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Nonobtuse Triangulation of Polygons 
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Abstract. We show how to triangulate a polygon without using any obtuse triangles. 
Such triangulations can be used to discretize partial differential equations in a way 
that guarantees that the resulting matrix is Stieltjes, a desirable property both for 
computation and for theoretical analysis. 

A simple divide-and-conquer approach would fail because adjacent subproblems 
cannot be solved independently, but this can be overcome by careful subdivision. 
Overlay a square grid on the polygon, preferably with the polygon vertices at grid 
points. Choose boundary cells so they can be triangulated without propagating 
irregular points to adjacent cells. The remaining interior is rectangular and easily 
triangulated. Small angles can also be avoided in these constructions. 

I. Introduction 

Can a polygon be tr iangulated without using any obtuse angles? This problem 
has been known for some time and solved manual ly  in particular cases. For  
example, in an early paper  [12] on discretizations of  partial differential equations 
MacNeal  says in an aside, 

The network should be planar  and none  o f  the interior angles of  the triangles 
should  be obtuse. It may  be necessary to insert a few addit ional points in 
order  to fulfill the last condition.  

A literature search (by looking for the keyword " t r iangulat ion"  in on-line indices) 
and asking experts did not uncover  any algorithms guaranteed to produce a 
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nonobtuse triangulation. Indeed, doubt was expressed as to whether such triangu- 
lations were even possible in general. 

It turns out that elementary constructions suff~ce. Exactly how complicated 
the algorithm is depends on how many extra conditions are imposed dealing 
with small angles and interfaces, but no tools beyond high school geometry and 
trigonometry are needed. 

To see why this problem is interesting, imagine solving a partial differential 
equation, say Au =f ,  on a domain P. The finite element method chooses some 
approximating space A and finds the function u ~ A such that for all vE A, 
Se vAu  = Sevf.  This leads to a matrix [~p V~biV(b~],,j involving basis elements ~b ~ a .  
Frequently A is composed of  piecewise linear functions on a triangulation of P, 
with one degree of freedom at each triangle vertex. It is known [17, p. 78] that 
if there are no obtuse angles in the triangulation then for i # j  these integrals are 
negative and consequently the matrix is Stieltjes. Recall that a Stieltjes matrix is 
a symmetric positive definite matrix whose off-diagonal entries are all nonpositive. 
This property is important in the analysis of  iterative methods for solving the 
linear system; for example,  it implies that block Gauss-Seidel  has better 
asymptotic rate of  convergence than point Gauss-Seidel.  

Discretizations such as the "box method"  [ 18, p. 19] particularly benefit from 
nonobtuse triangulations. Consider Fig. 1.1, taken from [4]. The integrals men- 
tioned above are replaced by quadrature rules in the following way. Form 
perpendicular bisectors to the triangle sides, drawn as dashed lines in the figure. 
Integrate Au over the dashed box and use the divergence theorem to express as 
an equivalent line integral, along the boundary,  o f  the normal derivative of  u. 
For each segment of the boundary,  the normal derivative is estimated by a centered 
difference of function values at the two triangle vertices defining the bisector 
segment. It is desirable that bisectors corresponding to two sides of a triangle 
meet with that triangle; this will occur if and only if the triangle is not obtuse. 
Other schemes [13] have been devised that allow obtuse angles, but it is not clear 
whether they are as accurate. 

The only algorithm for nonobtuse triangulation we are aware of  is Bank's 
T R I G E N  [3]. This routine uses heuristics with a single sweep across the polygon, 
starting with an initial distribution of points along the boundary. It is effective 

Fig, I.I. A box formed by perpendicular bisectors. 
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in practice but does sometimes fail. In such cases one starts again with a different 
initial distribution or corrects the triangulation manually. 

Another feature of T R I G E N  is that it tries to avoid small angles. It used to 
be thought that this was necessary for convergence of the finite element method, 
but [1] showed that it suffices to avoid large angles. Nevertheless, small angles 
may lead to ill-conditioned matrices [6], so it is best to avoid them. 

If  vertices are allowed on the sides of triangles, as in Fig. 2.1 below, then the 
existence of an acute triangulation is obvious and, moreover, a nearly equilateral 
triangulation is possible [8]. Unfortunately, continuity of linear elements is lost. 
Alternatively, if all the vertices of the triangles are preassigned, as in scattered 
data interpolation, then triangulation algorithms are available [5], [7], [9], [ 11], 
[16]. Several of  these algorithms compute the Voronoi tessellation, which parti- 
tions the plane into polygonal regions by labeling an arbitrary point in the plane 
according to the closest vertex. Connecting vertices in adjacent regions gives the 
Delaunay triangulation. Actually the +'no obtuse angles" is only a sufficient 
condition for the matrix to be Stieltjes. The necessary condition is that when two 
triangles adjoin in a side, the two angles opposite the side sum to at most 180°; 
the Delaunay triangulation achieves this weaker condition. But such compensa- 
tion does not protect the integrals ~ vf  when f is nonlinear [10]. So we still seek 
a nonobtuse triangulation. 

In this paper  we give two solutions of  increasing complexity. The first assumes 
that the vertices of  P lie on a square grid. The second removes this hypothesis 
and, moreover,  avoids any angles smaller than 13 ° . Some details of  the proof of  
the second method are omitted; see [2] (available from the authors). 

