On the Classification of Toric Fano Varieties

Günter Ewald
Mathematisches Institut, Ruhr-Universität Bochum. Universitätstrasse 150, NA 2173. D. 4630 Bochum, Federal Republic of Germany

Abstract

Toric Fano varieties are algebraic varieties associated with a special class of convex polytopes in $R^{\prime \prime}$. We extend results of V. E. Voskresenskij and A. A. Klyachko about the classification of such varieties using a purely combinatorial method of proof.

Let P be a simplical convex polytope in \mathbb{R}^{n} whose vertices are primitive lattice vectors $\left(\in \mathbb{Z}^{n}\right)$, and which contains 0 in its interior. If a_{1}, \ldots, a_{n} are the vertices of a facet of P we suppose $\operatorname{det}\left(a_{1}, \ldots, a_{n}\right)= \pm 1$, for all facets of P. Then we call P a Fano polytope.

Let $\Sigma=\Sigma(P)$ be a system of cones each of which joins 0 to all points of a face of P, so that the toric or toroidal variety X_{Σ} associated with the fan Σ (see, for example, [1], [2], [3]) is projective. In case P is a Fano polytope, $X_{\Sigma(P)}$ is said to be a toric (or toroidal) Fano variety. (It is, equivalently, a complete smooth toric variety whose anticanonical divisor is ample.)

Let e_{1}, \ldots, e_{n} be the canonical basis vectors of \mathbb{R}^{n}. If $n=2 k$ is even >0; then for $Q:=\operatorname{conv}\left\{ \pm e_{1}, \ldots, \pm e_{n}, e_{1}-e_{2}+\cdots+e_{n-1}-e_{n},-e_{1}+e_{2}+\cdots+e_{n-1}-e_{n}\right\}$ we obtain an example of a Fano variety $X_{\Sigma(Q)}$, called a del Pezzo variety $V^{2 k}$. It can be obtained from $\mathbb{P}^{1} \times \cdots \times \mathbb{P}^{1}$ (n times) by blowing-up twice in regular points. Voskresenskij and Klyachko [4] have classified all symmetric toroidal Fano varieties, i.e., Fano varieties $X_{\mathbf{\Sigma}(P)}$ with centrally symmetric P, hence possessing a torus-invariant symmetry:

Any symmetric toroidal Fano variety splits into a product of projective lines and del Pezzo varieties.
In terms of convexity a split $X_{\Sigma(P)}=X_{1} \times X_{2}$ of $X_{\Sigma(P)}$ is given by $P=\operatorname{conv}\left(P_{1} \cup P_{2}\right)$ where P_{1}, P_{2} are polytopes whose linear spans have only 0 in common. So $X_{\Sigma(P)}=X_{\Sigma\left(P_{1}\right)} \times X_{\Sigma\left(P_{2}\right)}$. A dual polytope P^{*} of P then decomposes into the

Minkowski sum $P^{*}=P_{1}^{*}+P_{2}^{*}$ where P_{1}^{*}, P_{2}^{*} are dual lattice polytopes of P_{1}, P_{2} relative to aff P_{1}, aff P_{2} (affine hulls), respectively, such that $\operatorname{dim}\left(\right.$ aff $\left.P_{1} \cap P_{2}\right)=0$. This again implies that the invertible sheaf associated with P^{*} splits into the tensor product of the invertible sheafs associated with P_{1}^{*}, P_{2}^{*}. If $X_{\Sigma(P)}$ does not split we call P irreducible.

In their proof of (1) the authors make use of an interesting relationship between symmetric Fano varieties and Dynkin diagrams of root systems. Nevertheless, in this note we present a direct and short proof of (1). Furthermore, we extend the result as follows:

We call a Fano polytope pseudo-symmetric if it has two facets F, F^{\prime} centrally symmetric to each other with respect to 0 . Let, for example, n be even and

$$
Q:=\operatorname{conv}\left\{ \pm e_{1}, \ldots, \pm e_{n}, e_{1}-e_{2}+\cdots+e_{n-1}-e_{n}\right\}
$$

In this case we call $X_{\Sigma(Q)}$ a pseudo-del Pezzo variety. We shall prove:

Theorem. Any pseudo-symmetric toroidal Fano variety splits into a product of projective lines, del Pezzo varieties, and pseudo-del Pezzo varieties.

