Discrete Comput Geom 3:89-96 (1988)

Geometry

On the Contact Dimensions of Graphs

P. Frankl¹ and H. Maehara²

¹ CNRS, Paris, France

² Ryukyu University, Okinawa, Japan

Abstract. Every simple graph G = (V, E) can be represented by a family of equal nonoverlapping spheres $\{S_v: v \in V\}$ in a Euclidean space \mathbb{R}^n in such a way that $uv \in E$ if and only if S_u and S_v touch each other. The smallest dimension *n* needed to represent G in such a way is called the contact dimension of G and it is denoted by cd(G). We prove that (1) cd(T) < (7.3) log |T| for every tree T, and (2)

$$m-1+\frac{n}{2}\left(1-\frac{n}{2\pi m}\left(\sqrt{\frac{n+4\pi m}{n}}-1\right)\right)<\operatorname{cd}(K_m+E_n)\leq m-1+\left\lceil\frac{n}{2}\right\rceil,$$

where $K_m + E_n$ is the join of the complete graph of order *m* and the empty graph of order *n*. For the complete bipartite graph $K_{n,n}$ this implies $(1.286)n - 1 < cd(K_{n,n}) < (1.5)n$.

1. Statement of the Results

For each simple graph G = (V, E), there is an embedding f of V into a Euclidean space \mathbb{R}^n such that

$$||f(u) - f(v)|| = 1$$
 if $uv \in E$ and $||f(u) - f(v)|| > 1$ if $uv \notin E$,

see [4]. The smallest dimension n for which such an embedding exists is called the *contact dimension* of G, and is denoted by cd(G). Here we present some bounds on the contact dimensions of trees and of the join of a complete graph and an empty graph. For a graph G, let |G| denote the number of vertices of G.

Theorem 1. For every tree T, $cd(T) < (7.3) \log |T|$.

Note that this estimate is sharp in the sense that there are trees T on n vertices with $cd(T) > c \log n$, for some fixed c > 0. In fact if G is a graph of n vertices and diameter d, then $cd(G) > (\log n)/\log(d+1)$ [4, Theorem 2].

Let $K_m + E_n$ be the join of the complete graph K_m of order *m* and the empty graph E_n of order *n*, that is, $K_m + E_n$ is the complement of the disjoint union $E_m \cup K_n$. Define $d(m, n) = cd(K_m + E_n)$. In [4] it was proved that $d(m, n) \le m - 1 + \lfloor n/2 \rfloor$ and that for any *n*, there is an m(n) such that if m > m(n) then $d(m, n) = m - 1 + \lfloor n/2 \rfloor$. These results are improved in the following way.

Theorem 2.

$$m-1+\frac{n}{2}\left(1-\frac{n}{2\pi m}\left(\sqrt{\frac{n+4\pi m}{n}}-1\right)\right) < d(m,n) \le m-1+\left\lceil \frac{n}{2}\right\rceil.$$

Let us recall from [4] that, for $n \ge m$, $cd(K_m + E_n) = cd(K_{m,n})$ holds, where $K_{m,n}$ is the complete bipartite graph. This implies:

Corollary 1. Suppose that $n \ge m$. Then

$$m-1+\frac{n}{2}\left(1-\frac{n}{2\pi m}\left(\sqrt{\frac{n+4\pi m}{n}}-1\right)\right)<\operatorname{cd}(K_{m,n})\leq m-1+\left\lceil\frac{n}{2}\right\rceil.$$

Letting m = n yields:

Corollary 2. $(1.286)n - 1 < d(n, n) = cd(K_{n,n}) < (1.5)n.$

Since

$$\frac{n^2}{4\pi m} \left(\sqrt{\frac{n+4\pi m}{n}} - 1 \right) < \frac{1}{2}$$

is equivalent to $(n^3 - n^2)/\pi < m$, we have:

Corollary 3. If $m > (n^3 - n^2)/\pi$, then $d(m, n) = m - 1 + \lceil n/2 \rceil$.

Erdös and Füredi [2] used the probabilistic method to prove the existence of a set $X \subset \mathbb{R}^n$ such that every angle spanned by three points of X is acute and |X| grows exponentially in n.

