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Abstract. It is shown that ~(n 2) distinct moves may be necessary to move a line 
segment (a "ladder") in the plane from an initial to a final position in the presence 
of polygonal obstacles of a total of n vertices, and that ft(n 4) moves may be necessary 
for the same problem in three dimensions. These two results establish lower bounds 
on algorithms that solve the motion-planning problems by listing the moves of the 
ladder. The best upper bounds known are O(n 2 log n) in two dimensions, and 
O(n 5 log n) in three dimensions. 

1. Introduction 

The problem of  moving a ladder in two dimensions has attracted considerable 
attention. The problem is to find a sequence of motions, if they exist, that will 
move the ladder from a given initial position to a given final position without 
penetrating known pQlygonal obstacles with a total of  n vertices. A ladder is an 
oriented line segment; it is a one-dimensional object. After the pioneering work 
of  Schwartz and Sharir [9] established that the problem can be solved in poly- 
nomial  (O(nS)) time, several nearly quadratic algorithms were developed [6], 
[7], [5], [12], at least one of  which [5] can probably be reduced to exactly 
quadratic, O(n  2) for polygonal obstacles with a total of  n vertices. Sharir posed 
the problem of  establishing a lower bound on the number  of  moves that might 
be necessary in 1985 [11], as no example was known to require more than a 
linear number  of  moves. This paper  constructs a set of  obstacles that force [~(n 2) 
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moves between a certain initial and final position, thereby settling the worst-case 
time complexity of any algorithm that lists the moves. The construction first 
appeared in [8]. 

The same problem with three-dimensional obstacles (but still a one- 
dimensional ladder) was studied in the fifth Schwartz and Sharir piano movers' 
paper, which established an O(n H) upper bound [ 10]. Recently we proposed an 
O(n 6 log n) algorithm [3], [4], and independently Canny obtained an O(n ~ log n) 
algorithm as a specialization of a more general result [1]. The two-dimensional 
lower-bound example in [8] does not extend directly to three dimensions. We 
construct in this paper a more complex two-dimensional example that does extend 
naturally (although not trivially), and establish that f l (n 4) moves are necessary 
for this extension. 

A gap remains between the lower bound of  f l(n 4) and the best upper bound 
of  O(n  5 log n). We suspect the lower bound is closer to the truth. 

We first discuss the definition of  "simple move," then establish the two- 
dimensional lower bound via two examples, one easy to understand but not 
extensible to three dimensions, and another that is more delicate but does 
extend. Finally we describe the three-dimensional construction and argue for 
its correctness. 

2. Simple Moves 

For the two-dimensional problem, the position of the ladder can be considered 
a point in a three-dimensional "configuration space" of free positions: two 
dimensions to represent the translation of  one endpoint of  the ladder, and one 
dimension to represent its orientation. For the three-dimensional problem, the 
position of  the ladder can be represented by a point in a five-dimensional space: 
three dimensions of  translation, and two for orientation. Let S be the relevant 
configuration space for the problem. A continuous motion of  the ladder is then 
a path in S. We say a motion is simple if it may be represented by an algebraic 
curve in S of  constant degree r. The reason that we choose this definition of what 
constitutes a simple move is that the algorithms proposed for solving the ladder 
motion-planning problems naturally output these types of  moves. The actual 
value of  r is not important as long as it is a constant independent of  n. For the 
purposes of  intuition, it is convenient to think of r=  1, when a simple move 
cannot reverse direction in any dimension. Higher values of  r permit reversal, 
but the number of  reversals is limited by r, because the number of  roots of  an 
algebraic equation is limited by the degree of  the equations. 

Note that the definition of  "simple" is dependent on the coordinate system 
chosen for S. This seems unavoidable. Our bounds hold for any coordinate system 
that represents the translational components of  the ladder's motion in the natural 
Cartesian coordinate system. 

The examples described in the following sections will establish lower bounds 
on the number of  simple moves. 
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3. First Two-Dimensional Construction 

Leven and Sharir observed [5] that the number of  connected components of 
configuration space may be fl(n2). Their construction is shown in Fig. 1: two 
rows of poles A and B between barriers Top and Bot are easily seen to create 
f l (n  2) mutually inaccessible positions for a long ladder. This example establishes 
a lower bound for any algorithm that constructs all connected components of  
the configuration space; but only the component containing the initial position 
needs to be constructed. All algorithms following the cell decomposition or 
retraction paradigms of  which we are aware do construct all connected com- 
ponents, but it is conceivable that sweeping or "wavefront expansion" techniques 
might only construct the one necessary component. So Fig. 1 is insufficient to 
establish a lower bound on all conceivable algorithms. 

We now describe the example from [8], but only at a high level. Understanding 
the basic mechanism is important for the remainder of the paper, but as we will 
supplant this example with another later, there is no need to specify the details 
of  the construction. 

