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Abstract. Every simple graph G = ( V, E) can be represented by a family of equal 
nonoverlapping spheres {So: ve V} in a Euclidean space R" in such a way that 
uv e E if and only if S~ and S~, touch each other. The smallest dimension n needed 
to represent G in such a way is called the contact dimension of G and it is denoted 
by cd(G). We prove that (1) cd(T) < (7.3) log [TI for every tree T, and (2) 

m - l + ~  1 - ~  n I <cd(K . ,+E . )<-m- l+  , 

where K., + E. is the join of the complete graph of order m and the empty graph 
of order n. For the complete bipartite graph K... this implies ( t .286)n-  1 < 
cd(K.,.) < (1.5)n, 

1. Statement of the Results 

For each simple graph G = ( V, E) ,  there is an e m b e d d i n g f  of  V into a Euclidean 
space R e such that 

I l f ( u ) - f ( v ) l l - - 1  if u v ~ E  and I l f ( u ) - f ( v ) t l > l  if u r g E ,  

see [4]. The smallest dimension n for which such an embedding exists is called 
the contact dimension of  G, and is denoted by cd(G) .  Here we present some 
bounds  on the contact  dimensions o f  trees and o f  the join o f  a complete graph 
and an empty  graph. For a graph G, let IGt denote  the number  o f  vertices o f  G. 

Theorem 1. For every tree T, cd(T)  < (7.3) log I TI. 

Note  that this estimate is sharp in the sense that there are trees T on n vertices 
with cd(T)  > c log n, for some fixed c > 0. In fact if G is a graph of  n vertices 
and diameter  d, then c d ( G ) >  (log n)/ log(d + 1) [4, Theorem 2]. 
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Let K,, + E~ be the join o f  the comple te  graph  Km of  order  m and the empty  
graph  E,  o f  order  n, that  is, K,, + E,  is the complemen t  of  the disjoint union 
E,, w K, .  Define d(m, n) = c d ( K , . +  E,) .  In [4] it was proved that  d(m, n) < - 
m - l +  I n / 2 ]  and that  for any n, there is an m(n) such that  if m>m(n)  then 
d(m, n) = m - 1 + [ n / 2 ] .  These  results are improved  in the following way. 

Theorem 2. 

m - l +  1 -  

Let us recall f rom [4] that,  for n>-m, cd(Km+En)=cd(K,..,) holds,  where 
K,,. ,  is the comple te  bipart i te  graph. This implies: 

Corol lary 1. Suppose that n >- m. Then 

r n -  1 + ~  I - 2--~m n 1 <cd (Km, , )< -  m -  1 + . 

Letting m = n yields: 

Corol lary 2. (1.286)n - 1 < d(n, n) = cd (K , . , )  < (1.5)n. 

Since 

n 2 ( , / n  +47rm 

is equivalent  to (n 3 -  n2)/rr< m, we have: 

1 
1 <~ 

Corollary 3. l f m  > (n 3 -  n2)/'tr, then d(m, n) = m -  1 + [ n / 2 ] .  

Erd6s and  Fiiredi [2] used the probabil is t ic  method  to prove the existence of  
a set X c R"  such that  every angle spanned  by three points  of  X is acute and 
IXI grows exponent ia l ly  in n. 

Two new proofs  for  this result are provided  at the end of  the paper ,  one 
semiconstruct ive  and  one constructive. 

2. Proof  o f  Theorem 1 

Lemma 1. Let Ok denote the surface area of the unit sphere in R k, i.e., O k -~- 

2~r k/2/F(k/2). Then 

( ( k  - 2 ) / ( 2 ~ ) )  ~/2 < Ok-~/Ok < ( (k  - 1 ) / (2~ ) )~ /2 .  
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Proof. Since log F(x) (x > 0) is a convex function, we have 

log F((k + 1 ) / 2 ) +  log r((k - 1 ) / 2 ) >  2 log r (k /2 )  

and hence F((k + 1)/2) /F(k/2)  > F(k /2) /F((k  - 1)/2). Since 

r ( ( k +  1)/2) r (k /2 )  k - 1  
r (k /2 )  r ( ( k - 1 ) / 2 )  2 ' 

we have 

r (k /2 )  [ k - l ~  '/2 r ( ( k +  1)/2 

r ( ( k - l ) / 2 ) < ~ - - ~ ]  < r (k /2 )  

