On the Contact Dimensions of Graphs

P. Frankl ${ }^{1}$ and H. Maehara ${ }^{2}$
${ }^{1}$ CNRS, Paris, France
${ }^{2}$ Ryukyu University, Okinawa, Japan

Abstract

Every simple graph $G=(V, E)$ can be represented by a family of equal nonoverlapping spheres $\left\{S_{v}: v \in V\right\}$ in a Euclidean space R^{n} in such a way that $u v \in E$ if and only if S_{u} and S_{v} touch each other. The smallest dimension n needed to represent G in such a way is called the contact dimension of G and it is denoted by $\operatorname{cd}(G)$. We prove that (1) $\operatorname{cd}(T)<(7.3) \log |T|$ for every tree T, and (2)

$$
m-1+\frac{n}{2}\left(1-\frac{n}{2 \pi m}\left(\sqrt{\frac{n+4 \pi m}{n}}-1\right)\right)<\operatorname{cd}\left(K_{m}+E_{n}\right) \leq m-1+\left\lceil\frac{n}{2}\right\rceil,
$$

where $K_{m}+E_{n}$ is the join of the complete graph of order m and the empty graph of order n. For the complete bipartite graph $K_{n, n}$ this implies (1.286) $n-1<$ $\operatorname{cd}\left(K_{n, n}\right)<(1.5) n$.

1. Statement of the Results

For each simple graph $G=(V, E)$, there is an embedding f of V into a Euclidean space R^{n} such that

$$
\|f(u)-f(v)\|=1 \text { if } u v \in E \text { and }\|f(u)-f(v)\|>1 \text { if } u v \notin E,
$$

see [4]. The smallest dimension n for which such an embedding exists is called the contact dimension of G, and is denoted by $\operatorname{cd}(G)$. Here we present some bounds on the contact dimensions of trees and of the join of a complete graph and an empty graph. For a graph G, let $|G|$ denote the number of vertices of G.

Theorem 1. For every tree $T, \operatorname{cd}(T)<(7.3) \log |T|$.
Note that this estimate is sharp in the sense that there are trees T on n vertices with $\operatorname{cd}(T)>c \log n$, for some fixed $c>0$. In fact if G is a graph of n vertices and diameter d, then $\operatorname{cd}(G)>(\log n) / \log (d+1)$ [4, Theorem 2].

Let $K_{m}+E_{n}$ be the join of the complete graph K_{m} of order m and the empty graph E_{n} of order n, that is, $K_{m}+E_{n}$ is the complement of the disjoint union $E_{m} \cup K_{n}$. Define $d(m, n)=\operatorname{cd}\left(K_{m}+E_{n}\right)$. In [4] it was proved that $d(m, n) \leq$ $m-1+\lceil n / 2\rceil$ and that for any n, there is an $m(n)$ such that if $m>m(n)$ then $d(m, n)=m-1+\lceil n / 2\rceil$. These results are improved in the following way.

Theorem 2.

$$
m-1+\frac{n}{2}\left(1-\frac{n}{2 \pi m}\left(\sqrt{\frac{n+4 \pi m}{n}}-1\right)\right)<d(m, n) \leq m-1+\left\lceil\frac{n}{2}\right\rceil
$$

Let us recall from [4] that, for $n \geq m, \operatorname{cd}\left(K_{m}+E_{n}\right)=\operatorname{cd}\left(K_{m, n}\right)$ holds, where $K_{m, n}$ is the complete bipartite graph. This implies:

Corollary 1. Suppose that $n \geq m$. Then

$$
m-1+\frac{n}{2}\left(1-\frac{n}{2 \pi m}\left(\sqrt{\frac{n+4 \pi m}{n}}-1\right)\right)<\operatorname{cd}\left(K_{m, n}\right) \leq m-1+\left\lceil\frac{n}{2}\right\rceil
$$

Letting $m=n$ yields:
Corollary 2. (1.286) $n-1<d(n, n)=\operatorname{cd}\left(K_{n, n}\right)<(1.5) n$.
Since

$$
\frac{n^{2}}{4 \pi m}\left(\sqrt{\frac{n+4 \pi m}{n}}-1\right)<\frac{1}{2}
$$

is equivalent to $\left(n^{3}-n^{2}\right) / \pi<m$, we have:
Corollary 3. If $m>\left(n^{3}-n^{2}\right) / \pi$, then $d(m, n)=m-1+\lceil n / 2\rceil$.
Erdös and Füredi [2] used the probabilistic method to prove the existence of a set $X \subset R^{n}$ such that every angle spanned by three points of X is acute and $|X|$ grows exponentially in n.

