line segment of 
length e < I / (12K +6) centered at p. Under these conditions, the minimum number 
of lines required to intersect all the segments Ip is also equal to s. 

Proof. It is trivial that s lines suffice. Moreover, if all the line segments are 
sufficiently small then s lines are necessary. It remains to show that e < 
1/(12K +6)  is sufficiently small. It suffices to show that for every three noncol- 
linear points Pl, P2, P3 e S, every three points p~ e I,, (i = 1, 2, 3) are noncollinear. 
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Suppose p~ = (a~, b~) (i = 1, 2, 3) are not collinear. Since the coordinates are integer, 
we may assume without loss of generality that 

al a2 a 3 > 1 .  

bl b~ b3 

Consider points of the form p[ = (a~ + e~i, b~ + e2~) (i = 1, 2, 3). In order for these 
points to be noncollinear, it is necessary and sufficient that 

t I 1 l e l  3 
a~+e~ a2+e~2 a3 SO. 

Ibl+e21 b2+e22 b3 + e23 

If [e0[-< e then this determinant is not less than 1 - 6 e  2 -12Ke and hence positive. 
This completes the proof. [] 

Let us now fix 

E ~  
1 

12U+6" 

Without loss of generality, assume none of the lines participating in the solution 
of the point covering problem has slope 1. For each j, let pj = ( ~ -  e, ~b- e) and 
let us redefine rrj = ( ~ + e ,  r / j+e).  Denote the set of these new points ~r: by P~ 
and the set of  the points p~ by Q~. 

Proposition 7. For any set of  8(u + 1) lines separating the set pO and QO, and for 
every j ~ k (I <-j, k <- N) ,  the point ~r: is separated from all the points Pk by at least 
one of the lines in the family. 

Proof. The proof follows from the construction. [] 

Consider the problem of separating the sets P = P ° u  P~ and Q = Q ° u  Q t with 
a minimum number of lines. We know that it takes 8(u+ 1) lines to separate p0 
from Q0. Moreover, such lines also separate pO from Q~ and QO from P~. Also, 
they separate points of Pt from points of Q~ provided they have distinct indices. 
Thus, it remains to separate points of Pt from points of Qt with the same index. 
The problem of separating such pairs is equivalent to the covering problem. We 
know it takes at least mn lines in any case. Moreover, mn lines suffice if and 
only if the given formula is satisfiable. It is important to notice that the 8(u + 1) 
lines that separate pO and QO are of no help in separating points of Pt and Qt 
with the same index. To see this, notice that it follows from our choice of the 
sequence {dj) that if a straight line intersects an interval of the form (~r/, p~) then 
it cannot intersect more than two of the auxiliary intervals. The separation problem 
is related to the satisfiability problem as follows. We will prove that the given 
formula is satisfiable if and only if 8(u + 1)+ mn lines suffice for separating the 
sets P and Q. 
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Proposition 8. 

(i) I f  the formula ~ is satisfiable then the set P can be separated from the set 
Q with 8(u + 1) + mn lines. 

(ii) I f  L <<- 8(u + 1) + mn lines separate P from Q then necessarily 8(u + 1) of 
them separate pO from QO and mn of  them separate P~ from Q~, so 
L =  8 (u+  1)+ mn and the formula ~ is satisfiable. 

Proof. The proof of (i) is obvious. We now prove (ii). Suppose we designate l 
of  the L lines to intersect intervals of the type (wj, pj). Since there are only N '  
such intervals, we may assume without loss of generality that l-< N'. Each such 
line can intersect at most two of the auxiliary intervals. Thus, the designated 
lines intersect at most 21 auxiliary intervals. We are therefore left with at least 
16N(u + 1 ) -  21 auxiliary intervals which require at least 

r l 6 N ( u +  1 ) -  2l] 
~-~, = 8 ( u + l )  

lines to intersect all of  them. But the auxiliary intervals require this number 
of  lines to intersect all of  them in any case. Moreover, no line can intersect 
more than 2N  auxiliary intervals and 21- <- N. It follows that each of these 
8 ( u + l )  lines must intersect at least N auxiliary intervals and hence cannot 
intersect any interval of  the form ( rr i, p~ ). However, we know that the latter intervals 
require at least mn lines to intersect all of  them and this is feasible if and only 
if the formula q~ is satisfiable. This completes the proof. [] 

The proof of Proposition 4 is now established. 

