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Abstract. Toric Fano varieties are algebraic varieties associated with a special class
of convex polytopes in R". We extend results of V. E. Voskresenskij and A. A.
Klyachko about the classification of such varieties using a purely combinatorial
method of proof.

Let P be a simplical convex polytope in R” whose vertices are primitive lattice
vectors {(eZ"), and which contains 0 in its interior. If a,, ..., a, are the vertices
of a facet of P we suppose det(a,, ..., a,)==*1, for all facets of P. Then we call
P a Fano polytope.

Let T =3(P) be a system of cones each of which joins 0 to all points of a face
of P, so that the toric or toroidal variety X5 associated with the fan X (see, for
example, [1], [2], [3]) is projective. In case P is a Fano polytope, Xy p) is said
to be a toric (or toroidal} Fano variety. (It is, equivalently, a complete smooth
toric variety whose anticanonical divisor is ample.)

Let e,, ..., e, be the canonical basis vectors of R". If n =2k is even >0; then
for Q:=conv{te,, ..., te, e,—e;+ - -+e, —e€,—e te+---+e,_ —e,} we
obtain an example of a Fano variety Xy, called a del Pezzo variety V. It can
be obtained from P'x- - - xP' (n times) by blowing-up twice in regular points.
Voskresenskij and Klyachko [4] have classified all symmetric toroidal Fano
varieties, i.e., Fano varieties Xs p, with centrally symmetric P, hence possessing
a torus-invariant symmetry:

Any symmetric toroidal Fano variety splits into a product of projective
lines and del Pezzo varieties. (1)

In terms of convexity a split Xs(p, = X, X X, of X5(p is given by P = conv(P,u P)
where P,, P, are polytopes whose linear spans have only 0 in common. So
Xs(p)= Xs(pyX Xs(py- A dual polytope P* of P then decomposes into the
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Minkowski sum P* = P¥+ P¥ where P¥, P¥ are dual lattice polytopes of P,, P,
relative to aff P,, aff P, (affine hulls), respectively, such that dim(aff P,~ P,) =0.
This again implies that the invertible sheaf associated with P* splits into the
tensor product of the invertible sheafs associated with P¥, P¥. If Xy p, does not
split we call P irreducible.

In their proof of (1) the authors make use of an interesting relationship between
symmetric Fano varieties and Dynkin diagrams of root systems. Nevertheless, in
this note we present a direct and short proof of (1). Furthermore, we extend the
result as follows:

We call a Fano polytope pseudo-symmetric if it has two facets F, F’
centrally symmetric to each other with respect to 0. Let, for example, n
be even and

Q:=conv{zte,,..., te, e,—e;+ - -+e,_—e,}.

In this case we call X5, a pseudo-del Pezzo variety. We shall prove:

Theorem. Any pseudo-symmetric toroidal Fano variety splits into a product of
projective lines, del Pezzo varieties, and pseudo-del Pezzo varieties.

Some consequences may be noted:

Any pseudo symmetric Fano variety

Xs=P{"x  xPPx V5. ox VR X VI o x VIS (2)

(P\? projective lines, V2% del Pezzo varieties, V2™ pseudo-del Pezzo varieties)
can be blown-down

(a) into a product P{" x - - - x P of projective lines; 2r + s (= n) blow-downs
ar¢ hereby needed;

(b) into a product P{" x - - - X PP’ X Py X+ - XPyy XPy,, X+ - XP,,, of pro-
jective spaces; r+k,+---+k,+m+---+m, (=<n+r) blow-downs are
hereby needed.

We say, a polytope P is inscribeAd in a polytope P if dim P = dim 13, and if any
vertex of P is also a vertex of P. We call a Fano polytope maximal if it is not
inscribed in any Fano polytope P # P.

Each maximal pseudo-symmetric Fano polytope is centrally symmetric. (3)

Further Fano polytopes can be obtained from the pseudo-symmetric ones by
omitting vertices and considering the convex hull of the remaining polytopes
(provided, it contains 0 in its interior). The following polytope P <R’, however,
is not of this type:

P=C0nv{ela €y,€3, €, —€;, €€, _eZ+ e}}'
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A construction method (*‘suspension”) for Fano polytopes is also presented by
Voskresenskij and Klyachko [4] using Gale diagrams. Since this construction
assigns to any lattice polytope P, a Fano polytope P the authors doubt whether
it might make sense to try a classification of all Fano polytopes. It should be
noted, however, that the suspension (in [2] also used for the construction of
nonprojective toroidal varieties) destroys the original structure of P. Also, the
authors show that the number of vertices of any Fano polytope in R" is =n’+1.
So we think a classification is possible. As intermediate results we conjecture:

Conjecture 1. There are at most n— 1 types of maximal irreducible n-dimensional
Fano polytopes. Each of them possesses at most 2n+2 vertices.

Conjecture 2. Up to a unimodular transformation, all vertices of a Fano polytope
have coordinates 1, —1, 0 only.