Two new proofs for this result are provided at the end of the paper, one semiconstructive and one constructive.

2. Proof of Theorem 1

Lemma 1. Let O_{k} denote the surface area of the unit sphere in R^{k}, i.e., $O_{k}=$ $2 \pi^{k / 2} / \Gamma(k / 2)$. Then

$$
((k-2) /(2 \pi))^{1 / 2}<O_{k-1} / O_{k}<((k-1) /(2 \pi))^{1 / 2}
$$

Proof. Since $\log \Gamma(x)(x>0)$ is a convex function, we have

$$
\log \Gamma((k+1) / 2)+\log \Gamma((k-1) / 2)>2 \log \Gamma(k / 2)
$$

and hence $\Gamma((k+1) / 2) / \Gamma(k / 2)>\Gamma(k / 2) / \Gamma((k-1) / 2)$. Since

$$
\frac{\Gamma((k+1) / 2)}{\Gamma(k / 2)} \frac{\Gamma(k / 2)}{\Gamma((k-1) / 2)}=\frac{k-1}{2}
$$

we have

$$
\frac{\Gamma(k / 2)}{\Gamma((k-1) / 2)}<\left(\frac{k-1}{2}\right)^{1 / 2}<\frac{\Gamma((k+1) / 2}{\Gamma(k / 2)}
$$

Since $O_{k-1} / O_{k}=\Gamma(k / 2) /\left(\pi^{1 / 2} \Gamma((k-1) / 2)\right)$, we have the lemma.
Lemma 2. Let S be a unit sphere in R^{k+2} and $C(\alpha)$ be a spherical cap of angular radius α. Let $|S|$ and $|C(\alpha)|$ denote the surface areas of S and $C(\alpha)$. For $0<\alpha<\pi / 2$ one has

$$
\frac{|S|}{|C(\alpha)|} \geq 2\left(\frac{k}{k+1}\right)^{1 / 2} \exp \left(\frac{k(\pi / 2-\alpha)^{2}}{2}\right)
$$

Proof. Since the function $f(t)=\exp \left(t^{2} / 2\right) \cos t$ decreases on $[0, \pi / 2]$, and since

$$
|C(\alpha)|=O_{k+1} \int_{\pi / 2-\alpha}^{\pi / 2} \cos ^{k} t d t
$$

we have

$$
\begin{aligned}
|C(\alpha)| & \leq O_{k+1} \int_{\pi / 2-\pi}^{\pi / 2} \exp \left(\frac{-k t^{2}}{2}\right) d t \\
& <O_{k+1} \exp \left(\frac{-k(\pi / 2-\alpha)^{2}}{2}\right) \int_{0}^{\infty} \exp \left(\frac{-k t^{2}}{2}\right) d t \\
& \leq O_{k+1}\left(\frac{\pi}{2 k}\right)^{1 / 2} \exp \left(\frac{-k(\pi / 2-\alpha)^{2}}{2}\right)
\end{aligned}
$$

Thus $|S| /|C(\alpha)|>\left(O_{k+2} / O_{k+1}\right)(2 k / \pi)^{1 / 2} \exp \left(k(\pi / 2-\alpha)^{2} / 2\right)$. Since $O_{k+2} / O_{k+1}>$ $(2 \pi /(k+1))^{1 / 2}$ by the above lemma, we have

$$
\frac{|S|}{|C(\alpha)|}>2\left(\frac{k}{k+1}\right)^{1 / 2} \exp \left(\frac{k(\pi / 2-\alpha)^{2}}{2}\right)
$$

Corollary 4. If $k+2 \geq(7.3) \log n, n \geq 3$, then $|S| /|C(\pi / 3)|>n$.
Proof. It is easy to check that if $k+2 \geq(7.3) \log n>\left(72 / \pi^{2}\right) \log n$ then $|S| /|C(\pi / 3)|>n$.