The example is a direct generalization of Fig. 1, except that (a) the fl(n 2) 
mutually inaccessible positions of the ladder are made accessible to one another, 
and (b) in such a way that the accessibility graph between positions is a chain: 
the last position is accessible from the first only by passing through each intermedi- 
ate position. An instance of the design is shown in Fig. 2. It consists of six 
components: three rows of  poles, A, 8, and C, n + 1 poles per row, bottom and 
top barriers Bot and Top, and "spikes" emanating from Top. The A and B poles 
correspond in function to the A and B poles in Fig. 1. Let L be the ladder and 
ILl its length. Both the vertical distance between the C poles and Top, and between 
Bot and the A poles is ]L]+ e. Thus when the ladder is abutting on Top it is free 
of  the C poles, and when abutting on Bot it is free of  the A poles. But aside 
from brief excursions into spikes, it is always confined between two B poles. 

Top 

B-P • • • • • e ~ O  

Bot 

Fig. 1, A set of obstacles that define n 2 mutually inaccessible positions. 
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Fig. 2. A design that requires n 2 moves to reposition a ladder of length L. 

Let As and B~ represent open segments between the ith and (i + 1)th poles on 
the A and B row, respectively. Say that L is in position (Ai, B~) if it intersects 
both As and Bj. The ladder's initial position is (A~, B~) and the final position is 
(A,,  B,). Thus the ladder must hop over each B pole from 1 to n. Because the 
Top and Bot barriers constrain the ladder within the B row, the only way a B 
pole can be jumped is to move the ladder into a spike. Each spike is extremely 
thin, and only permits entrance to a ladder with a specific (A,  Bg) position. In 
order to jump from B~ to B2, the ladder must have position (A,, B~); then it can 
slide into the spike, turn slightly, and slide out in position (A,, B2). In order to 
jump from B2 to B3, the ladder must have position (At, B2); it can then move 
to (A1, B3). To jump from B3 to B4, it must be positioned at (A,,  B3). And so 
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on. Note that the jumps of  the even B poles require the ladder to be in At, and 
the jumps of the odd B poles require it to be in An. Thus for each B transition, 
the ladder must move through the entire A row. This is precisely where f t(n 2) 
moves are forced. 

With the ladder fixed in B~, the ladder can be advanced through the A row 
by moving it down until touching Bot, then rotating as far as is permitted by the 
B and C poles. The spacing of  the poles is designed so that this move jumps no 
more than a constant number of  A poles; for the design in Fig. 2, this constant 
is 4. (This claim is s~apported in [8].) To advance further in the A row, the 
constraining C pole must be jumped. This is accomplished by moving the ladder 
up until touching Top, then rotating as far as is permitted by the A and B poles. 
The C poles are spaced such that just one pole can be jumped by this 
maneuver. 

Assume that r = 1, so that each reversal in direction initiates a distinct simple 
move. Then each advance of four poles in the A row requires two reversals in 
the translational component of the ladder's position, and so two simple moves, 
and each advance of one pole in the B row requires the entire A row to be 
traversed, plus a move into the spike. So the total number of simple moves 
required from the initial position (A~, B1) to the final position (An, B,) is at least 
n(2[n/4]+l) =f~(n2). Since there are only O(n) vertices in the entire design, 
this establishes the claimed lower bound for r = 1. It is clear that larger values 
of r simply divide the number of moves by a constant, so the lower bound holds 
independent of r. 

4. An Extensible Two-Dimensional Design 

The three-dimensional lower-bound construction is essentially an orthogonal 
Cartesian product of the pattern in Fig. 2. The A and B rows of  O(n) holes 
become A and B planes of  O(n 2) holes (formed with O(n) beams crossing in a 
latticework arrangement). A straightforward mixing of two copies of  Fig. 2, 
however, leads to O(n 2) spikes, so that even though f l(n 4) moves are required, 
the input size is N =O(n2),  so that only a bound of f~(N 2) is established. This 
necessitates designing a more complex two-dimensional lower-bound example, 
which, however, generalizes more easily to three dimensions. 

The main idea is the same as in Fig. 2, but without the troublesome spikes. 
The effect of  the spikes is now achieved by replacing Top in Fig. 2 with a Z row 
of holes where Top was, and a new Top barrier where the tips of the spikes 
reached. In effect, the sides of the spikes are removed. See Fig. 3. Now a crucial 
property of  the spikes is lost: the sides of the spikes ensured that L could only 
slide in if it were oriented precisely. In order to guarantee that this property still 
holds without the restraining sides, several other modifications are made. 

