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Abstract. Toric Fano varieties are algebraic varieties associated with a special class 
of convex polytopes in R". We extend results of V. E. Voskresenskij and A. A. 
Klyachko about the classification of such varieties using a purely combinatorial 
method of proof. 

Let P be a simplical convex polytope in ~ whose vertices are primitive lattice 
vectors (~7/"), and which contains 0 in its interior. I f  a ~ , . . . ,  a ,  are the vertices 
of  a facet o f  P we suppose det(a~ . . . .  , a , )  = ±1, for all facets of  P. Then we call 
P a Fano polytope. 

Let E = E ( P )  be a system of  cones each of  which joins 0 to all points o f  a face 
o f  P, so that the toric or  toroidat variety X,z associated with the fan ~ (see, for 
example, [1], [2], [3]) is projective. In case P is a Fano polytope,  X ~ m  is said 
to be a toric (or toroidal) Fano variety. (It is, equivalently, a complete smooth  
toric variety whose anticanonical  divisor is ample.) 

Let e ~ , . . . ,  e, be the canonical  basis vectors of  R". If  n = 2k is even >0 ;  then 
for Q : = c o n v { ~ e ~ , . . . , ± e , , e ~ - e z + ' " + e , ~ . l - e , , - e ~ + e 2 + ' " + e ,  i - e , }  we 
obtain an example o f  a Fano variety X ~ o  ), called a del Pezzo variety V 2k. It can 
be obtained from P~ × - . .  x P  1 (n times) by blowing-up twice in regular points. 
Voskresenskij and Klyachko [4] have classified all symmetric toroidal Fano 
varieties, i.e., Fano varieties X~e~ with centrally symmetric P, hence possessing 
a torus-invariant  symmetry:  

Any symmetr ic  toroidal Fano variety splits into a product  of  projective 
lines and del Pezzo varieties. (1) 

In terms o f  convexity a split X~p)  = X, x X2 of X~p,  is given by P = conv(P~ w P2) 
where P~, P2 are polytopes whose linear spans have only 0 in common.  So 
X=~t,~=X~p,)xX~,.) .  A dual polytope P* of  P then decomposes  into the 
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Minkowski sum P* = P* + P* where P*, P* are dual lattice polytopes of P,, Pz 
relative to aft P,, aft P2 (affine hulls), respectively, such that dim(aft Ptn/)2)  = 0. 
This again implies that the invertible sheaf associated with P* splits into the 
tensor product of the invertible sheafs associated with P*, P*. If X~p) does not 
split we call P irreducible. 

In their proof  of  (1) the authors make use of an interesting relationship between 
symmetric Fano varieties and Dynkin diagrams of root systems. Nevertheless, in 
this note we present a direct and short proof  of  (1). Furthermore, we extend the 
result as follows: 

We call a Fano polytope pseudo-symmetric if it has two facets F, F '  
centrally symmetric to each other with respect to 0. Let, for example, n 
be even and 

Q :=  c o n v { : l z  e I . . . . .  +e,,, e~ - e z - F .  • • + e._~ -- e.}. 

In this case we call X~(ol a pseudo-del Pezzo variety. We shall prove: 

Theorem. Any pseudo-symmetric toroidal Fano variety splits into a product of 
projective lines, del Pezzo varieties, and pseudo-del Pezzo varieties. 

Some consequences may be noted: 

Any pseudo symmetric Fano variety 

. . . . × . . × (2) 

(P~q~ projective lines, V 2k, del Pezzo varieties, ,~,2,, pseudo-del Pezzo varieties) 
can be blown-down 

(a) into a product p~l) × . . .  x P( "~ of projective lines; 2r + s (<- n) blow-downs 
are hereby needed; 

(b) into a product p~l~ x .  • • x P~P~ x P2k, X" • • X P2k. X P2rn, X" " ' X ~ 2 m ,  of pro- 
jective spaces; r + k l + ' " + k r + m , + " ' + m ~  (<-n+r) blow-downs are 
hereby needed. 

We say, a polytope P is inscribed in a polytope /5 if dim P = dim/5, and if any 
vertex of P is also a vertex of/3. We call a Fano polytope maximal if it is not 
inscribed in any Fano polytope /5 ~ P. 

Each maximal pseudo-symmetric Fano polytope is centrally symmetric. (3) 

Further Fano polytopes can be obtained from the pseudo-symmetric ones by 
omitting vertices and considering the convex hull of the remaining polytopes 
(provided, it contains 0 in its interior). The following polytope P c R 3, however, 
is not of this type: 

P = c o n v { e ~ ,  e 2 ,  e 3 ,  - e 2 ,  -e3 ,  -e~ - e2, - e z +  e3}. 
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A construct ion method ("suspension")  for Fano polytopes is also presented by 
Voskresenskij and Klyachko [4] using Gale diagrams. Since this construct ion 
assigns to any lattice polytope Po a Fano polytope P the authors doubt  whether 
it might make sense to try a classification o f  all Fano polytopes. It should be 
noted, however,  that the suspension (in [2] also used for the construct ion o f  
nonprojective toroidal varieties) destroys the original structure of  P. Also, the 
authors show that the number  of  vertices of  any Fano polytope in R" is <-n2+ 1. 
So we think a classification is possible. As intermediate results we conjecture: 

Conjecture 1. There are at most n - 1 types o f  maximal  irreducible n-dimensional 
Fano polytopes. Each o f  them possesses at most 2n + 2 vertices. 