Proof of Theorem 1. Let d be the smallest integer such that the ratio of the surface area of the unit sphere in R^{d} and the area of the spherical cap of angular radius 60° is greater than $n-2$. Then $d \leq(7.3) \log n$ by Lemma 2. We show that T is embeddable in R^{d} in such a way that $\|u-v\|=1$ if $u v$ is an edge of T, and >1 otherwise. To prove this we use induction on $|T|$. It is trivial if $|T|=1$. Suppose it is true for $n-1$, and let $|T|=n$. Let x be a vertex of T of degree $1, T_{0}=T-\{x\}$, and let y be the unique neighbor of x in T. By induction, we can embed T_{0} in R^{d}. Let S be the unit sphere in R^{d} around y and $C_{1}, C_{2}, \ldots, C_{n-2}$ the intersection of the other $n-2$ unit spheres (drawn around the remaining $n-2$ vertices of T_{0}) with S. Clearly, C_{i} is a spherical cap of angular radius $\leq 60^{\circ}$. By the choice of d, surf. $\operatorname{area}(S)>\sum_{i} \operatorname{surf}$. area $\left(C_{i}\right)$, hence we can place x on the surface of S so that the distances from x to all other ponts in T_{0} are greater than 1 . Thus T is also embeddable in R^{d}.

3. Proof of Theorem 2

A point set in Euclidean space is said to be dispersed if any two points of the set are at distance more than 1 . The following theorem was proved in [4, Theorem 6].

Theorem [4]. $d(m, n) \leq k+m-1$ if and only if a sphere of radius $s(m):=$ $((m+1) /(2 m))^{1 / 2}$ in R^{k} contains n dispersed points.

Proof of Theorem 2. Since the upper bound was proved in [4], we only show the lower bound. Suppose $k+m-1=d(m, n)$. Then, by the above theorem, a sphere S of radius $s(m)$ in R^{k} contains n dispersed points. Let $\alpha=$ $\arcsin \left(\left(\frac{1}{2}\right)^{1 / 2} / s(m)\right)$. Since S contains n dispersed points, there is a spherical cap $C=C(\alpha)$ of angular radius α such that C contains $\lceil n|C| /|S|\rceil$ dispersed points, where || denotes the surface area. This can be seen in the following way. Let x_{i}, $i=1, \ldots, n$, be n dispersed point on S. Consider a "random spherical cap" C of angular radius α, and define random variables $v_{i}, i=1, \ldots, n$, by $v_{i}=1$ if $x_{i} \in C$, $\mathbf{v}_{i}=0$ otherwise. Then the expected value of the sum $\mathbf{v}_{1}+\cdots+\mathbf{v}_{n}$ equals $n|C| /|S|$. Hence there must be a spherical cap $C=C(\alpha)$ which contains at least $\lceil n|C| /|S|\rceil$ dispersed points.

Next we show that if C contains k dispersed points then the boundary $b C$ of C also contains k dispersed points. Let $z \in C$ be the "center" of C, and let y be any point of the boundary $b C$ of C. Then, for $m \geq 2$,

$$
\begin{aligned}
\|y-z\|^{2}=2 s(m)^{2}(1-\cos \alpha) & =((m+1) / m)\left(1-\left(1-\sin ^{2} \alpha\right)^{1 / 2}\right) \\
& =(1+1 / m)\left(1-(1 /(m+1))^{1 / 2}\right)<1 .
\end{aligned}
$$

Let $x_{i}, i=1, \ldots, k$, be k dispersed points on C. Then $x_{i} \neq z$ for all i. For each i, let y_{i} be the point of $b C$ such that the geodesic path on S connecting y_{i} and z passes through x_{i}. (The point y_{i} is the point where the great circle passing through z and x_{i} intersects with $b C$.)

Claim. The points $y_{i}, i=1, \ldots, k$, are dispersed.
Proof. Let $x_{j i}$ be the orthogonal projection of $x_{\text {, }}$ on the plane determined by x_{i}, z, and the center o of shere S. Then one of the angles $\Varangle y_{i} o x_{j i}, \Varangle z o x_{j i}$ is not less than the angle $x_{i} x_{1} \ddot{y}_{j}$. Hence $\max \left\{\left\|y_{i}-x_{j}\right\|^{2},\left\|z-x_{j i}\right\|^{2}\right\} \geq\left\|x_{i}-x_{j i}\right\|^{2}$, and hence $\max \left\{\left\|y_{i}-x_{j}\right\|^{2},\left\|z-x_{j}\right\|^{2}\right\} \geq\left\|x_{i}-x_{j}\right\|^{2}$. However, since $\left\|z-x_{j}\right\|<1$, we have $\left\|y_{i}-x_{j}\right\|>1$ for $i \neq j$. Similarly, we can conclude $\left\|y_{i}-y_{j}\right\|>1$ for $i \neq j$. Thus y_{i} $i=1, \ldots, k$, are dispersed.