2. The Problem 

Given a simple polygon P with vertices {v~, v2 , . . ,  v,,}, add points {v,+~, . . . ,  /"m} 
inside P or on its boundary and connect the points with straight line segments 
to triangulate P. No resulting triangle should contain an obtuse angle. By a 
triangulation we mean a set of  triangular regions such that the union is P; any 
two distinct triangles intersect along one full side, in a single point, or not at all; 
and the set of  vertices of  all the triangles is exactly {vi}~ . . . . .  Figure 2.1 shows 
two triangulations that are illegal because of a point on a side and an obtuse 
angle, respectively, and Fig. 2.2 illustrates a legal triangulation. 

Fig. 2.1. Illegal triangulations. 
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Fig. 2.2. A legal triangulation of a quadrilateral. 

3. Solution 1 

A natural approach is to partition the polygon. The trick is to divide in such a 
way that each subproblem can be solved independently and to prove for each 
subproblem that all cases have been considered. 

Lemmu 1. I f  the vertices of  the polygon lie on a square grid and i f  none of  the 
interior angles of  the polygon are acute, then a nonobtuse triangulation exists. 

Proof. Refine the grid until the cell diagonals are smaller than the minimum 
distance between nonintersecting boundary segments. Introduce points vi at the 
grid intersection points in the interior of  P and everywhere that a grid line 
intersects the boundary of  P. Each square cell in the interior of P is triangulated 
by adding a diagonal, leaving only cells intersecting the boundary to be dealt 
with. We will introduce some further points inside such cells and on the boundary 
of P, but not on the sides of  the cells. Thus each cell is independently triangulated 
without propagating points from one cell to a neighbor. 

If more than one boundary segment passes through a cell, the segments must 
be adjacent in order not to violate the refinement criterion. But they cannot have 
an acute interior angle. Therefore, they have an acute exterior angle, and the 
regions of P bounded by these segments and the cell boundaries are disjoint. 
The triangulation strategy below can be applied independently to the two regions, 
each of which has only one boundary segment within the cell. We may assume 
without loss of generality that the upper right corner of the cell lies inside P and 
the sides of  the cell have length 1. The boundary of P will be indicated by a 
solid line and the cell by dashed lines. 

Figure 3.1 illustrates two easy cases when the boundary hits the top and right 
or bottom sides. The bottom angle is acute because its vertex lies outside a 
semicircle drawn on the opposite side of  the triangle. 

When the left and bottom sides are hit, split the analysis into subcases based 
on the location of the point q determined by vertical and horizontal lines extending 
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from intersections o f  the boundary  and the cell sides. Without  loss o f  generality, 
we may assume that q lies on or below the diagonal  f rom the upper  right corner 
to the lower left corner  o f  the cell (see Fig. 3.2). Draw a semicircle based on the 
right side of  the cell and another  diagonal to form three regions a, b, and c in 
which q can tie. 

In Subcase (a) we have x<-y and hence a<-fl. So y = 9 0 ° + ~ - f l - < 9 0  °. To 
show 6 -< 90 °, note that a semicircle based on the opposite side has radius at most  
x/5/4 and center at most  ~ away from the right side o f  the cell. In Subcase (b), 
y > 90 °. In t roduce  a point  in the interior o f  the cell at the intersection o f  lines 
drawn to form five right triangles. 6 < 90 ° because y < ½. Similarly, in Subcase 
(c), the two nonright  triangles are acute (Fig. 3.3). [ ]  

Theorem 1. I f  the vertices of  the polygon lie on a square grid, then there exists a 
nonobtuse triangulation. 

Proof For each vertex v~ with an acute interior angle, cut off a corner by adding 
new vertices vl and v',' so that the triangle {v~, vl, v'~'} being removed is acute and 
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Fig. 3A. Approximating an isosceles triangle on grid points. 

does not contain any other vertices and so that the newly generated interior 
angles are obtuse. The only question is how to pick vl and vi'. I f  they did not 
need to be on grid points, we could pick two points that form an isosceles triangle 
with vi. We could thus cut off an acute triangle and leave obtuse interior angles, 
and by making the triangle small enough we could also guarantee that it does 
not contain other vertices. To obtain v'i and v'[ on grid points, we will approximate 
this soluion as follows. By hypothesis, the grid is fine enough so that there are 
grid points on the line between vi and each adjacent vertex such that the triangle 
formed by v~ and these two grid points does not include any other vertices. I f  
this triangle is satisfactory, let v~ and v7 be its two new vertices. Otherwise, let 
v~ be the new vertex that is closer to v, (see Fig. 3.4). The angle at vl within the 
current triangle must be obtuse, or the triangle would be satisfactory. Let x be 
the point on the other side that is the same distance from v~ as vl. For some e, 
picking any point within e of  x and within the current triangle will give a new 
acute triangle that does not contain any other vertices. Refining the grid sufficiently 
guarantees that a grid point will lie within this interval. Letting it be v',' gives a 
satisfactory triangle with vertices that are grid points. 

Apply the lemma above to the new polygon, which does not have acute interior 
angles. This may introduce points on the artificial boundary segment. Figure 3.4 
shows how to introduce orthogonal lines emanating from such points that partition 
the removed triangle into right triangles and rectangles, which of course can also 
be divided into right triangles. [] 

The references to a "sufficiently fine grid" might suggest that many triangles 
are produced. But it is possible to refine the grid locally, as in Fig. 2.2. One way 
to do this is to use quadtrees [14], [15]. 