First, rather than rows of  poles, we now use rows of segments with hole gaps. 
This gives us more control over the size of  the holes. Second, the holes are not 
all the same size (in the B and Z rows in particular). Third, and most importantly, 
the holes are arranged to satisfy a collection of  visibility constraints. Let Ai, Bj, 
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Top 

C 

Bol' 

Fig. 3. A two-dimensional example that requires n 2 moves, and is extensible to three dimensions. 
The horizontal scale in this figure is greatly magnified. The rightmost and teftmost reference points 
on the C row are not shown. 

Ck, and Zt be holes on the A, B, C, and Z rows. The simplest constraint defines 
what can be seen from Ck, through the B holes, onto the A row: for a given Ck 
and B~, only A~_t, A .  and Aj+~ must be visible. This ensures that L can skip only 
at most one A hole at a time, when moving from Ai_~ to At+t. 

To specify this constraint more precisely, we introduce some notation, and 
make some assumptions. Let a. b~, Ck, and zt be reference points inside holes A .  
Bj, Ck, and Z~. The reference points in each row are evenly spaced, with separation 
1 in the A, B, and C rows, and separation 2 in (each half of) the Z row: 

l a , ÷ ,  - a,I = I b m ÷ , -  - c d - -  1 

and [z~+~- z~[ = 2. The extent of  each hole is specified by a right and left offset 
with respect to the reference point. The right and left offsets for At are (a~, a'~). 
Thus A~={xlai-al<-x<-at+ai}. Similarly, the offsets for Bj, Ck, and Zi are 
( f l j ,  fl~), (~/k, Yk), and (~t, ~I). 

For all ai and bj we require a Ck collinear with ai and bj. If  there are n A and 
B holes, this is easily achieved by having 3 n - 2  C holes. When L is in Bj and 
Ck, it must be able to swing from Ai to Aid:t, but it should not be able to reach 
A~2. Under the assumption that the rows of  holes are separated by equal distance 
(in fact [LI/3) , the constraint that A~±~ is reachable is equivalent to 

yk +2fl~ + a i+l -- 1, 

yk +2fl~+ ai_l--  1, 

and that Ai±2 is unreachable is 

y ~ + 2 f l j + a l + 2 < 2 ,  

Yk + 2/3j + ai-2 < 2. 
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Fig. 4. Constraints between the A, B, and C holes. The dots represent reference points on the A, 
B, and C rows. 

See Fig. 4 for  a derivation o f  the first pair o f  these equations. Al though not a 
priori clear, it will turn out  that  our  constraints may be satisfied with uniformly 
sized holes on the A and C rows. Thus we set a[  = a~ = a for all i and y~, = Yk = 3' 
for all k. The above equat ions are clearly satisfied if 

3' +2flmin+ ot -> 1, (1) 

T + 2flmax + ot < 2, (2) 

where/3mi, and /3m,x are the minimum and maximum values of/3j over all j. 
The more  complex constraints specify what can be seen from Z~, through the 

A holes, onto  the B row. We first explain these constraints informally. From Z~, 
through A1 only, B~ and Bj+~ are s imultaneously visible. This means that if L is 
at (AI ,  Bj), it can move one s *p in the B row. To move the next step from Bj+~ 
to Bj+2, L will have to orient through A, .  This is achieved by separating the Z 
holes into left and right halves. This mimics the e v e n / o d d  alternation achieved 
by the spikes. But now we must  arrange that f rom Z~, through A~ where 1 < i < n, 
no two adjacent  B holes can be seen. Otherwise L could advance in the B row 
without  being oriented precisely through A~ or A, .  This is accomplished by 
distorting the size o f  the Z and B holes, so that both the odd B holes and the 
left Z holes diminish in size from left to right, and both the even B holes and 
the right Z holes increase in size f rom left to right. Now suppose Z~ can just see 
both  Bj and Bj+~ through A~, for some o d d j .  Because the odd  B holes diminish 
in size, the separation between an odd  hole and its neighbor  increases, so that 
Z~ cannot  see two adjacent  B holes through A2, A3 . . . . .  Thus Z~ is only effective 
for  hopping  from B; to Bi+~ when L is oriented through A~. 

We now formalize the preceding discussion. Let 0 < sl < s2 <"  • • < s,/2 < 1 be 
a series o f  real numbers  that  represent the lengths o f  the solid (opaque)  segments 
o f  the B row, interleaved as shown in Fig. 5: the segments separating Bj and 
B~+~ for odd  j get larger, and those for  even j smaller, f rom left to right. Again, 
a l though not  clear a priori, we can choose 

/ 3 2 ; _ , = / 3 2 j - ( 1 - s j ) / 2 '  - for j = l , . . .  ,n /Z,  
(3) 

~ 2 j - -  t • , -#2j+l=(1-s, /2+l_j)/2 for j = l , . ,  n / 2 - 1 .  
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Fig. 5. Reference points and segments in the B row. 