Now, by Rankin's theorem [5], a sphere of radius $\leq\left(\frac{1}{2}\right)^{1 / 2}$ in R^{k-1} contains at most k dispersed points. Since the radius of $b C$ is $\left(\frac{1}{2}\right)^{1 / 2}, b C$ contains at most k dispersed points, and so does the cap $C=C(\alpha)$ by the above argument. Hence $n|C| /|S| \leq k$.

Let us evaluate $|C| /|S|$. Since

$$
\begin{aligned}
|C| & =O_{k-1} s(m)^{k-1} \int_{0}^{\alpha}(\sin \theta)^{k-2} d \theta \\
& =O_{k-1} s(m)^{k-1}\left(\int_{0}^{\pi / 2}(\sin \theta)^{k-2} d \theta-\int_{\alpha}^{\pi / 2}(\sin \theta)^{k-2} d \theta\right)
\end{aligned}
$$

and

$$
|S|=2 O_{k-1} s(m)^{k-1} \int_{0}^{\pi / 2}(\sin \theta)^{k-2} d \theta
$$

we have

$$
\begin{aligned}
|C| /|S| & =\frac{1}{2}-\left(O_{k-1} / O_{k}\right) \int_{\alpha}^{\pi / 2}(\sin \theta)^{k-2} d \theta \\
& >\frac{1}{2}-\left(O_{k-1} / O_{k}\right)(\pi / 2-\alpha) \\
& >\frac{1}{2}-\left(O_{k-1} / O_{k}\right)(1 / m)^{1 / 2}
\end{aligned}
$$

(because $\pi / 2-\alpha<\tan (\pi / 2-\alpha)=(1 / m)^{1 / 2}$). Hence, by Lemma $1,|C| /|S|>$ $\frac{1}{2}-((k-1) /(2 \pi m))^{1 / 2}$. So

$$
k>n / 2-n((k-1) /(2 \pi m))^{1 / 2}>n / 2-n(k /(2 \pi m))^{1 / 2},
$$

and from this we have

$$
k>\frac{n}{2}\left(1-\frac{n}{2 \pi m}\left(\sqrt{\frac{n+4 \pi m}{n}}-1\right)\right) .
$$

Thus we have

$$
d(m, n)>\frac{n}{2}\left(1-\frac{n}{2 \pi m}\left(\sqrt{\frac{n+4 \pi m}{n}}-1\right)\right)+m-1
$$

4. Points Without Obtuse Angle

Erdös and Füredi [2] proved that for every ε there exists a $\delta=\delta(\varepsilon)$ and points P_{1}, \ldots, P_{m} on the unit sphere in R^{d} so that $m>(1+\delta)^{d}$ and for all $1 \leq h<i<j \leq$ m all angles of the triangle $P_{h} P_{i} P_{j}$ lie between $\pi / 3-\varepsilon$ and $\pi / 3+\varepsilon$.

Their proof is probabilistic.
Here we derive a bound using Lemma 2.
Theorem 3. For every $0<\beta<\pi / 2$ there exist points P_{1}, \ldots, P_{m} on the unit sphere S in R^{k+2} so that $m>(k /(k+1))^{1 / 2} \exp \left(k \beta^{2} / 2\right)$ and all distances $P_{i} P_{j}, 1 \leq i \leq j \leq m$, satisfy

$$
\begin{equation*}
2(1-\sin \beta) \leq P_{i} P_{j}^{2} \leq 2(1+\sin \beta) \tag{4.1}
\end{equation*}
$$

Proof. Let P_{1}, \ldots, P_{m} be a system of points on the unit sphere S in R^{k+2} satisfying (4.1) and such that the addition of any further point would violate (4.1). Let $D_{i}(\pi / 2-\beta)$ be the spherical double cap of angular radius $\pi / 2-\beta$ centered at P_{i} (a double cap is the union of two diametrically opposite caps). Then the union of $D_{i}(\pi / 2-\beta)$ for $i=1, \ldots, m$ has to cover all points on the sphere. (In fact, if $Q \notin D_{i}(\pi / 2-\beta)$ then by elementary computation

$$
2(1-\sin \beta)<P_{i} Q^{2}<2(1+\sin \beta)
$$

holds.) However, $\left|D_{i}(\pi / 2-\beta)\right|=2|C(\pi / 2-\beta)|$ and Lemma 2 yields

$$
m \geq|S| /(2|C(\pi / 2-\beta)|) \geq(k /(k+1))^{1 / 2} \exp \left(k \beta^{2} / 2\right)
$$

as desired.