Conjecture 2. Up to a unimodular transformation, all vertices o f  a Fano polytope 
have coordinates 1, - 1 ,  0 only. 

The p roof  o f  our theorem is achieved by proving several lemmas. 

Lemma 1. Let the coordinates be chosen such that F = conv{el, e 2 , . . . ,  e,} and 
F ' =  c o n v { - e l  . . . .  , - e , }  are facets  o f  a pseudo-symmetric Fano polytope P. Then 
any fur ther  vertex a = ( a l , . . . ,  a , )  o f  P satisfies 

-1-<aj_< 1, j = l , . . . , n .  (4) 

Proof. Let (for row vectors) 

i 0 . . -  0 1 .  
8 =  " ' . .  0 

0 . . . ' .  1 

be a unimodular  transformation.  Then 

Let 

F ~ = conv{el, el + e2 . . . . .  el + e,}, 

F '~ = conv{-e l ,  - e l  - e2 . . . .  , -e~ - e,}. 

Fj := conv{el, el + e2 . . . .  , el + ej-l, el + ej+l . . . . .  el + e,} 

be a face o f  F 8, and let F a : = c o n v ( { a } w F j )  be a facet of  P~ adjacent to F ~. 
Clearly, lad < 1, hence al =0 .  From the regularity o f  X~(p) we obtain 

aj = det(el,  e l+e2  . . . .  , el + ej-l, a, el + ej+l . . . . .  e l + e , ) =  - 1 .  

The support ing hyperplane Hj := { x l - x j  = 1} of  P~ carried by Fa intersects the 
x;-axis in ( 0 , . . . ,  0, tj, 0 . . . .  ,0)  where - 1  -< t~ < 0. Furthermore,  ~ n {x~ = 0} is a 
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support ing hyperplane o f  P~c~ {xl = 0} relative to {xl = 0}. Since all vertices 
F ~ u F  '~ of  P~ lie in {x l=0} ,  { x j = - l }  is a support ing hyperplane o f  P~, j =  
2 , . . . ,  n. Similarly, we see that { x j = + l }  is a support ing hyperplane of  P~, 
j = 2  . . . . .  n. 

If  ,6:= conv{b, el + e 2 , . . . ,  el + e,} is a facet adjacent to F we obtain, from the 
regularity o f  Xx,  

- b 2  . . . . .  b, = det(b, el + e2 , . • . ,  el + e , )  -- - 1 .  

The support ing hyperplane carried b y / ~  has the equation x2 +" • • + x, = 1. Also 
x2 +" • • + x,  = -  1 is a support ing hyperplane o f  P~. Therefore,  

- l < - x 2  + . . . + x . - < l  for all vertices x = ( x l , . . . , x , , ) o f P  ~. 

Now (0, x 2 , . . . ,  x.) 8-' = ( - x 2  . . . . .  x , ,  x2 . . . .  , x , ) ;  furthermore,  the hyper- 
planes {xj = 1} and {xj = -1} ,  j = 2 , . . . ,  n, are invariant under  a -~. So all vertices 
o f  P satisfy (4). []  

Lemma 2. Le t  a = ( a l , .  • . ,  a , ) ,  a ' =  ( a ' b . . . ,  a ' )  be two vertices ~ + e l  . . . . .  +e ,  

o f  P. Then f o r  any  j = 1 , . . . ,  n, neither aj = a'j = 1 nor aj = a'j - 1 is true. 

Proof. I f j  > 1 we can, according to the p roof  of  Lemma 1, consider pa  instead 
o f  P. Then al = a ' l = 0  and we deduce from a j = a j = - I  that both,  a and a' ,  lie 

• e~_l, e~+,,, eS,, in the support ing hyperplane ~ of  P. This implies that el, .. , . . ,  
a, a' are affinely dependent ,  a contradiction,  since P~ is simplicial. 

I f j  = 1 we may assume n > 1 (otherwise everything is trivial), and interchange 
the roles o f  1 and a Jo> 1. 

We call vertices # + e l , . . . ,  +e ,  of  P extra vertices. [ ]  

Lemma 3. A n y  extra vertex a o f  P lies in the hyperplane xl +" • • + x ,  = 0 and 

hence can be represented (up  to renumbering o f  coordinates)  in the f o r m  

a = ( 1 , - 1  . . . .  , 1 , - 1 , 0 , . . . , 0 )  (possibly  noO) .  