Two new proofs for this result are provided at the end of the paper, one semiconstructive and one constructive.

2. Proof of Theorem 1

Lemma 1. Let O_k denote the surface area of the unit sphere in \mathbb{R}^k , i.e., $O_k = 2\pi^{k/2}/\Gamma(k/2)$. Then

$$((k-2)/(2\pi))^{1/2} < O_{k-1}/O_k < ((k-1)/(2\pi))^{1/2}.$$

Proof. Since $\log \Gamma(x)$ (x > 0) is a convex function, we have

$$\log \Gamma((k+1)/2) + \log \Gamma((k-1)/2) > 2 \log \Gamma(k/2)$$

and hence $\Gamma((k+1)/2)/\Gamma(k/2) > \Gamma(k/2)/\Gamma((k-1)/2)$. Since

$$\frac{\Gamma((k+1)/2)}{\Gamma(k/2)} \frac{\Gamma(k/2)}{\Gamma((k-1)/2)} = \frac{k-1}{2},$$

we have

$$\frac{\Gamma(k/2)}{\Gamma((k-1)/2)} < \left(\frac{k-1}{2}\right)^{1/2} < \frac{\Gamma((k+1)/2}{\Gamma(k/2)}.$$

Since $O_{k-1}/O_k = \Gamma(k/2)/(\pi^{1/2}\Gamma((k-1)/2))$, we have the lemma.

Lemma 2. Let S be a unit sphere in \mathbb{R}^{k+2} and $C(\alpha)$ be a spherical cap of angular radius α . Let |S| and $|C(\alpha)|$ denote the surface areas of S and $C(\alpha)$. For $0 < \alpha < \pi/2$ one has

$$\frac{|S|}{|C(\alpha)|} \ge 2\left(\frac{k}{k+1}\right)^{1/2} \exp\left(\frac{k(\pi/2-\alpha)^2}{2}\right)$$

Proof. Since the function $f(t) = \exp(t^2/2) \cos t$ decreases on $[0, \pi/2]$, and since

$$|C(\alpha)| = O_{k+1} \int_{\pi/2-\alpha}^{\pi/2} \cos^k t \, dt,$$

we have

$$\begin{aligned} |C(\alpha)| &\leq O_{k+1} \int_{\pi/2-\alpha}^{\pi/2} \exp\left(\frac{-kt^2}{2}\right) dt \\ &< O_{k+1} \exp\left(\frac{-k(\pi/2-\alpha)^2}{2}\right) \int_0^\infty \exp\left(\frac{-kt^2}{2}\right) dt \\ &\leq O_{k+1} \left(\frac{\pi}{2k}\right)^{1/2} \exp\left(\frac{-k(\pi/2-\alpha)^2}{2}\right). \end{aligned}$$

Thus $|S|/|C(\alpha)| > (O_{k+2}/O_{k+1})(2k/\pi)^{1/2} \exp(k(\pi/2-\alpha)^2/2)$. Since $O_{k+2}/O_{k+1} > (2\pi/(k+1))^{1/2}$ by the above lemma, we have

$$\frac{|S|}{|C(\alpha)|} > 2\left(\frac{k}{k+1}\right)^{1/2} \exp\left(\frac{k(\pi/2-\alpha)^2}{2}\right).$$

Corollary 4. If $k+2 \ge (7.3) \log n$, $n \ge 3$, then $|S|/|C(\pi/3)| > n$.

Proof. It is easy to check that if $k+2 \ge (7.3) \log n > (72/\pi^2) \log n$ then $|S|/|C(\pi/3)| > n$.