4. Solution 2 

As mentioned earlier, it is desirable to avoid small angles. We have devised an 
algorithm that guarantees that no angle in the triangulation is less than tan-~(~) 
18 ° or the minimum interior angle in the boundary, whichever is smaller. 
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Moreover, if all interior angles of  the polygon are at least 54 ° , then independent 
triangulations of  abutting polygons are consistent, that is the same vertices will 
be created on the interface boundary segments. However, that solution still 
requires that the polygon vertices lie on a square grid. 

So we move on to a more elaborate analysis which frees the vertices to lie in 
arbitrary position. Define a line to be nearly horizontal if its slope is at least -1  
and at most 1, and nearly vertical otherwise. A vertical grid line is nearly 
perpendicular to a nearly horizontal line; a horizontal grid line is nearly perpen- 
dicular to a nearly vertical line. Define a triangulation of a polygon to be good 
if it uses no obtuse angles and no angles less than tan-~(-~) or the smallest angle 
in the polygon, whichever is smaller. A good triangulation well-triangulates the 
region. 

Let R be a simple polygon. The triangulation strategy will be to well-triangulate 
in the vicinity of  each vertex of R, and then to well-triangulate the remaining 
region R'. Figure 4.1 shows how R might be divided into regions around each 
vertex and R'. In triangulating the region around a vertex, points are introduced 
on the common boundary with R'. No new points can be added on these common 
boundaries while triangulating R'. (Points added on a common boundary would 
invalidate the triangulation already done in the adjoining region around the 
vertex.) The key to the proof  is to restrict the edges occurring in the boundaries 
of  the regions around the vertices so that the remaining region is easily well- 
triangulated. 

Lemma 4.1. Let R' be a simple polygon overlaid with a unit grid. Suppose each 
edge of R' is of one of the following forms: 

(1) cell diagonal, 
(2) cell side, 
(3) gridline segment forming the sides of two adjacent cells. 

Then R' can be well-triangulated without adding any extra points on its boundary. 

A A . . . . . . .  A / 

Fig. 4.1. Vertex cells. 
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Fig. 4.2. A neighbor gridpoint. 

Proof. Add a vertex at every interior gridpoint. Add edges on cell sides to 
connect previously unconnected vertices one unit apart. Add edges on cell 
diagonals where possible to do so without crossing or lying on top of another 
cell diagonal. Add a diagonal to each rectangle still lacking a diagonal. The proof  
that this procedure well-triangulates R'  is by showing that every original edge 
borders a good triangle and every new edge borders a good triangle on each 
side. [] 

I f  e is a side of  R, and g is a gridline nearly perpendicular to R, intersecting 
e at A, there is a unique gridpoint on g whose distance from A is at least one 
and less than two and which lies on the interior side of  e. This gridpoint is called 
the neighbor gridpoint of A. It is also called a neighbor gridpoint of  e. Figure 4.2 
illustrates a point on a side of  R and its neighbor gridpoint. 

Let et be a side of  R, and let A be an intersection point of  e~ with a nearly 
perpendicular  gridline. Let e2 be an adjacent side of  R, and let B be an intersection 
point of  e2 with a nearly perpendicular gridline. A sequence of  edges from A to 
B is a satisfactory path from A to B if it lies in the interior of  R (except for A 
and B), the edges are pairwise nonintersecting (except for the point between two 
successive edges), and each edge is of one of the following forms: 

(1) a cell side or diagonal, 
(2) a gridline segment forming the sides of  two adjacent cells, 
(3) AG, where G is a neighbor gridpoint of  A, or BG, where G is a neighbor 

gridpoint of  B. 
Satisfactory paths are illustrated in Fig. 4.1. The region bounded by the path, el, 
and e2 has a satisfactory boundary. An edge is satisfactory if it is of  a form 
satisfying one of  (1)-(3). 

Lemma 4.2. Let R be a simple polygon overlaid with a unit grid, such that no 
vertex of  R lies within four units of  a nonadjacent edge. For each edge e = ( A, B ), 
let eA and eB be points lying on gridlines nearly perpendicular to e, with eA closer 
than eB to A. Designate each gridpoint lying less than one unit from e along a nearly 
perpendicular gridline between those of  A and B as a forbidden point. For each 
vertex V with incident edges e and f, let Pv be a satisfactory path from ev to fv ,  and 
let Rv be the region bounded by Pv, ev, and e t. I f  these paths are pairwise 
nonintersecting and no path touches a forbidden point, then the region 

R - U R v  
V 

can be well-triangulated, with no new vertices introduced on any path Pv. 
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Fig. 4.3. Quadrilaterals along a nearly horizontal edge. 

Proof. For each edge e = (A, B), introduce a vertex on each nearly perpen- 
dicular gridline lying between eA and eB. On each such gridline, also add a 
vertex at its neighbor gridpoint of  e, unless that gridpoint is occupied by some 
path Pv. 

Wherever two successive gridlines have vertices at neighbor points of  e, connect 
them with an edge. This forms quadrilaterals with two parallel edges (see Fig. 
4.3(a) and (b)). The side connecting the two gridpoints is either a horizontal or 
vertical edge of length one, or a cell diagonal. In either case, a diagonal of  the 
quadrilateral well-triangulates it as desired. Since none of the satisfactory paths 
occupy either neighbor point or any forbidden points, and no vertex not adjacent 
to e lies within four units of  e, the new edges do not conflict with any previous 
edges. 