Proof. This follows from the fact that F, F '  carry the support ing hyperplanes 
xl +" • • + x,  = 1, xl +" • • + x, = - 1 ,  respectively. []  

Proo f  o f  (1). I f  P is centrally symmetric with respect to 0, and if a =  
(1, - 1 , . . . ,  1, - 1 ,  0 , . . . ,  0) is an extra vertex, then also - a  is an extra vertex. By 
Lemma 3 the matrix having all extra vertices as rows splits as follows: 

711 - 1  . . .  1 - 1  
1 . . . .  1 1 

0 

This implies P itself splits unless a and - a  have no zero coordinates.  [ ]  
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[ , e m m a  4.  I f  P does  no t  split ,  n = d i m P > l ,  then  n is even  a n d  e i ther  a =  

(1 ,  - 1 , . . . ,  1, - 1 )  is the  on ly  ex t ra  ve r t ex  or  a, - a  are  the  on ly  ex t ra  vertices• 

P r o o f  S u p p o s e ,  L e m m a  4 is  f a l s e  a n d  w e  h a v e  t w o  e x t r a  v e r t i c e s  a ,  b. T h e n  w e  

c a n  a s s u m e  t h e  m a t r i x  o f  e x t r a  v e r t i c e s  to  h a v e  t h e  f o r m  ( m  a l w a y s  e v e n )  

. . . .  l 1 l o  o o o  

= 0 ' ' '  0 - 1  1 . . . .  1 1 - 1  . . . .  1 1 0 , 

k ( e v e n )  m r 

(5) 

= 0 ' ' "  0 1 - 1  . . . .  1 1 - 1  " ' -  1 - 1  0 ' ' '  • 

. 

k ( o d d )  m r 

(6) 

I n  b o t h  c a s e s  a t  l e a s t  o n e  0 o c c u r s  in  t h e  f i rs t  r o w ;  f u r t h e r m o r e ,  k < m - 1, S e t t i n g  

e'r l :  = - e r - t  w e  o b t a i n  i n  c a s e  ( 5 )  

a + b - el + e2 . . . . .  ek-~ + ek + e m + l  - -  e r a + 2  . . . . .  er-2 -- e'~_~ -- e~ = O, 

t 
w h i c h  e x p r e s s e s  a n  a f f i n e  d e p e n d e n c e  o f  e l , .  • • ,  ek, e , ,+l ,  • • • ,  er-2,  er-~,  er, a, b. 

T h e s e  p o i n t s  l ie  in  t h e  h y p e r p l a n e  

L ( X )  :--. X I ' A r  " , " " "~" X k l "~- X k  -[- X k + l  q -  X m + l " [  - " • " -[- X r 2 - -  X r _ l - ~  X r  = l .  

F o r  a l l  v e r t i c e s  ±e~ w e  h a v e  L ( + e j ) < -  1. I f  c is  a f u r t h e r  e x t r a  v e r t e x  w e  c a n  w r i t e  

t h e  m a t r i x  o f  e x t r a  v e r t i c e s  a s  

1 - 1  - - .  1 - 1  1 . . . .  1 1 - 1  

0 0 ' ' -  0 0 0 ' ' '  0 - 1  1 

- 1  1 . . . .  1 1 0 • . • 0 0 0 

k 

1 - 1  0 0 - - -  0 0 0 

- 1  1 - 1  1 . . . .  1 1 - 1  

0 0 1 - 1  • - • 1 - 1  0 

• . , 

• o , 

• . .  0 0 

• . .  1 0 

• - -  0 0 

o . . 

• . ° 

. ° . 

0 

0 

0 

T 
m 
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from which we see L(c)-<-- 1. Hence L ( x )  = 1 is a suppor t ing  hype rp lane  o f  P. 
! 

this impl ies  e l , . . . ,  ek, e,,÷ ~ , . . . ,  er-2,  er_~, er, a, b to be vertices o f  a nonsimfft icial  
face o f  P, a cont rad ic t ion .  

Suppose  now case (6). We obta in  ( for  e'r := -e~)  

a + b - e l + e 2  . . . . .  ek+em+l  - era+2+" " • + e~ -2 -  er-l  - e'r = 0, 

which is an affine d e p e n d e n c e  o f  the poin ts  involved.  These  points  lie on the  
hype rp l ane  

L ( x ) : =  x~ + x 2 + .  • "+ xk + xm÷~ +" • "+ x , - ~ - x r  = 1. 

Again  it is seen that  L ( ± e ~ )  <- 1 , j =  1 , . . . ,  n, also L(c)<_ 1 for any o ther  vertex c 
o f  P. This impl ies  again  a con t rad ic t ion  to P be ing  s implic ia l .  

Therefore ,  no 0 occurs  in a and  b, from which  the lemma follows.  [ ]  

F rom Lemmas  1-4 the theorem is now readi ly  obta ined .  

References 

1. V. Danilov, the geometry of toric varieties, Uspekhi Mat. Nauk 33 (1978), 85-134. Russian Math. 
Surveys 33 (1978), 97-154. 

2. G. Ewald, Spherical complexes and nonprojective toric varieties, Discrete Comput. Geom. ! (1986), 
115-122. 

3. T. Oda, Torus Embeddings and Applications, Tata Institute, Bombay, 1978. 
4. V. E. Voskresenskij and A. A. Klyachko, Toroidal Fano varieties and root systems, hr. Nauk 48 

(1984), Math. USSR-Izv. 24 (1985), 221-244. 

Received January 7, 1986 