Since Ok_~/Ok = F(k/2)/(Tr'/2F((k - 1)/2)). we have the lemma. 
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we have 

Lemma 2. Let S be a unit sphere in R k+2 and C ( a ) be a spherical cap of  angular 
radiuses. Let Isl and Ic(, )l denotethesurfaceareasofSand C(c,). ForO< c~ < rr/2 
one has 

Proof. 

[C(a)l ~ exp 

Since the function f ( t )  = exp(t2/2) cos t decreases on [0, zr/2], and since 

f rr/2 
[C(a)l = Ok+, cos k tat, 

dz,-/2-c~ 

f ~12 [_kt2~ 
]C(a)]<_ Ok+, j~/2_ e x p k - ~ - - ]  dt 

< Ok+, e x p ( - k ( z r / 2 - a ) 2 )  I o e X p ( Z - - ~ )  dt 

( T r )  '/2 ( - k ( z r ~  2 - a ) 2 )  
<- Ok+, -~  exp -- . 

Thus lsl/tc( )l > ' / :  exp(k( r r /2 -4)2 /2 ) .  Since Ok+2/Ok+, > 
(21r/(k+ 1)) ~/2 by the above lemma, we have 

,S, > 2(~--~)k ,/2 [ k ( T r / 2 _ a ) 2 ,  
IC(a)[ expk 2 )"  [] 

[] 



92 P. Frankl and H. Maehara 

Corollary 4. I l k + 2  > - (7.3) log n, n --3,  then tSlltC(,r/3)t> n. 

Proof It is easy to check that if k+2>-(7.3) logn>(72/~r2)logn then 

t s l l l c (  ,,13 )l > n. [ ]  

Proof of Theorem 1. Let d be the smallest integer such that the ratio of  the 
surface area o f  the unit sphere in R d and the area of  the spherical cap of  angular 
radius 60 ° is greater than n - 2 .  Then d-< (7.3) log n by Lemma 2. We show that 
T is embeddable  in R d in such a way that I lu -v i i  = 1 if uv is an edge of  T, and 
> 1 otherwise. To prove this we use induct ion on I T]. It is trivial if IT I = 1. Suppose 
it is true for n - 1, and let t TI = n. Let x be a vertex o f  T of  degree 1, To = T -  {x}, 
and let y be the unique neighbor  of  x in T. By induction,  we can embed To in 
R d. Let S be the unit sphere in R a a round y and C, ,  C 2 , . . . ,  C,_~ the intersection 
o f  the other  n - 2  unit spheres (drawn around the remaining n - 2  vertices of  To) 
with S. Clearly, C~ is a spherical cap o f  angular  radius <_ 60 °. By the choice o f  d, 
surf. area(S)  > Y~ surf. area(C~), hence we can place x on the surface of  S so that 
the distances from x to all other ponts in To are greater than 1. Thus T is also 
embeddable  in R d. 

3. Proof of Theorem 2 

A point  set in Euclidean space is said to be dispersed if any two points o f  the 
set are at distance more than 1. The following theorem was proved in [4, Theorem 
6]. 

Theorem [4]. d ( m , n ) < - k + r n - 1  if and only if a sphere of radius s ( m ) : =  
( (m+ 1)/(2m)) I/2 in R k contains n dispersed points. 

Proof of Theorem 2. Since the upper  bound  was proved in [4], we only show 
the lower bound.  Suppose  k +  m - 1  = d(m, n). Then,  by the above theorem, a 
sphere S o f  radius s(m) in R k contains n dispersed points. Let a =  
arcsin((½)l/2/s(m)). Since S contains n dispersed points, there is a spherical cap 
C = C(a)  of  angular  radius o~ such that C contains [ntft/lsl] dispersed points, 
where I ] denotes  the surface area. This can be seen in the following way. Let x~, 
i = 1 . . . .  , n, be n dispersed point  on S. Consider  a " r andom spherical cap"  C of  
angular  radius t~, and define random variables v~, i = 1 , . . . ,  n, by v~ = 1 if x~ E C, 
v~ = 0 otherwise. Then the expected value o f  the sum v~ + . . .  + v, equals n ICt/Isl. 
Hence there must be a spherical cap C = C(c~) which contains at least rnlfl/Isl] 
dispersed points. 