Remark. Note that the proof of Theorem 3 shows that every maximal (nonextendable) set satisfying (4.1) is exponentially large. Thus one can construct such a set by adding the points one by one.

Corollary 5. There exist points $P_{1}, \ldots, P_{m} \in S \subset R^{k+2}$ so that all triangles $P_{h} P_{i} P_{j}$, $1 \leq h<i<j \leq m$, are acute and

$$
m \geq(1.0594)^{k}(k /(k+1))^{1 / 2}
$$

holds.

Proof. It is sufficient to choose β so that $\sin \beta=\frac{1}{3}$ and apply Theorem 3.
Corollary 6. There are points $P_{1}, \ldots, P_{m} \in S \subset R^{k+2}$ so that all triangles $P_{h} P_{i} P_{j}$, $1 \leq h<i<j \leq m$, have all angles between 59° and 61° and $m \geq$ $(1.00011)^{k}(k /(k+1))^{1 / 2}$ holds.

Proof. This time one chooses β so that $\sin 30.5^{\circ}=\frac{1}{2}((1+\sin \beta) /(1-\sin \beta))^{1 / 2}$ (for this value of β one checks that $\sin 29.5^{\circ}<\frac{1}{2}((1-\sin \beta) /(1+\sin \beta))^{1 / 2}$ holds) and applies Theorem 3.

In [2] somewhat better bounds are obtained both in Corollaries 5 and 6. The reason is that Erdös and Füredi choose the points from the 2^{n} vertices of the cube which span no obtuse angles. Thus in the case of Corollary 5 one has to get rid of right angles only. Let us recall the standard correspondence between the vertices of the n-cube and the subsets of an n-element set X. By Pythagoras' theorem (see [2]) three vertices corresponding to subsets $A, B, C \subset X$ span a right angle at C if and only if $A \cap B \subset C \subset A \cup B$ holds.

One can use a recent result of Friedman [3] to obtain an explicit construction for such a family of exponential size (and, consequently, of exponentially many vertices of the n-cube with all angles acute). In fact, a special case of Friedman's [3] Theorem 5.7 gives an explicit construction for more than 59^{d} sequences of 59 symbols and of length $10^{32} d$ so that for any three sequences there is at least one place where all three are different. (This result of Friedman was used by Alon [1] to obtain explicit construction for other related families of exponential size.)

Now let b be the smallest integer so that there exists a family $\left\{F_{1}, \ldots, F_{59}\right\}$ of subsets of $\{1,2, \ldots, b\}$ without three sets F_{h}, F_{i}, F_{j} satisfying $F_{h} \cap$ $F_{i} \subset F_{j} \subset F_{h} \cup F_{i}$ (to be more explicit one can also take $b=59$ and $F_{i}=\{i\}$). Then in each sequence replace each appearance of the i th symbol by a (0,1)-sequence of length b corresponding to F_{i}. With $n=10^{32} b d$ this gives $59^{d}>2^{5 n / c}$ (where $c=10^{32} b$), i.e., exponentially many vertices of the n-cube without right angles.

Finally, let us call the reader's attention to a forthcoming interesting paper of Reiterman et al. [6] on sphericity and another related dimension of graphs.

Acknowledgment

The authors are indebted to the referees for valuable suggestions.

References

1. N. Alon, Explicit construction of exponeitial-sized families of k-independent sets, Discrete Math. 58 (1986), 191-193.
2. P. Erdös and Z. Füredi, The greatest angle among n points in the d-dimensional euclidean space, Ann. Discrete Math. 17 (1983), 275-283.
3. J. Friedman, Constructing $O(n \log n)$ size monotone formula for the k th elementary symmetric polynomial of n Boolean variables, Proceedings of the 25th IEEE Symposium on Foundations of Computer Science, 506-515, 1984.
4. H. Maehara, Contact patterns of equal nonoverlapping spheres, Graphs Combin. 1(1985). 271-282.
5. R. A. Rankin, The closest packing of spherical caps in n-dimensions, Proc. Glasgow Math. Assoc. 2 (1955) 139-144.
6. J. Reiterman, V. Rödl, and E. Šiňajová, Geometrical embeddings of graphs, Discrete Math., to appear.

Received March 17, 1986, and in revised form August 1, 1986.