The proof of our theorem is achieved by proving several lemmas.
Lemma 1. Let the coordinates be chosen such that F =conv{e,, e,,..., e,} and
F'=conv{—e,,..., —e,} are facets of a pseudo-symmetric Fano polytope P. Then

any further vertex a=(a,, ..., a,) of P satisfies

.,n (4)

1 0 0
11 :
s=|. :
0

1 0 1

be a unimodular transformation. Then

F?®=conv{e,, e,+e,,...,e,+e,},
F?=conv{—e,,—e,—e,,...,—e, —e,}.
Let
F:=conv{e,,e,+es,...,e,+¢e_j,e;te.,...,e,+e,}

be a face of F°, and let F,:=conv({a}u F;) be a facet of P° adjacent to F°.
Clearly, |a,| <1, hence a,=0. From the regularity of X5», we obtain

a;=det(e,, e, te,,...,e,te_,a,e,te.,...,e,+e,)=—1

The supporting hyperplane H;:={x,—x; =1} of P’ carried by F, intersects the
x-axis in (0,...,0,¢,0,...,0) where —1=1t, <0. Furthermore, H;n{x, =0} is a
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supporting hyperplane of P®~{x, =0} relative to {x, =0}. Since all vertices £
F® U F’® of P® lie in {x,=0}, {x,=—1} is a supporting hyperplane of P’ j=
2,...,n. Similarly, we see that {x;=+1} is a supporting hyperplane of P,
Jj=2,...,n

If F:=conv{b,e,+e,,...,e +e,}is afacet adjacent to F we obtain, from the
regularity of X5,

—b,—-+—b,=det(b,e,+e,,...,e,+e,)=~1.

The supporting hyperplane carried by F has the equation x,+- - - +x, = 1. Also
x,+++++x,=—1is a supporting hyperplane of P°. Therefore,

—-1<x,+ -++x,=<1 for all vertices x=(x,,...,x,) of P’
Now (0,%5,...,%)% =(=Xxy—+++—X,, Xa,...,%,); furthermore, the hyper-
planes {x; =1} and {x;=—1}, j=2, ..., n, are invariant under 6 '. So all vertices
of P satisfy (4). O
Lemma 2. Leta=(a,,...,a,), a’=(a},...,a,) betwo vertices #+te,,..., te,

of P. Then for any j=1,...,n, neither a;=a,=1 nor a;=a,—1 is true.

Proof. If j>1 we can, according to the proof of Lemma 1, consider P® instead
of P. Then a,=a;=0 and we deduce from a; = a;=—1 that both, a and a’, lie
in the supporting hyperplane H; of P. This implies that e, ..., e} |, e’y,..., en,
a, a' are affinely dependent, a contradiction, since P°® is simplicial.

If j =1 we may assume n > 1 (otherwise everything is trivial), and interchange
the roles of 1 and a j > 1.

We call vertices #+e,,..., e, of P extra vertices. ]

Lemma 3. Any extra vertex a of P lies in the hyperplane x,+---+x,=0 and
hence can be represented (up to renumbering of coordinates) in the form

a=(1,-1,...,1,-1,0,...,0) (possibly no 0).

Proof. This follows from the fact that F, F' carry the supporting hyperplanes
x;+---+x,=1, x;+ - -+x, =1, respectively. 0

Proof of (1). If P is centrally symmetric with respect to 0, and if a=
(1,-1,...,1,-1,0,...,0) is an extra vertex, then also —a is an extra vertex. By
Lemma 3 the matrix having all extra vertices as rows splits as follows:

This implies P itself splits unless @ and —a have no zero coordinates. O
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Lemma 4. If P does not split, n=dim P> 1, then n is even and either a=
(1,-1,...,1, =1} is the only extra vertex or a, —a are the only extra vertices.

Proof. Suppose, Lemma 4 is false and we have two extra vertices a, b. Then we
can assume the matrix of extra vertices to have the form (m always even)

a\ /1 -1+ =1 1-1-+ 1-1 0-:+ 000 -0
blj={0 0 -+ 0 -1 1 -+ =1 1-1-+-1120 - 0},
i 1 i
k (even) m r
aA /1 -1---1-1 1-+ 1-1 0---0 00 -0
bl={0 0---0 1 -1--- -1 1-1---1-10 -0}
: Do : : : (6)
i i 7
k (odd) m r

In both cases at least one 0 occurs in the first row; furthermore, kK <<m — 1. Setting
e,_,:=—e,_, we obtain in case {5)

at+b-ete,— - —e_tete . —€Cpia— " —€ 11— €. ;¢ =0,

which expresses an affine dependence of e, ..., €, €mi1y. .-, €2, €1y, &, a, b.
These points lie in the hyperplane

Lx)=x+t+ Xt Xt X F X T X=Xt X, =1

For all vertices +¢; we have L(+e¢ ) =1. If ¢ is a further extra vertex we can write
the matrix of extra vertices as

a 1 -1 +-- 1 =1 1 - -1 1 -1
by o 0 -+ 0 0 0 -+ 0 -1 1
-1 1 - =1 10 -+ 0 0 O
1
k
1 -1 0 o0 0 0 0 0 0 0
-1 1 -1 1 -1 1 -1 1 0 0
6 0 1 -1 1 -1 0 0 0 0
i 1
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from which we see L(c¢)=1. Hence L(x)=1 is a supporting hyperplane of P.
thisimplies e,, ..., €, €mns1,- -, €2, €1_1, €, 4, b to be vertices of a nonsimplicial
face of P, a contradiction.

Suppose now case {6). We obtain (for e, = —¢,)

atb—ete— —gteu—nt te ,—e —e;=0,

which is an affine dependence of the points involved. These points lie on the
hyperplane

L{x)=x;+t x4+ X+ X+ 2, —x,= 1,

Again it is seen that L(xe;)=1, j=1,...,n, also L(c) =1 for any other vertex ¢
of P. This implies again a contradiction to P being simplicial.
Therefore, no 0 occurs in a and b, from which the lemma follows. O

From Lemmas 1-4 the theorem is now readily obtained.
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