Now, suppose a neighbor gridpoint of  e is occupied by a satisfactory path. If  
it does not lie on an edge of length 2 nearly parallel to e, it can form part of  a 
quadrilateral formed as above with an adjacent neighbor gridpoint of  e. If  it lies 
in an edge e' of  length 2 nearly parallel to e, then e' can I,~rm part of a 
well-triangulated quadrilateral as shown in Fig. 4.3(c) or (d), accordiag to whether 
both endpoints of  e' are neighbor gridpoints of  e. Again, the new edges cannot 
conflict with any previous edges. 

After triangulating along each original edge of R as above, the region remaining 
to be triangulated can be well-triangulated by Lemma 4.1. [] 

Thus, we need only show that we can triangulate around each vertex of R so 
as to satisfy Lemma 4.2. By making the grid sufficiently fine, we will ensure that 
no two satisfactory paths intersect. 

Vertices of  R need not be on grid points. For each vertex A, define the grid 
cell containing A to be any grid cell for which A is in the interior or on the 
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Fig. 4.4. Octams. 

b o u n d a r y .  N u m b e r  the  oc tants  at each vertex counterc lockwise  as shown in Fig. 
4.4. Similar ly ,  number  the quadran t s  counterc lockwise .  

The  next  two l emmas  will be helpful  in t r iangula t ing  a r o u n d  each  vertex so 
as to ob ta in  a sa t i s fac tory  pa th  a long  the bounda ry .  

Lemma 4.3 Let e be an edge of  R that is at an angle of  p to the vertical, p < 45 °, 
as shown in Fig. 4 .5(a ) - (c ) ,  with the interior of  R to the left o f  e. Let A be at the 
intersection o f  a horizontal gridline with e. Let G be the gridpoint that lies at least 
2 and less than 3 units to the left o f  A. Then one of  the regions shown in Fig. 4.5 
can be well-triangulated as shown, depending on the value o f  Ax - Gx - 2 tan p. The 
boundary from G to B is satisfactory for each region. 

Proof. Let d = A x - G x - 2 t a n p .  The bounds  on p imply  d e [ 0 , 3 ) .  

i ...... ~. . . . . .  T ....... T : Z ,  

i ..... 174 

! ! t / D I  
i [ e ' ' 
...... L....e_g ...... L ...... J 
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Fig. 4.5. Lemma 4.3. 
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If d e [1, 2), then triangulate as shown in Fig. 4.5(a). Since Bx = G~ + d , /_AGB 
is nonobtuse; since G, . -  By = 2, /_AGB->45 °. Angle GAB = ~ r / 2 - p  is between 
45 ° and 90 °. /_GBA is non-obtuse because I GAI is less than twice the height of 
the triangle, and at least tan-l(½) because dropping a perpendicular from B to 
GA gives at least one subangle with a tangent of at least ½. 

If d c [0, 1), then triangulate as shown in Fig. 4.5(b). Let 0 be the angle of 
GB with the vertical. Since d < 1, 0 -< tan-l(½). Since/_LBK <- 45 ° and 0 -< tan-l(½), 
Z.GBL>_45°-tan--t(~)> 18 °. Since / G L B =  135°- /_KLB and K L B ~  
[45 °, tan-t  (2)] , /_GLB c [45 °, 90°]. 

Finally, suppose d ~ [ 2 , 3 ) .  Then p<tan-l(½).  Let d ' = d - t a n p .  Then d 'E 
[1.5, 3). If d ' e  [1.5, 2), triangulate as shown in Fig. 4.5(c), without the vertex L 
and the edge ML. If d ' ~ [2 ,3 ) ,  include L and the edge ML. The edge M K  is 
drawn perpendicular to AB. Since p <tan-l(½), I AK 1<-43. Also, I MK I >- 1 
because d -> 2. Therefore , /_MAK >- tan ~(1/43). /_GAM is between Z_AMK and 
45 ° . Z . K B M = p + 9 0 ° - / _ M B J .  If d '~[1 .5 ,2) ,  / _MBJe[45  °, tan-~(2)], and 
Z_KBM~[tan-t(½),72°]. If d '~ [2 ,3 ) ,  then p<-tan t(~) and /_MBJ~ 
[tan-l(½), 45°], implying t h a t / K B M  c [45 °, 82°]. [] 

Lemma 4.4. Let e be an edge of  R that is at an angle of  p to the vertical, p <-45 °, 
as shown in Fig. 4.6(a), with the interior of  R to the right of  e. Let A be at the 
intersection of  a horizontal gridline with e. Let G be a gridpoint that lies at least 2 
and less than 4 units to the right o f  A. Then a quadrilateral A G H J  (as shown in 
Fig. 4.6(a)) can be triangulated, where G H  has length either 2 or 4, with vertices 
added on G H  and HJ to make these sides satisfactory. 

Proof. Let xt = I A G  l, and let x2 = x~ + 2 tan p. Then x2 e [2, 6). 
If x2 e [2, 4), then triangulate as in Fig. 4.6(b), where K is the neighbor vertex 

of  J. Consequently, [KHI is either 1 or 2. 

- X 

(a) (b) 

[__a. i i a  a. a : I /  X ! ! /  I 

K:-F-!X1--zr-1 
- I I I x 7. i l l  ,-'vlN, l 1 

(d) 

Fig. 4.6• Lemma 4.4, 
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If  x~ ~ [2, 3) and x2 e [4, 5), or if x~ E [3, 4) and x2 e [5, 6), triangulate as in Fig. 
4.6(c), where K is the neighbor vertex of J, KM is perpendicular to A J, and 
t LHI =2. Consequently, I KLI is either 1 or 2. The relative sizes of xt and x2 

>J.  imply tan p -  2. Obviously, A L G H  is good. The relative sizes of the height and 
bases of  triangles AKL and AGL force those triangles to be good./__MJK = 90 ° -  p. 
Since IJKI-> 1 and/_MJK>-45 °, IMKI >-- 1/4~. Note that the length of  AK is at 
most v/-5. Since I MK l -  > 1/v~ and IAK I<-x/5,/__MAK-> tan-~(1/x/i-6) > tan-~(-~). 
Also, /_MAK ~ p <- 45 °. 