The left set of  zj reference points, which are numbered from right to left, are 
chosen to be collinear with at and (b2j-~ + b2j)/2, which is the midpoint  of sj, 
f o r j  = 1 , . . . ,  n/2 ,  and similarly the right Z reference points are chosen collinear 
with a, and (b2j+b~j+l)/2. To permit L to hop from B2j-1 to B2j when in A1, 
we set 

~j = ~ = s J 2 -  2c~. (4) 

This lets L move a distance of exactly sj in row B, which is the separation between 
the holes, and no more; see Fig. 5. Note that if  L is in B2~-, and Ai, i > 1, it 
would reach the Z row at a location to the right of  Zj. Equation (4) and the fact 
that the s~'s form an increasing sequence imply that the distance L could hop 
would then be insufficient to reach B2~. Another way to look at this crucial 
property,  which we will use in the three-dimensional construction, is as follows. 
Imagine each Z hole to be a line segment light source. Figure 5 shows that the 
light the Z holes cast through the A~ hole onto the B row, precisely coincides 
with the opaque segments sl,  s2, s 3 , . . . .  The light the Z holes cast through any 
other hole Ai, i > 1, forms the same pattern, but shifted 2(i - 1) units rightward. 
Thus the light from ZI projects to a length of Sl, but this falls on an opaque 
segment of  length si, and since s~ < s,, it is too small to connect the adjacent 
holes on the B row separated by s ,  Thus the shifted pattern nests inside the 
unshifted pattern because of the monotonic increase in the s~ sequence, ensuring 
its ineffectiveness. 

There is one further constraint. In order to keep the Z holes separated, we 
must have ~+~j+~ < 2  and, on the other hand, the Z holes must have positive 
length. Equation (4) permits these constraints to be written as 

0 < S t a i n / 2  - -  2a  < S m a x / 2  - 2a  < 1. (5) 

Equations (1)-(5) represent a series of  constraints on the dimensions of  the 
holes: equations (1) and (2) interrelate the a,/3, and 3' dimensions, and equations 
(5), (3), and (4) relate a to s~,/3 to si, and 3' to s~, respectively. Although it is 
not clear that there must be a solution to these constraint equations, Fig. 3 
illustrates a solution. I f  we let the si sequence be 0.2, 0.3, 0.4, then Smi, = 0.2 and 
Sma~ = 0.4, and equation (3) implies that/3max = 0.4 and /3mi, = 0.3. I f  we further 
choose a =0.04 and 3' =0.4, then the constraints of  equations (1), (2), and (5) 
are satisfied. Figure 3 was designed with these parameters,  which will be used 
again in the three-dimensional design. 
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Finally, it should be mentioned that the horizontal scale in Figs. 3 and 5 is 
greatly magnified: it is necessary to squash the design horizontally so that the 
rotation of  the ladder is negligible, negligible in the sense that the rotation is 
insufficient to permit the ladder to fit properly between two rows of Fig. 3 that 
are separated by 2[L[/3. A bound of cos-~(2/3)= 48.2 ° on the deviation from the 
vertical suffices, and is easily achieved. 

5.  T h r e e  D i m e n s i o n s  

5.1. Coarse Description 

We now come to the three-dimensional construction. We first describe it infor- 
mally before plunging into the details, which are a bit complicated. The main 
idea is to replicate Fig. 3 n times, roughly mixing two copies orthogonally. The 
absence of  spikes allows the mixing to be accomplished with O(n) polyhedron 
vertices, avoiding the problem that arises with Fig. 2. The construction consists 
of  six parallel planes, each an exact counterpart of a row in Fig. 3; see Fig. 6. 
Planes A and B each have O(n 2) holes, determining O(n 4) positions of  the ladder. 
As before, we design the environment so that these positions are accessible to 
one another only through a single path, depicted in Fig. 7(a) and (b): the ladder 
must traverse every hole on the A plane in the snaking path shown in Fig. 7(a) 
for each step in the B plane; the path in the B plane is a similar path. 1 The 
design of  the holes on the A plane is shown in Fig. 8. As before, movement 

J Top // 

........ Z / 

/ A / 

/ ..... i B / 

C / 

Sot  / 

Fig. 6. The planes of the three-dimensional design. 

In [3] we chose to make these two paths orthogonal, but the design is a little simpler if they are 
parallel. 
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Fi~° 7. 

(a) 

..... i 

(b) 

Paths on the A (a) and B (b) planes. Ati and B H are the upper left endpoints of each path. 

through the A plane is effected by sliding the ladder down to touch Bot through 
the auxiliary C plane, shown in Fig. 9. A set of  visibility constraints ensure that 
each C hole can only see at most three horizontally adjacent A holes through 
the B plane. This forces motion through the A plane to be horizontal. But notice 
that the extreme holes to the right and left on the A plane are stretched vertically; 
this permits the horizontal pieces of  the path  to link up as in Fig. 7(a). The result 
is that, with the ladder through any fixed B hole, it can move from A~ to Ann 
in O(n 2) moves, where Aij is the hole in the ith row and j th  column on the A plane. 