Some consequences may be noted:
Any pseudo symmetric Fano variety

$$
\begin{equation*}
X_{\Sigma}=\mathbb{P}_{1}^{(1)} \times \cdots \times \mathbb{P}_{1}^{(P)} \times V^{2 k_{1}} \times \cdots \times V^{2 k_{r}} \times \tilde{V}^{2 m_{1}} \times \cdots \times \tilde{V}^{2 m_{s}} \tag{2}
\end{equation*}
$$

$\left(\mathbb{P}_{1}^{(q)}\right.$ projective lines, $V^{2 k_{1}}$ del Pezzo varieties, $\tilde{V}^{2 m_{j}}$ pseudo-del Pezzo varieties) can be blown-down
(a) into a product $\mathbb{P}_{1}^{(1)} \times \cdots \times \mathbb{P}^{(n)}$ of projective lines; $2 r+s(\leq n)$ blow-downs are hereby needed;
(b) into a product $\mathbb{P}_{1}^{(1)} \times \cdots \times \mathbb{P}_{1}^{(p)} \times \mathbb{P}_{2 k_{1}} \times \cdots \times \mathbb{P}_{2 k_{r}} \times \mathbb{P}_{2 m_{1}} \times \cdots \times \mathbb{P}_{2 m}$ of projective spaces; $r+k_{1}+\cdots+k_{r}+m_{1}+\cdots+m_{s}(\leq n+r)$ blow-downs are hereby needed.
We say, a polytope P is inscribed in a polytope \hat{P} if $\operatorname{dim} P=\operatorname{dim} \hat{P}$, and if any vertex of P is also a vertex of \hat{P}. We call a Fano polytope maximal if it is not inscribed in any Fano polytope $\hat{P} \neq P$.

Each maximal pseudo-symmetric Fano polytope is centrally symmetric.
Further Fano polytopes can be obtained from the pseudo-symmetric ones by omitting vertices and considering the convex hull of the remaining polytopes (provided, it contains 0 in its interior). The following polytope $P \subset \mathbb{R}^{3}$, however, is not of this type:

$$
P=\operatorname{conv}\left\{e_{1}, e_{2}, e_{3},-e_{2},-e_{3},-e_{1}-e_{2},-e_{2}+e_{3}\right\}
$$

A construction method ("suspension") for Fano polytopes is also presented by Voskresenskij and Klyachko [4] using Gale diagrams. Since this construction assigns to any lattice polytope P_{0} a Fano polytope P the authors doubt whether it might make sense to try a classification of all Fano polytopes. It should be noted, however, that the suspension (in [2] also used for the construction of nonprojective toroidal varieties) destroys the original structure of P. Also, the authors show that the number of vertices of any Fano polytope in \mathbb{R}^{n} is $\leq n^{2}+1$. So we think a classification is possible. As intermediate results we conjecture:

Conjecture 1. There are at most $n-1$ types of maximal irreducible n-dimensional Fano polytopes. Each of them possesses at most $2 n+2$ vertices.

Conjecture 2. Up to a unimodular transformation, all vertices of a Fano polytope have coordinates 1, $-1,0$ only.

The proof of our theorem is achieved by proving several lemmas.
Lemma 1. Let the coordinates be chosen such that $F=\operatorname{conv}\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ and $F^{\prime}=\operatorname{conv}\left\{-e_{1}, \ldots,-e_{n}\right\}$ are facets of a pseudo-symmetric Fano polytope P. Then any further vertex $a=\left(a_{1}, \ldots, a_{n}\right)$ of P satisfies

$$
\begin{equation*}
-1 \leq a_{j} \leq 1, \quad j=1, \ldots, n . \tag{4}
\end{equation*}
$$

Proof. Let (for row vectors)

$$
\delta=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
1 & 1 & & \\
\vdots & & \ddots & 0 \\
1 & 0 & \cdots & 1
\end{array}\right)
$$

be a unimodular transformation. Then

$$
\begin{gathered}
F^{\delta}=\operatorname{conv}\left\{e_{1}, e_{1}+e_{2}, \ldots, e_{1}+e_{n}\right\}, \\
F^{\prime \delta}=\operatorname{conv}\left\{-e_{1},-e_{1}-e_{2}, \ldots,-e_{1}-e_{n}\right\} .
\end{gathered}
$$

Let

$$
F_{j}:=\operatorname{conv}\left\{e_{1}, e_{1}+e_{2}, \ldots, e_{1}+e_{j-1}, e_{1}+e_{j+1}, \ldots, e_{1}+e_{n}\right\}
$$

be a face of F^{δ}, and let $F_{a}:=\operatorname{conv}\left(\{a\} \cup F_{j}\right)$ be a facet of P^{δ} adjacent to F^{δ}. Clearly, $\left|a_{1}\right|<1$, hence $a_{1}=0$. From the regularity of $X_{\Sigma(P)}$ we obtain

$$
a_{j}=\operatorname{det}\left(e_{1}, e_{1}+e_{2}, \ldots, e_{1}+e_{j-1}, a, e_{1}+e_{j+1}, \ldots, e_{1}+e_{n}\right)=-1
$$