The only remaining case is when x~ ~ [3, 4) and x2 c [4, 5). Triangulate as in 
Fig. 4.6(d), where l KNI c [2, 3) and region KNMJ is to be filled in according to 
Fig. 4.6(b) or (c). [] 

Lemma 4.5. Let A be the vertex of an acute angle of R. Then there is a region 
around A that can be well-triangulated with a satisfactory path along its boundary. 

Proof Let a be the angle at A. We may assume that one edge L~ at A lies in 
octant 6. The clockwise edge L2 lies in one of octants 5-8. Let p, 0-< p <-45 °, be 
the angle of  L~ with the vertical. 

Case 1. Suppose L2 is in octant 5. Let tr, 0 <- trY45 °, be the angle of  L2 with the 
horizontal. For any positive constant c, there is a neighbor gridpoint G of L2 
that also lies to the left of  L~ by a horizontal distance in the range [c, c + 1 + tan  p). 
Form a parallelogram P by lines parallel to L~ at horizontal distances of  c and 
c+  1 + tan  p from LI and by lines parallel to L2 at vertical distances of 1 and 2 
from L2, as shown in Fig. 4.7(a). Then y ~ - U x  >-1 and a vertical gridline lies 
between V and U or passes through Q. Since length 1 or this gridline lies in P, 
there is a gridpoint inside P or on its right or upper boundary. 

There are two subcases according to the values of p and tr. First, suppose 
p-< tan-l(])  and tr_< tan-~(~). We begin by showing the existence of  a gridpoint 
H that is a neighbor gridpoint of both L~ and L2. Let G be the neighbor gridpoint 
of  L2 found by the above argument with c = 1, so that G lies to the left of  L~ by 
a distance in [1, 2+ tan  p). If  the latter distance is less than 2, we are done. 
Otherwise, move right one unit to a gridpoint G~. G~ lies to the left of L~ by a 
distance in [1, l + t a n  p) and below L2 by a distance in [ l + t a n  or, 2+ tan  or). If 
the latter distance is less than 2, we are done. Otherwise, move up one unit to a 
gridpoint G2. G2 lies below L~ by a distance in [1, l + t a n  tr) and to the left of 
L2 by a distance in [1 + tan  p, 1 +2  tan p). 

Triangulate as shown in Fig. 4.7(b). Note that Z.AQR = 90°+ p - / _ R Q H  and 
/_RQH ~ [tan-~(½), tan-~(2)]. So AQR and similarly ARQ are good. 

Now, suppose p > tan-~(~). From the earlier argument with c = 2, there is a 
neighbor gridpoint H of  L2 that lies to the left of L~ by a distance in [2, 3 + tan p). 
Triangulate as shown in Fig. 4.7(c), where R and Q lie on the gridlines through 
H, QS is vertical, and ST is perpendicular to L~. 

Unfortunately, H is not the neighbor vertex of Q. Therefore, RHQ is not a 
satisfactory path. If  f HQt ~ [2, 3), apply Lemma 4.3. Otherwise, form a quadri- 
lateral below HQ by going down 2 from H and then right to L~; triangulate by 
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(a) 

159 

. . . . . . . . .  z . . . . . . . .  z . . . .  X "  

L.i /-/: 

L 

(b) 

Fig. 4.7. 

: : A ~  

(c) 

Lemma 4.5, Case 1. 

a diagonal. The lower boundary of the quadrilateral has length in [3 - 2 tan p, 3 - 
tan p). If this length is in [1, 2), we are done. Otherwise, we apply Lemma 4.3 
below HQ. 

Case 2. Suppose L2 is in octant 6 and L2 is clockwise from L~. Find the top 
horizontal gridline with exactly four gridpoints between or on L~ and L2. Let M 
and R be its intersection points with L2 and L1, respectively, as shown in Fig. 
4.8. Place a vertex P at the neighbor point of M. Then I PRI~ [2, 3). Extend a 
perpendicular from P, intersecting L2 at U. Apply Lemma 4.3 below PR to obtain 
a satisfactory boundary. If /_AUR and /_ARU are nonobtuse, we are done. 
Otherwise, draw a perpendicular as shown in Fig. 4.8. 

Case 3. Suppose L2 is in octant 7. Let tr, 0 -  < tr_< 45 °, be the angle of L2 with the 
vertical. Find the highest horizontal gridline such that either four or five points 
lie between or on L~ and L2. Let U and V be where the gridline one unit higher 
intersects L~ and L2, respectively, as shown in Fig. 4.9. [UV[ < 4. The slopes of 
L~ and L2 guarantee that I UV] >- 1. 

We claim there is a point C on UV such that C lies above PQ, [UCI <-2, 
[cvl-<2, and [UCI~[[ uvI/3,2l uvI/3]. If the halfway point between U and 
V lies above PQ, take C to be this halfway point. Otherwise, suppose without 
loss of  generality that the halfway point lies too far to the right to be above PQ. 
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A 

T #, 
L . L . . . . L  . . . . . . . .  '- . . . . . . . .  .,. . . . . . . . . . . . . . . . . . .  