Proof of Theorem 1. Let d be the smallest integer such that the ratio of the surface area of the unit sphere in \mathbb{R}^d and the area of the spherical cap of angular radius 60° is greater than n-2. Then $d \leq (7.3) \log n$ by Lemma 2. We show that T is embeddable in \mathbb{R}^d in such a way that ||u-v|| = 1 if uv is an edge of T, and >1 otherwise. To prove this we use induction on |T|. It is trivial if |T| = 1. Suppose it is true for n-1, and let |T| = n. Let x be a vertex of T of degree 1, $T_0 = T - \{x\}$, and let y be the unique neighbor of x in T. By induction, we can embed T_0 in \mathbb{R}^d . Let S be the unit sphere in \mathbb{R}^d around y and $C_1, C_2, \ldots, C_{n-2}$ the intersection of the other n-2 unit spheres (drawn around the remaining n-2 vertices of T_0) with S. Clearly, C_i is a spherical cap of angular radius $\leq 60^\circ$. By the choice of d, surf. area $(S) > \sum_i$ surf. area (C_i) , hence we can place x on the surface of S so that the distances from x to all other ponts in T_0 are greater than 1. Thus T is also

3. Proof of Theorem 2

A point set in Euclidean space is said to be *dispersed* if any two points of the set are at distance more than 1. The following theorem was proved in [4, Theorem 6].

Theorem [4]. $d(m, n) \le k + m - 1$ if and only if a sphere of radius $s(m) := ((m+1)/(2m))^{1/2}$ in \mathbb{R}^k contains n dispersed points.

Proof of Theorem 2. Since the upper bound was proved in [4], we only show the lower bound. Suppose k + m - 1 = d(m, n). Then, by the above theorem, a sphere S of radius s(m) in \mathbb{R}^k contains n dispersed points. Let $\alpha = \arcsin((\frac{1}{2})^{1/2}/s(m))$. Since S contains n dispersed points, there is a spherical cap $C = C(\alpha)$ of angular radius α such that C contains $\lceil n|C|/|S| \rceil$ dispersed points, where $\mid \mid$ denotes the surface area. This can be seen in the following way. Let x_i , $i = 1, \ldots, n$, be n dispersed point on S. Consider a "random spherical cap" C of angular radius α , and define random variables \mathbf{v}_i , $i = 1, \ldots, n$, by $\mathbf{v}_i = 1$ if $x_i \in \mathbb{C}$, $\mathbf{v}_i = 0$ otherwise. Then the expected value of the sum $\mathbf{v}_1 + \cdots + \mathbf{v}_n$ equals n|C|/|S|. Hence there must be a spherical cap $C = C(\alpha)$ which contains at least $\lceil n|C|/|S| \rceil$ dispersed points.

Next we show that if C contains k dispersed points then the boundary bC of C also contains k dispersed points. Let $z \in C$ be the "center" of C, and let y be any point of the boundary bC of C. Then, for $m \ge 2$,

$$||y - z||^{2} = 2s(m)^{2}(1 - \cos \alpha) = ((m+1)/m)(1 - (1 - \sin^{2} \alpha)^{1/2})$$
$$= (1 + 1/m)(1 - (1/(m+1))^{1/2}) < 1$$

Let x_i , i = 1, ..., k, be k dispersed points on C. Then $x_i \neq z$ for all i. For each i, let y_i be the point of bC such that the geodesic path on S connecting y_i and z passes through x_i . (The point y_i is the point where the great circle passing through z and x_i intersects with bC.)

Claim. The points y_i , i = 1, ..., k, are dispersed.

Proof. Let x_{ji} be the orthogonal projection of x_i on the plane determined by x_i , z, and the center o of sphere S. Then one of the angles $\measuredangle y_i o x_{ji}, \measuredangle z o x_{ji}$ is not less than the angle $\measuredangle x_i ::$ _{ji}. Hence $\max\{\|y_i - x_{ji}\|^2, \|z - x_{ji}\|^2\} \ge \|x_i - x_{ji}\|^2$, and hence $\max\{\|y_i - x_j\|^2, \|z - x_j\|^2\} \ge \|x_i - x_j\|^2$. However, since $\|z - x_j\| < 1$, we have $\|y_i - x_j\| > 1$ for $i \ne j$. Similarly, we can conclude $\|y_i - y_j\| > 1$ for $i \ne j$. Thus y_i $i = 1, \ldots, k$, are dispersed.