The supporting hyperplane $H_{j}:=\left\{x_{1}-x_{j}=1\right\}$ of P^{δ} carried by F_{a} intersects the x_{j}-axis in $\left(0, \ldots, 0, t_{j}, 0, \ldots, 0\right)$ where $-1 \leq t<0$. Furthermore, $H_{j} \cap\left\{x_{1}=0\right\}$ is a
supporting hyperplane of $P^{\delta} \cap\left\{x_{1}=0\right\}$ relative to $\left\{x_{1}=0\right\}$. Since all vertices \notin $F^{\delta} \cup F^{\delta}$ of P^{δ} lie in $\left\{x_{1}=0\right\},\left\{x_{j}=-1\right\}$ is a supporting hyperplane of $P^{\delta}, j=$ $2, \ldots, n$. Similarly, we see that $\left\{x_{j}=+1\right\}$ is a supporting hyperplane of P^{δ}, $j=2, \ldots, n$.

If $\hat{F}:=\operatorname{conv}\left\{b, e_{1}+e_{2}, \ldots, e_{1}+e_{n}\right\}$ is a facet adjacent to F we obtain, from the regularity of X_{Σ},

$$
-b_{2}-\cdots-b_{n}=\operatorname{det}\left(b, e_{1}+e_{2}, \ldots, e_{1}+e_{n}\right)=-1
$$

The supporting hyperplane carried by \hat{F} has the equation $x_{2}+\cdots+x_{n}=1$. Also $x_{2}+\cdots+x_{n}=-1$ is a supporting hyperplane of P^{δ}. Therefore,

$$
-1 \leq x_{2}+\cdots+x_{n} \leq 1 \text { for all vertices } x=\left(x_{1}, \ldots, x_{n}\right) \text { of } P^{\delta} .
$$

Now $\left(0, x_{2}, \ldots, x_{n}\right)^{\delta^{-1}}=\left(-x_{2}-\cdots-x_{n}, x_{2}, \ldots, x_{n}\right)$; furthermore, the hyperplanes $\left\{x_{j}=1\right\}$ and $\left\{x_{j}=-1\right\}, j=2, \ldots, n$, are invariant under δ^{-1}. So all vertices of P satisfy (4).

Lemma 2. Let $a=\left(a_{1}, \ldots, a_{n}\right), a^{\prime}=\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)$ be two vertices $\neq \pm e_{1}, \ldots, \pm e_{n}$ of P. Then for any $j=1, \ldots, n$, neither $a_{j}=a_{j}^{\prime}=1$ nor $a_{j}=a_{j}^{\prime}-1$ is true.

Proof. If $j>1$ we can, according to the proof of Lemma 1, consider P^{δ} instead of P. Then $a_{1}=a_{1}^{\prime}=0$ and we deduce from $a_{j}=a_{j}^{\prime}=-1$ that both, a and a^{\prime}, lie in the supporting hyperplane H_{j} of P. This implies that $e_{1}^{\delta}, \ldots, e_{j-1}^{\delta}, e_{j+1}^{\delta}, \ldots, e_{n}^{\delta}$, a, a^{\prime} are affinely dependent, a contradiction, since P^{δ} is simplicial.

If $j=1$ we may assume $n>1$ (otherwise everything is trivial), and interchange the roles of 1 and a $j_{0}>1$.

We call vertices $\neq \pm e_{1}, \ldots, \pm e_{n}$ of P extra vertices.
Lemma 3. Any extra vertex a of P lies in the hyperplane $x_{1}+\cdots+x_{n}=0$ and hence can be represented (up to renumbering of coordinates) in the form

$$
a=(1,-1, \ldots, 1,-1,0, \ldots, 0) \quad(\text { possibly no } 0) .
$$

Proof. This follows from the fact that F, F^{\prime} carry the supporting hyperplanes $x_{1}+\cdots+x_{n}=1, x_{1}+\cdots+x_{n}=-1$, respectively.

Proof of (1). If P is centrally symmetric with respect to 0 , and if $a=$ $(1,-1, \ldots, 1,-1,0, \ldots, 0)$ is an extra vertex, then also $-a$ is an extra vertex. By Lemma 3 the matrix having all extra vertices as rows splits as follows:

$$
\left(\begin{array}{rrrrr|r}
1 & -1 & \cdots & 1 & -1 & 0 \\
-1 & 1 & \cdots & -1 & 1 & \\
\hline & 0 & & & *
\end{array}\right)
$$

This implies P itself splits unless a and $-a$ have no zero coordinates.