Fig. 4.8. Lemma 4.5, Case 2. 

Take C to be the gridpoint  one unit above Q. Since I Q R [ ~  2, lEVI- 2 as well. 
Also, [ U C [ < [  UV[/2-< 2. Let x~ = t MPI and x2 = [QR [. Note that I P Q I =  1, or 
the halfway point  between U and V would  have been above PQ. Since x~-> 1, 
tan p -< 1, and x2-< 2, we have 

t u c  I - l U V  1/3 = (x, + 1 - tan p) - (x~ + x~ + 1 - tan p - tan o ' ) /3  >- 0. 

Triangulate the region MRVCU as shown in Fig. 4.9. To triangulate above 
UCV, let t = tan o, + tan/9 and z = I UVI. Let HJ be a horizontal  line connect ing 
L~ and L2 at height y above UV, where (a) if t -> 1, then y = z/3, and (b) if t < 1, 
then y = z / ( 2 +  t). Triangulate as shown in Fig. 4.9. 

Case 4. Suppose L2 is in octant  8. Let cr be the angle o f  L2 with the horizontal ,  
0---or_< 45 °. We consider  two subcases, according  to whether  p-< tan-t(2).  

First, suppose  p-<- tan-~(2). We begin by showing the existence o f  a neighbor  
gridpoint  Y o f  L2 whose horizontal  distance to L~ is in the range [2, 4) (see Fig. 
4.10). There is a vertical gridline g that lies at least 2 units and less than 3 units 

................... T ............. 'Ai  .......... 

i i s 

: . . . . . . .  

"e "Q 
Fig. 4.9. Triangulation for Lemma 4.5, Case 3. 
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Fig. 4.10. 

[ - " - T , ' I - " T  . . . . . . . .  1 "  . . . . . .  1 

. i - 4  ' t 
. . . . . .  i 

i 

.'.'[_i ...... i ....... ± ....... i 
Triangulation for Lemma 4.5, Case 4, when P -~ tan-~(~) • 

to the right of  A. Since ~ - -  45 °, L2 drops less than 3 units before intersecting g. 
Let G be the neighbor point of  the intersection of  g with L2. Then Ay - Gy < 5. 
The horizontal distance from G to Ll is in the range [2, 5). I f  this distance is 
less than 4, we are done, with Y = G. Otherwise, let G~ be the gridpoint one unit 
to the left of  G. The horizontal distance from Gt to L1 is in [3, 4). The veritcal 
distance to L2 is in the range [1, 3). I f  this distance is less than 2, we are done, 
with Y = G~. Otherwise, let Y be one unit above G~. The vertical distance from 
Y to L2 is now in [1,2). The horizontal distance from Y to L~ is in [13/5,4),  
and we are done. 

Let U be the point of  L2 above Y, and Z the point on Lt to the left of Y. 
Triangulate as shown in Fig. 4.10. Finally, to obtain a satisfactory boundary, 
trianguate below Z Y  as in Lemma 4.4. 

Now, suppose/9 > tan-l(2). Consider the points at which two successive vertical 
gridlines intersect L2, and the horizontal lines through these intersection points 
from L2 to Lt,  as shown in Fig. 4.11 (a). The difference in length of the horizontal 
lines is at most 2 since or,/9 -< 45 °. Hence, there exists a vertical gridline for which 
the horizontal segment WU has a length in the range [1, 3), as shown in Fig. 
4.11(b). Define x~= I WUI. Let Y be the gridpoint below U by a distance in 
[1.5,2.5). Let Z be on Lt to the left of  Y, and let x2=l YzI Since ~ < t a n p - <  1, 
x2~[1.6, 5.5). I f  Y is the neighbor point of  U, UY is a satisfactory boundary 
edge. Otherwise, triangulate to the right of  UY as in Lemma 4.3 (rotated). Next, 

i i 

i . < 1  

(a) 

i ........ i ....... 

(b) 

(c) (d) 

Fig. 4.11 Triangulation for Lemma 4.5, Case 4, when p > tan-~(~). 
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we show how to t r iangulate  the quadri lateral  WUYZ,  and how to obtain a 
sat isfactory bounda ry  be low WUYZ.  

I f  x2e [1.6, 3), t r iangulate  by drawing WY. I f  x2 e [1.6, 2), then Z Y  gives a 
good  interface. I f  x2 e [2, 3), t r iangulate below Z Y  by L e m m a  4.4. I f  x2 e [3, 5.5), 
let X be the gr idpoint  that  lies [xiJ to the left o f  Y; t r iangulate as shown in Fig. 
4.11(b). To  see tha t /_  W X U  is at least tan-l(~) ,  draw a perpendicu la r  f rom X to 
WU. Either  one segment  o f  WU is at least 0.625 and  one  subangle  is at least 
tan-~(~), or  bo th  segments  are at least 0.375 and  both  subangles  are at least 
t an- ' (0 .375 /2 .5 )  > 0.5 tan-'(¼). A similar a rgument  appl ies  t o / Z W X .  

From above,  1 <- I Z X  I < Y + 1 --- 3.5. I f  [ Z X  [ < 2, then Z X  is a sat isfactory 
bounda ry  edge. Otherwise,  L e m m a  4.4 is appl ied  below Z X  to obtain a sat isfactory 
boundary .  []  

With rotat ions and  reflections the fol lowing three l emmas  can be combined  
to t r iangulate  near  any  obtuse  or  reflex angle. Choose  a local origin so that  A is 
in the cell with lower  left corner  at (0, 0). 