As in two dimensions, the design of  the B and Z plane holes is more 
complicated. As before, the Z holes are partit ioned into two groups, one to be 
used when L is in AH, and the other when in An.. And as before, the two groups 
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Fig. 8. The A plane. 

effectively link only every other B hole, forcing complete traversal of the A plane 
between every two moves on the B plane. The mechanism is essentially the same: 
the size of  both the Z and B holes vary in a systematic manner so that a particular 
left Z hole is only effective for connecting two horizontally adjacent B holes 
when the ladder is through AN. The same Z hole cannot see two adjacent B 
holes through any other A hole because of  the size variation. An exception occurs 
with the first column of A holes, which is handled by offsetting AH as shown in 
Fig. 8, leaving AH the only hole in the first column. All these constraints can be 
expressed with a collection of visibility equations, similar to those detailed 
in the previous section, whose solution leads to the B plane design shown in 
Fig. 10, and the Z plane shown in Fig. 11. 

5.2. The Design in Three Dimensions in Detail 

It seems unfortunately necessary to describe the construction in some detail in 
order to establish that it works as described. Avoiding "shortcuts" in the paths 
in Fig. 7 is a delicate affair, and requires an argument. The reader uninterested 
in the details can skim the equations below and depend on the figures for 
intuition. 

5.2.1. Notation. The four planes A, B, C, and Z, are parallel and separated by 
ILl~3. Let A o, B o, C~j, and Z~j represent the holes (as sets) on the planes in the 
ith row and j th  column. (We will not try to use distinct subscripts for each plane.) 
Each hole is a rectangle. Let a~j, b~j, c0, and z o be reference points inside the 
holes Aij, B 0, C 0, and Zo, respectively. These reference points are not necessarily 
in the center of the holes; our design will place them in the center on the A and 
C planes. The reference points are evenly spaced on all four planes, with 
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F i g .  9 .  T h e  C p l a n e .  T h e  o u t l i n e  o f  t h e  s q u a r e  c o n t a i n i n g  t h e  A h o l e s  i s  s h o w n  t o  e s t a b l i s h  s c a l e .  

sepa ra t ion  1 on all bu t  the  Z p lane ,  b o t h  hor izon ta l ly  a n d  vert ical ly,  a n d  a 
hor i zon ta l  sepa ra t ion  o f  2 on  the  Z p lane  a n d  1 vert ical ly:  

la ,+l j  - a,~t = lb,+~.j - bot = Ic,+lj  - col = 1, 

ta,,j+~ - aol = Ib,j+~ - bol = Ic,j+, - col = 1, 

Iz,+l.g - zol = 1; Iz,,j+l - zot = 2. 

(There  are  a few limits on  the ranges  o f  indices  for  which  these equa t ions  hold ,  
bu t  these will b e c o m e  c lear  later.) 

T he  ex ten t  o f  each  ho le  is specif ied by  fou r  offsets with respect  to  its re fe rence  
(0)  _ (1)  0 l ~ 2 )  _ (3)  poin t .  The  f o u r  offsets fo r  A o are  ot 0 , u o , u o , where  the supersc r ip t  (k)  

indicates  that the direct ion o f  offset is at an angle  o f  k~r/2 with respect to the 
hor izonta l ,  as s h o w n  in Fig. 12. Similarly,  the offsets for Bo, C~:, and  Z~: are ,.,: , 
3'~ ), S0r(k), respectively,  k = 0 ,  1, 2, 3. Thus the ho le  At; is the set o f  points  

{ ( x , y ) l a o  _(2)< (o) a ~ ) < y < _  - t l h  --u~j - - x < - - a o + a  o , a  O -  ao - raO I. 
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24 =0 

3 

F i g .  12. Def in i t ion  o f  d i rec t ion  supersc r ip t s .  

5.2.2. Design of the A Plane. It will develop that the various constraints may 
be satisfied with all the holes on the A plane squares, except for A2i,2 and A2i-~,,-~, 
i = 1 . . . . .  n/2. Thus we set 

ot~?) =° t0(2)  _-- of(O) 

(1) _ _ ( 3 )  _ O r ( I )  = or(O) 
O t i j  - - o l i j  - -  

or(l)  _ ~(3) _ or( l )  2 i - l , n - I  - -  tx 2 1 , 2 -  

/ (3)  _ ~ ( 1 )  _ 0/(3) 
2 i - l , n - I  - -  t'~ 2 i , 2  - 

for all (i , j) ,  

for all (i , j)  except (2i, 2) and ( 2 i -  1, n - 1), 

for i =  1 , . . . ,  n/2, 

for i = l , . . . , n / 2 .  