Lemma 4. If P does not split, $n=\operatorname{dim} P>1$, then n is even and either $a=$ $(1,-1, \ldots, 1,-1)$ is the only extra vertex or $a,-a$ are the only extra vertices.

Proof. Suppose, Lemma 4 is false and we have two extra vertices a, b. Then we can assume the matrix of extra vertices to have the form (m always even)
$\left(\begin{array}{l}a \\ b \\ \vdots\end{array}\right)=\left(\begin{array}{rrlrrrrrrlrllll}1 & -1 & \cdots & -1 & 1 & -1 & \cdots & 1 & -1 & 0 & \cdots & 0 & 0 & 0 & \cdots\end{array}\right)$

In both cases at least one 0 occurs in the first row; furthermore, $k<m-1$. Setting $e_{r-1}^{\prime}:=-e_{r-1}$ we obtain in case (5)

$$
a+b-e_{1}+e_{2}-\cdots-e_{k-1}+e_{k}+e_{m+1}-e_{m+2}-\cdots-e_{r-2}-e_{r-1}^{\prime}-e_{r}=0
$$

which expresses an affine dependence of $e_{1}, \ldots, e_{k}, e_{m+1}, \ldots, e_{r-2}, e_{r-1}^{\prime}, e_{r}, a, b$. These points lie in the hyperplane

$$
L(x):=x_{1}+\cdots+x_{k-1}+x_{k}+x_{k+1}+x_{m+1}+\cdots+x_{r-2}-x_{r-1}+x_{r}=1 .
$$

For all vertices $\pm e_{j}$ we have $L\left(\pm e_{j}\right) \leq 1$. If c is a further extra vertex we can write the matrix of extra vertices as

$$
\begin{aligned}
& \left(\begin{array}{l}
a \\
b \\
c \\
\vdots
\end{array}\right)=\left(\begin{array}{rrlrrlllrrl}
1 & -1 & \cdots & 1 & -1 & 1 & \cdots & -1 & 1 & -1 & \cdots \\
0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & -1 & 1 & \cdots \\
-1 & 1 & \cdots & -1 & 1 & 0 & \cdots & 0 & 0 & 0 & \cdots \\
\vdots & \vdots & & & & & & \vdots & & & \\
& & & & & & & \uparrow & & & \\
& & & & & & & k & & &
\end{array}\right. \\
& \left.\begin{array}{rrrrlrrrlllll}
1 & -1 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
-1 & 1 & -1 & 1 & \cdots & -1 & 1 & -1 & \cdots & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & -1 & \cdots & 1 & -1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
& \vdots & & & & & & & & \vdots & & & \vdots \\
& \uparrow & & & & & & & & \uparrow & & & \\
& m & & & & & & & & r & & &
\end{array}\right)
\end{aligned}
$$

from which we see $L(c) \leq 1$. Hence $L(x)=1$ is a supporting hyperplane of P. this implies $e_{1}, \ldots, e_{k}, e_{m+1}, \ldots, e_{r-2}, e_{r-1}^{\prime}, e_{r}, a, b$ to be vertices of a nonsimplicial face of P, a contradiction.

Suppose now case (6). We obtain (for $e_{r}^{\prime}:=-e_{r}$)

$$
a+b-e_{1}+e_{2}-\cdots-e_{k}+e_{m+1}-e_{m+2}+\cdots+e_{r-2}-e_{r-1}-e_{r}^{\prime}=0,
$$

which is an affine dependence of the points involved. These points lie on the hyperplane

$$
L(x):=x_{1}+x_{2}+\cdots+x_{k}+x_{m+1}+\cdots+x_{r-1}-x_{r}=1 .
$$

Again it is seen that $L\left(\pm e_{j}\right) \leq 1, j=1, \ldots, n$, also $L(c) \leq 1$ for any other vertex c of P. This implies again a contradiction to P being simplicial.

Therefore, no 0 occurs in a and b, from which the lemma follows.
From Lemmas 1-4 the theorem is now readily obtained.

References

1. V. Danilov, the geometry of toric varieties, Uspekhi Mat. Nauk 33 (1978), 85-134. Russian Math. Surveys 33 (1978), 97-154.
2. G. Ewald, Spherical complexes and nonprojective toric varieties, Discrefe Comput. Geom. 1 (1986), 115-122.
3. T. Oda, Torus Embeddings and Applications, Tata Institute, Bombay, 1978.
4. V. E. Voskresenskij and A. A. Klyachko, Toroidal Fano varieties and root systems. Izv. Nauk 48 (1984), Math. USSR-Izv. 24 (1985), 221-244.

Received January 7, 1986