Lemma4.6. Let U=(2 , -1 ) ,  V=(3, -1) ,  W=(3,1), X=(3,2)  and Y=(2,2) 
as in Fig. 4.12. Then the triangulation shown of region A U V W X Y  is good. 

Proof. Straightforward.  

Lemma 4.7. Let BAC be an obtuse angle such that AB  is in the second octant 
at A. 

(a) Suppose the edge A C  is in the seventh octant at A. Let E be the point of  
intersection of  A B  and the line y = 2 ,  F be the point of  intersection of  A C  
and y = - 1 ,  U = (5, - 1 ) ,  and V= (5, 2). Then the region A F U V E  can be 
well-triangulated, with new points introduced as necessary to make the 
boundary EVUF satisfactory (Fig. 4.13). 

(b) Suppose the edge A C  is in the eighth octant at A. Let W be the point of  
intersection of  AB  and the line y = 3, and let F be the point o f  intersection 
of  A C  and the line x = 7, and let W = (7, 3). Then the region A F W E  can 
be well-triangulated, with new points introduced as necessary to make the 
boundary F W E  satisfactory (Fig. 4.14). 

i ........ w 

1 ........ l ._2 'k. . . . . . l 'x . . . . l  

i ........ i ........ 

Fig. 4.12. Triangulation for Lemma 4.6. 
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E Y 

: . . . . . .  - - - , . ¢  ¢ ~ V - ( 5 , 2 )  

, . . . . . .  / ~  .. . .  . ~ .  . . . . .  ~ .  . . . . . . .  . [ /  . . . .  ] 

. . . . .  ' . . . . . . . .  * . . . . . . . .  

F G 

(a) Sub reg ions  

E Y E Y 

- . . . . . . . . . . . . . . .  ; . . . . . . . .  ~, . . . . . . . .  | 

(b) E~.<-I (c) l < E ~ - < 2  

Fig. 4.13. Case (a) of  Lemma 4.7. 

E Y 
[ ........ T ........ T"  

(d)  2<E,~<-3 

Proof. Most angles can be shown to be between tan-I(~) and 90 ° by either the 
semicircle principle, inspection based on given constraints of position and slopes, 
or the inequality tan(a~ + a2)-> tan(at)+ tan(c~2), usually applied by dropping a 
perpendicular from a point to the opposite side of the triangle. The triangulations 
are suggested by the Figs. 4.15-4.17. [] 

The division of Lemma 4.7 into Cases (a) and (b) is induced by the satisfactory 
path requirement of an edge nearly perpendicular to AC. 

EA 
F - " T - r i  j ~ 
' ' 1 '  tz ' ' i - . . . . ~  ! , . .  . . . .  ~ ....... ~ ....... 
I V i i . I  / r  i 
L . . . . .  , t  . . . . . .  ~ . . . . . .  ' ~ . . . . , 1 , A - . . 2 g  . . . . . . .  ~ . . . .  

! " ~ ' k 1 " -  i I i 
[ . . . . . . . . . . . . . . . . . .  i . . . .  

. . . .  . . . . . . . . . . .  

i i i i i ~ , &  i 
. . . . .  4 ....... ~ - - - - + . - - ~ - ÷ - ~ , ~  .... i i i ! ! ! "~, 

L .. . . . .  • ........ ! ........ L . . . . . .  [ . . . . . .  L .... . . .  L . . ~  

W-(7 ,3 )  

Fig. 4.14. Lemma 4.7, Case (b), when the slope of AF is less than or equal to -½. 
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M N L 

(a) M x - < l  

Fig. 4.15. 

M N L 

(b)  1 < M , , < - 2  

J 

M L 

i[ ...... ........ ~ T  ........ T" J 

........ i 

(c) 2 < M,~ -< 3 

Triangulations for AHJLM of Fig. 4.14. 

J 

! 
! 

. . . . . . . . .  -t* . . . . . . . .  .t- . . . . . . . .  4 

i 

K - ( 5 , 1 )  

T 

J 

, . , 
........ 4- ........ ,*- ........ 't 

i i 

K - ( 5 , 1 )  

T 

• 5 > - G :  ->0 .5_>G,  _>0 
0 > - I, -> - 1  - 1  > Iy-> - 2  

H ............... J - ( 4 , 1 )  H " ........ t ...... 

: : [  

i ................. 1 
i 

i ' 

J-(4,1) 

Q - ( 4 ,  [GyJ +1)  

P 

I 

0> Gy-> Hy-2 0> G, -> H,,-2 
IQI I -<2 I Q I I > 2  

Fig. 4.16. Further divisions of Fig. 4.14. 

E_ D - - ' "  ' ~ "  

ol i . . . . . . . . . .  t - " t - " ' ~ t r ~ r ' " t  i ........ f ........ t ....... 

.......... ÷ ........ ~ ........ ÷ ........ .; ........ 

,4 i i i 
~ " t "  t I 

E _ D w--(7,3)_ 
f . . . . . . . .  ~ "f. "" i + ~ t • i " i ~ : 

t ....... ~ ........ *, ........ ~, ....... 

i ............... ~ ........ ~ ........ ~ ........ 

  -Tizll ..... 
i ........ ~ - ~  . . . . . .  I 

(a)  (b)  

Lemma 4.7, Case (b), when the slope of  AC is greater than  _t.  Fig. 4.17. 
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S - ( 2 , 2 )  V-(5,2)  
/ 

. lq( 

tJ[--(;,--I) 

C 
(a) 

Fig. 4.18. 