The complete layout of  the A plane is shown in Fig. 8 for n = 7. Note that A,~ 
is the only hole in the first column, and A, ,  is the only hole in the last column. 
This feature of the design is crucial and will be used in Section 5.3 below. 

5.2.3. Design of the C Plane. For each pair of reference points on the A and B 
planes a U and bkt, we require a hole and reference point c,s on the C plane. 
Naively this may seem to require O(n 4) holes on the C plane, but in fact (3n - 2 )  2 
holes suffice, as illustrated in Fig. 9. We will see that, just as in the two-dimensional 
construction, the offsets in the C plane may be chosen equal in the horizontal 
direction, and also in the vertical direction: 

~/~?) (2) - -  = y q  - -  y (°) ,  

y ( l )  y~: )  = y ( l )  /j ~ 

These equations hold for all (i,j). Thus all the holes on the C plane are rectangles 
centered on the reference points. 

The motion of  L through the A plane is largely horizontal, as illustrated in 
Fig. 7(a). When the ladder is moving horizontally through the A plane, the 
constraints relating the A, B, and C hole horizontal dimensions are the same as 
equations (1) and (2) in the two-dimensional construction: 

y(°) + 2/3(m°i)n + a (°) ----- 1, 
(0 ) - - , - .~ (0 )  - -  ( 0 ) ~ - ,  

"~ "t" Z/O max "t" ~ < - Z .  

(6) 

(7) 
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Here 

f l ( 0 )  _-- : - roW) R!?)) 
m i n - - l l . l l l l ' t p 0  , , . . - [ j  j ,  

• ( o )  . . . . .  to(o) R!?)I 
m a x  - -  l l l  i ~ A ~ p / j  , r "  13 J "  

Equation (6) says that even for the smallest hole on the B plane, the C holes 
are big enough to permit the ladder to move from one A hole to either horizontal 
neighbor, and equation (7) says that even for the largest hole on the B plane, 
the C holes do not permit the ladder to move beyond the immediate neighbor. 

Vertical motion of  the ladder on the A plane is usually forbidden, except 
when j = 2 or j = n -  1, when motion between two vertically adjacent A holes is 
permitted. These constraints can be phrased as 

Here 

y~l)+ 2fl ") + a (') < 1, 

y ( t )+2~(I )+  ct(3)-> 1, 

T(l)+2flc1)+ a(3)< 2. 

R(3) 
~--- t-" m i n  r "  m a x  r "  m a x  

(8) 

(9) 

(lO) 

because we will choose to make the B holes uniform in the vertical direction. 
Equation (8) says that vertical motion in the A plane is not usually possible 
(when the relevant offset is at1)), and equations (9) and (10) are the counterparts 
of  (6) and (7), permitting motion when the larger ot (3) is the relevant offset. 

5.2.4. The Des ign  o f  the B and  Z Planes. The design of the B plane is the most 
complex, and must be considered in conjunction with the design of  the Z plane. 
The ladder is to move through the B plane mostly horizontally, as shown in 
Fig. 7(b). While it is moving horizontally through a row of B holes, it is also 
moving horizontally through a row of Z holes, and the design of these B and Z 
rows follows the two-dimensional design of the Z and B rows precisely. 

Again, therefore, let 0 <  s~ < . . .  < s,/2 < 1 be a series of real numbers that 
represent lengths of  opaque portions in a B row, interleaved as 

S l ,  S n / 2 ,  $2 ,  S n / 2 - 1 ,  • . • , S r l / 2 - 1 ,  S2 ,  $ . / 2 ,  Sl  " 

This determines the /3 offsets in the horizontal direction as follows (compare 
equation (3)): 

j • ( O )  _ f q ( 2 )  i ,2j-I- ~,~,2j - (1 - s ~ ) / 2  for 

3 ( o )  _ t ~ ( 2 )  ( 1  , . 2 j -  ~ . ~ . 2 j + ,  = - s . /2+,- j . . .  

j = 1 . . . .  , n / 2 ,  

for j = l ,  . . , , n / 2 - 1 .  
(11) 
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By analogy with equations (4) and (5) choose 

el °)= r~ >= ss12-2,~ ~°) 

and require 

0 < s m i . / 2 -  2a  (°) < 8max/2 -- 2a  (°) < 1. 

(12) 

(13) 

This completely specifies the design of  the B plane in the horizontal direction, 
and specifies the majority of  the design of  the Z plane in the horizontal direction. 