Now, by Rankin's theorem [5], a sphere of radius $\leq (\frac{1}{2})^{1/2}$ in \mathbb{R}^{k-1} contains at most k dispersed points. Since the radius of bC is $(\frac{1}{2})^{1/2}$, bC contains at most k dispersed points, and so does the cap $C = C(\alpha)$ by the above argument. Hence $n|C|/|S| \leq k$.

Let us evaluate |C|/|S|. Since

$$|C| = O_{k-1} s(m)^{k-1} \int_0^\alpha (\sin \theta)^{k-2} d\theta$$

= $O_{k-1} s(m)^{k-1} \left(\int_0^{\pi/2} (\sin \theta)^{k-2} d\theta - \int_\alpha^{\pi/2} (\sin \theta)^{k-2} d\theta \right)$

and

$$|S| = 2O_{k-1}s(m)^{k-1}\int_0^{\pi/2} (\sin\theta)^{k-2} d\theta,$$

we have

$$|C|/|S| = \frac{1}{2} - (O_{k-1}/O_k) \int_{\alpha}^{\pi/2} (\sin \theta)^{k-2} d\theta$$

> $\frac{1}{2} - (O_{k-1}/O_k)(\pi/2 - \alpha)$
> $\frac{1}{2} - (O_{k-1}/O_k)(1/m)^{1/2}$

(because $\pi/2 - \alpha < \tan(\pi/2 - \alpha) = (1/m)^{1/2}$). Hence, by Lemma 1, $|C|/|S| > \frac{1}{2} - ((k-1)/(2\pi m))^{1/2}$. So

$$k > n/2 - n((k-1)/(2\pi m))^{1/2} > n/2 - n(k/(2\pi m))^{1/2}$$

and from this we have

$$k > \frac{n}{2} \left(1 - \frac{n}{2\pi m} \left(\sqrt{\frac{n+4\pi m}{n}} - 1 \right) \right).$$

Thus we have

$$d(m,n) > \frac{n}{2} \left(1 - \frac{n}{2\pi m} \left(\sqrt{\frac{n+4\pi m}{n}} - 1 \right) \right) + m - 1. \qquad \Box$$

4. Points Without Obtuse Angle

Erdös and Füredi [2] proved that for every ε there exists a $\delta = \delta(\varepsilon)$ and points P_1, \ldots, P_m on the unit sphere in \mathbb{R}^d so that $m > (1+\delta)^d$ and for all $1 \le h < i < j \le m$ all angles of the triangle $P_h P_i P_i$ lie between $\pi/3 - \varepsilon$ and $\pi/3 + \varepsilon$.

Their proof is probabilistic.

Here we derive a bound using Lemma 2.

Theorem 3. For every $0 < \beta < \pi/2$ there exist points P_1, \ldots, P_m on the unit sphere S in \mathbb{R}^{k+2} so that $m > (k/(k+1))^{1/2} \exp(k\beta^2/2)$ and all distances $P_iP_j, 1 \le i \le j \le m$, satisfy

$$2(1-\sin\beta) \le P_i P_j^2 \le 2(1+\sin\beta). \tag{4.1}$$

Proof. Let P_1, \ldots, P_m be a system of points on the unit sphere S in \mathbb{R}^{k+2} satisfying (4.1) and such that the addition of any further point would violate (4.1). Let $D_i(\pi/2-\beta)$ be the spherical double cap of angular radius $\pi/2-\beta$ centered at P_i (a double cap is the union of two diametrically opposite caps). Then the union of $D_i(\pi/2-\beta)$ for $i=1,\ldots,m$ has to cover all points on the sphere. (In fact, if $Q \notin D_i(\pi/2-\beta)$ then by elementary computation

$$2(1-\sin\beta) < P_iQ^2 < 2(1+\sin\beta)$$

holds.) However, $|D_i(\pi/2-\beta)| = 2|C(\pi/2-\beta)|$ and Lemma 2 yields

$$m \ge |S|/(2|C(\pi/2-\beta)|) \ge (k/(k+1))^{1/2} \exp(k\beta^2/2),$$

as desired.

Remark. Note that the proof of Theorem 3 shows that every maximal (nonextendable) set satisfying (4.1) is exponentially large. Thus one can construct such a set by adding the points one by one.