4. Separability with a Fixed Number of  Hyperplanes in 
a Fixed Dimension 

It is interesting to note that if both the dimension of the space and the number 
k are fixed then the k-polyhedral separability problem is solvable in polynomial 
time. This is what we prove in the present section. 

Recall that separation throughout this paper is in the strong sense, namely, 
two sets of points A, B ~ R  a a r e  separated by the hyperplane H =  
{Z E Rd: zTx = X0} if for every a ~ A, a rx < Xo and for every b ~ B, brx > Xo, or 
vice versa. 

Proposition 9. Suppose A and B are sets of  points in R d with integer coordinates, 
and suppose there exists a hyperplane H = {z ~ Rd : yrz  = Y0} that separates A from 
B, assuming y Ta <Y0 for a ~ A. Under these conditions, there exist a hyperplane 
H = {z ~ R d : z rx  = Xo}, a positive rational number r, and integers jA, jn (JA,Jn >- 

1,jA +in <- d + 1) such that: 

(i) For every a e A ,  x ra<-xo-r .  
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(ii) For every b e  B, xrb>-xo+r.  
(iii) For at least jA points a e A, x ra  = x o - r ,  and for  at least ja points b e B, 

x rb  = xo+ r. 

Proof. Consider the following linear programming problem where the unknowns 
are the vector x e  R d and the scalars x0 and r: 

(P) Maximize 

subject to 

r 

x Ta<_ x o - r  

xrb>_xo+r 

- l_<xj<_l  

r ~ 0 .  

( a e A ) ,  

(b e B), 

( j =  1 , . . . ,  d),  

First, note that the existence of  a feasible solution for (P)  with r > 0 follows from 
the assumption of existence of a separating hyperplane. Also, (P) is obviously 
bounded and hence has an optimal solution. Moreover, there exists a basic 
optimal solution, that is, an optimal solution where d + 2 linearly independent 
constraints are satisfied as equalities. At any optimal solution at least one equality 
of the form x~ = :el (1 <-j-< d) has to hold, since otherwise we could increase r 
by multiplying all the inequalities by some number greater than 1. Similarly, 
at least one of  the constraints corresponding to A and at least one of  the 
constraints corresponding to B have to be satisfied as equalities. This completes 
the proof. [] 

Proposition 10. For every fixed k and d, the k-polyhedral separability problem in 
R a can be solved in polynomial time. 

Proof. If two sets P, Q c R a are separable with k hyperplanes then there exist 
k pairs of complementary subsets A~, B~ c p w Q (that is, A, u B~ = P w Q, i = 
1 , . . . ,  k) and k hyperptanes H~ (i = 1 , . . . ,  k) such that H~ separates Ai from B~. 
From the proof  of  Proposition 9, it follows that there exist such hyperplanes that 
satisfy equalities as stated in that proposition, and, moreover, the separating 
hyperplanes can be chosen from a finite set. Each of  the candidate hyperplanes 
is determined (see the proof  of  Proposition 9) by some set of at most d + 1 points, 
together with a choice of  at most d equalities x~ = +1. The number of  such sets 
of at most d + 1 points is of course polynomial in the cardinality of P w Q. Thus, 
the number of  combinations of  k such sets is also polynomial. It follows that 
we can enumerate in polynomial time all the relevant configurations of hyper- 
planes. Furthermore, it takes polynomial time to check whether a given con- 
figuration actually separates P from Q (see Proposition 3). This establishes 
the proof. [] 

Note that Proposition 10 does not rely on the fact that the linear programming 
problem is solvable in polynomial time. In fact, here we have polynomial 
time in the strong sense that it is valid also under the real number model of 
computation. 
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