Next we show that if C contains k dispersed points then the boundary  bC of  
C also contains k dispersed points. Let z e C be the " 'center" of  C, and let y be 
any point  o f  the boundary  bC of  C. Then, for m -> 2, 

IlY - zll  2 = 2s(m)Z( 1 - c o s  a )  = ((m + 1) /m)(1  - ( 1  - s i n  2 a) I/2) 

= (1 + l / m ) ( 1  - (1 / (m + 1)) '/2) < 1. 
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Let x ,  i = 1 . . . .  , k, be k dispersed points on C. Then xi ~ z for all i. For each i, 
let y~ be the point  o f  bC such that the geodesic path on S connect ing y~ and z 
passes through x~. (The point  y~ is the point where the great circle passing through 
z and x~ intersects with bC.) 

Claim. The points Yi, i = 1 . . . . .  k, are dispersed. 

Proof. Let xj~ be the orthogonal  projection o f  x, on the plane determined by x,, 
z, and the center o o f  " ~:~here S. Then one o f  the angles ~_y~oxj~, ~.zoxj~ is not  
less than the angle Z-x, '.),. Hence max{lly,-x,,ll ~, IIz-xj, ll2}>-IIx,-xj, II 2, and 
hence max{lly,-x,  tl 2, lie-x~l12}>-IIx,-xjllL However,  since IIz-xjll < l, we have 
Ily,-xjll > l for i#j .  Similarly, we can conclude I ly , -y j l l>  1 for i# j .  Thus y, 
i = 1 . . . .  , k, are dispersed. 

Now, by Rankin 's  theorem [5], a sphere o f  radius-< (½)~/2 in R k-~ contains at 
most  k dispersed points. Since the radius o f  bC is (½)~/2, bC contains at most  k 
dispersed points,  and so does the cap C = C(a) by the above argument.  Hence 
nlcl/lSl<-k. 

Let us evaluate ICI/Ist. Since 

and 

we have 

IcI  = o k - , s ( m )  k-' (s in 0) k-z dO 

= Ok_,s( m )k-' ( f f /2 (sin O )k- 2 dO-- f f/2 (sin O )k-2 dO) 

f ~r/2 
IS I = 20k_,S(m) k-1 (sin 0) k-2 dO, 

dO 

Icl/Isl =½-(o,_,/o,) (sin O) k-2 dO 

> ½- (Ok-jOk)(~'/2-- a) 

> ½ - ( O k . / O k ) ( U m )  '/2 

(because rr/2-a<tan(~r/2-a)=(1/m)~/2) .  Hence, by Lemma 1, ]C]/ISt> 
~ - ( ( k -  1)/(21rm)) '/2. So 

k > n/2 - n((k - l)/(2~m)) 1/2 > n/2 - n(k/(2o'm)) t/2, 

and from this we have 
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Thus we have 
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2 (  2-~m ( ~  -~ 4zrm ) )  d ( m , n ) >  1 -  1 + m - 1 .  
n 

[] 

4. Points Without  Obtuse Angle 

Erd6s and Fiiredi [2] proved that for every e there exists a t5 = 8(e) and points 
PI, • • . ,  P,. on the unit sphere in R a so that m > (1 + 8) d and for all 1 -< h < i < j  <- 
m all angles of the triangle PhPiPj lie between 7 r / 3 - e  and ~r/3 + e. 

Their proof  is probabilistic. 
Here we derive a bound using Lemma 2. 