Corollary 5. There exist points $P_1, \ldots, P_m \in S \subset R^{k+2}$ so that all triangles $P_h P_i P_j$, $1 \le h < i < j \le m$, are acute and

$$m \ge (1.0594)^k (k/(k+1))^{1/2}$$

holds.

Proof. It is sufficient to choose β so that $\sin \beta = \frac{1}{3}$ and apply Theorem 3.

Corollary 6. There are points $P_1, \ldots, P_m \in S \subset \mathbb{R}^{k+2}$, so that all triangles $P_h P_i P_j$, $1 \leq h < i < j \leq m$, have all angles between 59° and 61° and $m \geq (1.00011)^k (k/(k+1))^{1/2}$ holds.

Proof. This time one chooses β so that $\sin 30.5^\circ = \frac{1}{2}((1+\sin\beta)/(1-\sin\beta))^{1/2}$ (for this value of β one checks that $\sin 29.5^\circ < \frac{1}{2}((1-\sin\beta)/(1+\sin\beta))^{1/2}$ holds) and applies Theorem 3.

In [2] somewhat better bounds are obtained both in Corollaries 5 and 6. The reason is that Erdös and Füredi choose the points from the 2^n vertices of the cube which span no obtuse angles. Thus in the case of Corollary 5 one has to get rid of right angles only. Let us recall the standard correspondence between the vertices of the *n*-cube and the subsets of an *n*-element set X. By Pythagoras' theorem (see [2]) three vertices corresponding to subsets A, B, $C \subseteq X$ span a right angle at C if and only if $A \cap B \subseteq C \subseteq A \cup B$ holds.

One can use a recent result of Friedman [3] to obtain an explicit construction for such a family of exponential size (and, consequently, of exponentially many vertices of the *n*-cube with all angles acute). In fact, a special case of Friedman's [3] Theorem 5.7 gives an explicit construction for more than 59^d sequences of 59 symbols and of length $10^{32}d$ so that for any three sequences there is at least one place where all three are different. (This result of Friedman was used by Alon [1] to obtain explicit construction for other related families of exponential size.)

Now let b be the smallest integer so that there exists a family $\{F_1, \ldots, F_{59}\}$ of subsets of $\{1, 2, \ldots, b\}$ without three sets F_h, F_i, F_j satisfying $F_h \cap$ $F_i \subset F_j \subset F_h \cup F_i$ (to be more explicit one can also take b = 59 and $F_i = \{i\}$). Then in each sequence replace each appearance of the *i*th symbol by a (0, 1)-sequence of length b corresponding to F_i . With $n = 10^{32} bd$ this gives $59^d > 2^{5n/c}$ (where $c = 10^{32}b$), i.e., exponentially many vertices of the *n*-cube without right angles.

Finally, let us call the reader's attention to a forthcoming interesting paper of Reiterman *et al.* [6] on sphericity and another related dimension of graphs.

Acknowledgment

The authors are indebted to the referees for valuable suggestions.

References

- 1. N. Alon, Explicit construction of exponeitial-sized families of k-independent sets, Discrete Math. 58 (1986), 191-193.
- 2. P. Erdös and Z. Füredi, The greatest angle among *n* points in the *d*-dimensional euclidean space, Ann. Discrete Math. 17 (1983), 275-283.

- 3. J. Friedman, Constructing $O(n \log n)$ size monotone formula for the kth elementary symmetric polynomial of n Boolean variables, Proceedings of the 25th IEEE Symposium on Foundations of Computer Science, 506-515, 1984.
- 4. H. Maehara, Contact patterns of equal nonoverlapping spheres, Graphs Combin. 1 (1985), 271-282.
- 5. R. A. Rankin, The closest packing of spherical caps in *n*-dimensions, *Proc. Glasgow Math. Assoc.* 2 (1955) 139-144.
- 6. J. Reiterman, V. Rödl, and E. Šiňajová, Geometrical embeddings of graphs, Discrete Math., to appear.

Received March 17, 1986, and in revised form August 1, 1986.