S - ( 2 , 2 )  
/ 

R-(6,2) 

(b) 

Triangulatable regions for Lemma 4.8, 

Lemma 

Ca) 

(b) 

4.8. Let S = (2, 2) and let A C  be in the seventh or eighth octant of  A. 

Suppose A C  is in the seventh octant o f  A, as shown in Fig. 4.18(a). Let F 
be the point o f  intersection of  A C  and the line y = - 1 ,  U =  (5 , -1) ,  and 
V = (5, 2). Then A F U V S  can be well-triangulated, with new points to make 
sides FU, UV, and VS satisfactory, and with no points introduced on AS. 
Suppose A C  is in the eighth octant of  A, as shown in Fig. 4.18(b). Let 
R = (6, 2), and let Q be the point o f  intersection of  A C  and x = 6. Then 
A Q R S  can be well-triangulated, with new points introduced to make sides 
QR and RS satisfactory, and with no points introduced on AS. 

Proof. (a) A C  in the seventh octant, i.e., nearly vertical with negative slope. In 
this case, apply the same triangulation as in Case (a) of Lemma 4.7, i.e. with 
E = S = (2, 2) in Fig. 4.13(a). Thus, Fig. 4.13(c) is applied for the region A O Y E  
of Fig. 4.13(a). This method well-triangulates the region even if the slope of A S  
is nearly horizontal, instead of nearly vertical as specified in Lemma 4.7. 

(b) A C  in the eighth octant, i.e., nearly horizontal with negative slope. First, 
suppose S A F  is obtuse. Then A S  must lie in the second octant at A, but the 
position of S forces the slope of A S  to be at most 2. Hence, the slope of A C  is 
at most -½. We can apply the triangulation method used in Case (b) of Lemma 
4.7 when the slope of A C  is at most -½ (ignoring the rectangle M L V W E  of Fig. 
4.14 since it lies outside the desired region for Lemma 4.8). 

Now, suppose S A F  is acute. The region to be triangulated is shown in Fig. 
4.18(b). Draw a vertical line downward from S, intersecting A C  at P. If I sPI >- 2, 
apply Lemma 4.4 (rotated) to triangulate next to SP. Now, either all of S P R W  
is well-triangulated, or all but the rightmost 2 or 4 units is well-triangulated. In 
the latter case, make RQ satisfactory and triangulate the remaining region by 
Lemma 4.2. [] 

Lemma 4.9. Let A be the vertex o f  an obtuse or reflex angle o f  R. Then there is 
a region around A that can be well-triangulated with a satisfactory path along its 
boundary. 

Proof. Without toss of generality we may assume AB lies in the first quadrant 
of A and bounds the interior of P from above. We consider cases according to 
the quadrant of AC, as in Fig. 4.19. 
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B 

4(, 
\ 

C 
(a) (b) 

(c) (d) 

Fig. 4.19. Cases for triangulating at A. 

(a) Apply Lemma 4.7, either directly or reflected. 
(b) Apply Lemma 4.8 to CAG, and a reflection of Lemma 4.8 to BAG. Note 

that the two regions obtained do not overlap except along the boundary 
edge AG, and no points are added on AG by Lemma 4.8 or its reflection. 

(c) Apply Lemma 4.8 to angles BAG and CAH and Lemma 4.6 to HAG. 
(d) Apply Lemma 4.8 to angles BAG and CAI, and Lemma 4.6 to HAG and 

HAI. 

When the above triangulations are applied at the vertices of P, the remaining 
region satisfies conditions (1)-(3) as desired. [] 

Combining Lemmas 4.2, 4.5, and 4.8, we obtain the main result. 

Theorem 4.10. Any polygon can be triangulated using no obtuse angles and no 
angles smaller than tan-l(1) or the minimum angle of the polygon, whichever is 
smaller. 

5. Concluding Remarks 

Our algorithms demonstrate that a polygon can be triangulated without obtuse 
angles. But the topic is by no means exhausted, because there are many combina- 
tions of side conditions that could be imposed resulting in simpler (or more 
complicated) algorithms. For example, Lynn Wilson has devised a much simpler 
scheme that suffices for certain interface problems [19]. A hexagonal grid might 
be investigated. It would be interesting to see if the independent cell triangulations 
given here can be used to repair locally obtuse triangulations given by other 
algorithms. 
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Fig. 5.1. Two sides of a crack are independent. 

We defined our problem in terms of a simple polygon. In fact, it is sufficient 
to assume that P is the closure of a bounded planar open set whose boundary 
is composed of  finitely many straight line segments. We consider a "crack" to 
be made up of. two line segments and allow different points on the two segments. 
In effect, we perturb the problem to open the crack into an infinitesimally narrow 
wedge (Fig. 5.1). 

Let n be the number of  cells along the boundary. (Recall that the grid spacing 
depends on the polygon vertex angles and the separation of nonadjacent polygon 
edges.) Each cell is partitioned into a bounded number of  triangles. With coarse 
grading of  the interior as indicated in Fig. 2.2, there will be O(n log n) triangles 
inside; otherwise there would be O(n2). But in either case the pattern is so regular 
that little processing is needed for the interior. Thus the number of triangles and 
the runtime of the algorithm is for practical purposes linear in the gridsize neeeded 
to resolve the polygon. At least this many triangles would ordinarily be desired 
in the finite element method to provide an adequate approximating space. 
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