Theorem 3. For every 0 < [3 < zr / 2 there exist points P~ . . . .  , P,, on the unit sphere 
S in R k+2 so that m > ( k / ( k  + 1)) 1/2 exp(k[32/2) and all distances P~P~, 1 <- i <-j <- m, 
satisfy 

2( 1 - sin [3) <- P~P] <- 2( 1 + sin [3 ). (4.1) 

Proof. Let P~ . . . .  ,Pm be a system of points on the unit sphere S in R k+2 

satisfying (4.1) and such that the addition of any further point would violate 
(4.1). Let D~(rr /2-[3)  be the spherical double cap of angular radius 7r/2-[3 
centered at P~ (a double cap is the union of two diametrically opposite caps). 
Then the union of D~(Tr/2-[3) for i-- 1 . . . .  , m has to cover all points on the 
sphere. (In fact, if Q~ D~(Tr/2-/3) then by elementary computation 

2(1 - s i n  [3) < PiQZ<2(1 +sin [3) 

holds.) However, ID,(~/2-[3)1 : 21c(~/2-[3)1 and Lemma 2 yields 

m >-IS]/(2JC(~r/2- [3) I) >- ( k / ( k  + 1)) ~/2 exp(k[32/2), 

as desired. [] 

Remark. Note that the proof of Theorem 3 shows that every maximal (nonex- 
tendable) set satisfying (4.1) is exponentially large. Thus one can construct such 
a set by adding the points one by one. 

Corollary 5. There exist points PI . . . . .  P,, e S c R k÷2 SO that all triangles PhPiPj, 
1 < h < i < j  <- m, are acute and 

m >- (1 .0594)k (k / ( k+  1)) '/2 

holds. 
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Proof. It is sufficient to choose /3  so that sin/3 = ~ and apply Theorem 3. []  

Corollary 6. There are points  P1, . .  •, Pm c S c R k + 2̀  so that all triangles P h P i P j ,  

l <- h < i < j <- m, have all angles between 59 ° and 61 ° and m >- 
( 1 . O 0 0 1 1 ) k ( k / ( k  + 1)) I/2 holds. 

Proof. This time one chooses /3 so that sin 30 .5°=½((1+s in /3) / (1 -s in /3 ) )~ /2  
(for this value o f  13 one checks that sin 29.5°< ½((1 - s i n / 3 ) / ( 1  + sin/3))1/2 holds) 
and applies Theorem 3. []  

In [2] somewhat  better bounds  are obtained both in Corollaries 5 and 6. The 
reason is that Erd6s and Fiiredi choose the points from the 2" vertices o f  the 
cube which span no obtuse angles. Thus in the case of  Corol lary 5 one has to 
get rid o f  right angles only. Let us recall the s tandard correspondence between 
the vertices o f  the n-cube and the subsets o f  an n-element set X. By Pythagoras '  
theorem (see [2]) three vertices corresponding to subsets A, B, C c X span a 
right angle at C if and only if A n B c C c A u B holds. 

One can use a recent result o f  Friedman [3] to obtain an explicit construct ion 
for such a family o f  exponential  size (and, consequently,  of  exponential ly many 
vertices o f  the n-cube with all angles acute). In fact, a special case o f  Fr iedman's  
[3] Theorem 5.7 gives an explicit construct ion for more than 59 d sequences of  
59 symbols and of  length 1032d so that for any three sequences there is at least 
one place where all three are different. (This result of  Fr iedman was used by 
Alon [1] to obtain explicit construction for other related families o f  exponential  
size.) 

Now let b be the smallest integer so that there exists a family { F ~ , . . . ,  F59} 
of  subsets o f  { 1 , 2 , . . . , b }  without three sets Fh, F , , F j  satisfying FhC~ 

F i c Fj c F h w ffi (tO be more explicit one can also take b = 59 and F~ = {i}). Then 
in each sequence replace each appearance o f  the ith symbol by a (0, 1)-sequence 
o f  length b corresponding to F~. With n = 1032 bd this gives 59 d > 2 s"/c (where 
c = 1032b), i.e., exponential ly many vertices of  the n-cube without right angles. 

Finally, let us call the reader 's  attention to a for thcoming interesting paper  of  
Reiterman et al. [6] on sphericity and another  related dimension of  graphs. 
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