Finally, consider the vertical motion of  the ladder in the B plane. It should 
only be possible between every other pair o f  holes in the first and last B columns; 
see Fig. 7(b). This is achieved by two special-purpose columns of  holes on the 
Z plane, one for each grouping of  Z holes. Figure 13 shows one half o f  the Z 
plane in more detail than Fig. 11; the leftmost column of holes in this figure are 
the special holes. Choose the vertical opaque separations between the B rows to 
be uniform: 

for all i,j. I f  the special purpose Z holes are Z~,,., Z2,,., Z3 . . . . . . .  in the upper  
left grouping, then 

) , ( i )  _ ( 3 )  _ 
~ , .  = 7i,, -- (1 --2/3(1))/2-- 2c~ <1) (14) 

D 8 

f':"l 
D B 

D B 

D D 

0 B 

F i g .  1 3 .  

0 8 
fv-q 

0 0 
Upper left half of the Z plane, detail from Fig. 11. The dots are the ~',j reference points. 
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and similarly for the lower right grouping. The vertical spacing for the remaining 
holes in the Z plane is uniform. 

This completes the specification of  all the holes on the four planes, and all 
the constraint equations among their dimensions. 

5.3. Correctness of the Three-Dimensional Design 

There 

(1) 
(2) 

(3) 
(4) 
(5) 

are five aspects to a proof  of  correctness of  this design: 

The constraint equations have a solution. 
The ladder can move from (An ,  BH) to (A, , ,  B, , )  by the path ~r described 
by Fig. 7. 
No path other than ~ between these two positions is possible. 
The number of  simple moves along rr is O ( n 4 ) .  

The entire construction only requires O(n) vertices. 

Much of the correctness argument is implicit in the description of the construction, 
but it will be worthwhile to review it explicitly as a summary. 

(1) The Equations Have a Solution. The constraint equations are equations 
(6)-(14). It is not at all obvious that they have a solution, as they are tightly 
coupled. But it is easy to check that the following assignments satisfy all equations: 

a (°) = ot (I) = 0.04; a (3) = 0.4, 

3~(°) = 0.4; y(~)=0.1, 

Smi n = 0.2; Smax = 0,4, 

o(o) - 0 4 ;  /3(~) = 0.3. / 3 ~ .  = 0 . 3 ;  . m a , - -  . 

(15) 

All the figures were drawn using the sequence sl = 0.2, s2 = 0.3, s 3 = 0.4; to obtain 
designs with larger values of  n, the range between smi, and Sm~x can be partitioned 
into n equal length parts. 

It is important to mention that the choice of  parameter  values in equations 
(15) satisfy all the constraints inequalities "with room to spare" in the sense that 
the absolute value of inequalities is strictly greater than zero. We will exploit this 
"slack" in (5) below. 

(2) The Path ~r Is Possible. First consider the ladder fixed in some B hole 
B o. Then equation (6) guarantees that L can move horizontally through the A 
plane as in Fig. 7(a), and equation (9) guarantees that it can move vertically 
when in the taller A holes. Thus the path through the A plane is possible. 

Next consider the path through the B plane. Horizontal motion is guaranteed 
by alignment of  a Z hole through A~I or A, , ,  and a choice of  dimensions of  the 
Z and B holes through equations (11) and (12) to yield the alternating sequence 
of  sj's as horizontal hole separations on the B plane, as well as the movement 
permitted by the Z hole. Vertical motion is guaranteed by choosing the B plane 
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I H I I H  I 1 ~  I 
I ~  I I H  IIL~ I ~  
I H II N !1 ~ I 
I L~ I! E0 11 L~ I ~  
! l ~ !  l~ ! 1 ~  I 
I L~ IIL~ IIE~ IF-1 

Fig. 14. Projection of Z holes through AI~ onto the B plane. 

design uniform in the vertical direction, and by placing an extra set of holes on 
the Z plane dimensioned according to equation (14). The placement of these 
special Z holes restricts vertical motion to the first and last B columns. 

Another, perhaps more revealing, way to view these relationships is to imagine 
the Z holes as light sources. Their projection through A~ is shown shaded in 
Fig. 14: this projection, and the corresponding one through A, , ,  are precisely 
sufficient to permit traversal by the path in Fig. 7(b). Thus the path is possible. 

(3) No Other Path is Possible. We now have to show that no "shortcuts" to 
zr are possible. First consider motion through the A plane, with the ladder fixed 
in some B hole. Equation (7) restricts horizontal motion so that from Au, Aij±2 
cannot be reached. Thus the longest horizontal motion L can make is from Ai.j-i 
to Aij+t. Equation (8) prevents vertical motion when the ladder juts through any 
of  the smaller A holes: the latitude permitted by the C holes is insufficient to 
reach A~±Ij from A o. Equation (9) permits vertical motion for the larger A holes, 
and equation (10) disallows vertical motion for these holes to connect more than 
A2i,2 with m2i+l,2. Note that because the larger A holes are larger only downward 
but not upward (see Fig. 8), equations (9) and (10) are only relevant for downward 
connections, which limits the vertical path to just that depicted in Fig. 7(a). This 
establishes that the path through the A plane cannot be shortcut. 

Now consider the path in the B plane as shown in Fig. 7(b). Horizontal motion 
in the B plane follows the same logic as the two-dimensional construction: 
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equations (11) and (12) permit no motion except when L is aligned through A,~ 
(or A,n). This may be clearest when phrased in terms of the light projection 
analogy. Figure 14 showed the projection of lighted Z holes through Atl .  When 
projected through any other A hole of the same size, the projected pattern is 
identical but shifted right and down. See Fig. 15. Notice that because AI, is the 
only hole in the first column, the pattern m u s t  be shifted rightward; shifting only 
down would permit unwanted shortcuts, which is the (promised) motivation 
behind isolating A1~ and A,,  in their columns. But when the pattern is shifted 
right and down, the vertical connections permitted by the special Z holes Zim 
move off the relevant section of the B plane to the right, and the horizontal 
connector projections nest just as they did in the two-dimensional construction, 
as shown in Fig. 15. Thus the shifted pattern is useless for connections, and so 
permits no shortcuts. This is the key idea of  the entire design. 

There is a special case to consider, however. When the projection of  the Z 
holes is through one of  the larger A holes, the images are enlarged. But note that 
these A holes are larger only in the vertical direction, so the enlargement is solely 

Mr-G !-:-I i-G 

0 B 
Fig. 15. Shifted projection of Z holes onto the B plane. 
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vertical. But this just lengthens the pattern shown in Fig. 15 in the vertical direction 
without otherwise altering it, and it is clear that this enlargement is harmless in 
that it permits no shortcuts. 

Vertical motion in the B plane is controlled by the special Z holes, which, as 
we have seen, only project onto the B holes through At~ or A, , .  So no other 
vertical motion than that shown in Fig. 7(b) is possible, thus showing that this 
path through the B plane is the only one possible. And this establishes that ~r is 
indeed the only path from (A,~, B,,) to (A,,,, B,,).  

(4) The Number  of  Simple Moves is O(n4). Equation (6) restricts the ladder 
to hop at most one A hole in its horizontal movement.  Thus at least 2(n2/2) 
reversals of  motion orthogonal to the A plane are required to make one traversal 
of  the A plane. Equations (11) and (12) restrict motion through the B plane to 
one hole per A plane traversal. This leads to O(n 4) translational motion reversals 
from initial to final position, which requires O(n 4) simple moves for any fixed 
algebraic equation degree r. 

(5) Only O(n)  Vertices are Required. We have to show that the O(n 2) holes 
on each plane can be constructed with only O(n) vertices; otherwise our bound 
of  n 4 moves might only be N 2 as a function of the input size N. But this is easily 
accomplished: the B and C planes are so uniform that it is obvious that O(n) 
rectangular faces (each of  four vertices) placed orthogonally in a latticework 
arrangement bound the desired holes. The A and the Z planes are a bit more 
complex, but they only have a linear number  of  nonuniformities at their 
boundaries, so they may still be constructed with O(n) vertices. 

This establishes the result when the obstacles may be faces that overlap in a 
plane. But if we insist that the obstacles be disjoint nondegenerate polyhedra, 
then an additional argument is required, as it is not possible to form truly 
two-dimensional holes with such obstacles. 

Suppose we bound the holes by rectangular beams (each of  eight vertices) of  
thickness 8 > 0. Consider one hole, say A 0, so bounded. Then the effective 
horizontal size of  A o is smaller than determined by - ~o~ _ (2~ u~ and u o , smaller by an 
amount  dependent  on the angle ¢ by which the ladder deviates from the vertical. 
The shrinkage is e = 8 tan ¢ from both sides, so that the horizontal extent of the 
hole is effectively 

_ ( 2 ) .  ( 0 )  _ E a i j  - -  u~ i j  T ~, <-- x <-- a i j  + oe i j  

We can arrange for e to be as small as we wish by squashing the design so that 
the maximum value of  ~o is near zero, and choosing 8 small. 

Now we invoke the observation that the parameters in equation (15) satisfy 
all constraints with "slack." Although an explicit calculation would be difficult, 
it should be clear that for those parameters,  e may be chosen small enough so 
that all constraints are satisfied, albeit with less (but still nonzero) slack. For in 
the limit as e-* 0, the equations are strictly satisfied, and the amount  by which 
they are satisfied is continuous in e for small e. 
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6. Conclusion 

We have constructed sets of  obstacles composed of  O(n) vertices that force ~ ( n  2) 

simple moves of  a ladder in two dimensions, and f l(n 4) simple moves in three 
dimensions. We have not attempted to generalize the constructions to d- 
dimensional space. A naive extrapolation of our bounds suggests that f~(n 2a-2) 
is the lower bound to prove. 

The most interesting open problem posed by this work is to close the gap 
between the lower bound of f l(n 4) in three dimensions and the best upper bound 
of O(n 5 log n). 
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