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Abstract. If g and h are any nonzero functions on the class of convex polytopes
then a(F', F/)=g(F')/h(F’) is a valuation whose inverse is w(F' F/)=
(~1)h(F")/ g(F’). This is proved and a smaller class of valuations are character-
ized: those a(F'’, F/) which depend only on i and j and which have inverses of the
same form.

1. Introduction

Let #? be the class of all d-dimensional convex polytopes in E¢, d-dimensional
Euclidean space (see Griinbaum [1] for definitions and basic facts). A few years
ago, McMullen [3] demonstrated an interesting method of constructing invertible
functions on faces of a polytope P: if ¢ is any function defined on the faces of
P, and F’ denotes a j-dimensional face of P, we may define

Y(F)=Y (-1Y7B(F', F))o(F"), (1)

where the sum extends over all nonempty faces F'c F/ and B(F', F’) denotes
the internal angle of F' at F/ normalized so that the total measure is 1. This
method is of interest largely because ¢ may be recovered from ¢ in much the
same way (see [2])

e(F) =% y(F', F)y(F"), (2

where the sum is again taken over all nonempty faces F'c F/ and y(F’, F/)
denotes the (normalized) external angle of F' at F’.

The underlying ideas appear more glearly when viewed (as in [2]) in terms
of Rota’s Incidence Algebra A(P) defined on the lattice of faces of P where the
lattice ordering is defined by set inclusion [4]. Here, an element ® € A(P) is
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defined on pairs of faces of P where @(F', F’) =0 unless F' < F’. Multiplication
in the algebra is defined by @ o r(F', F/) =Y O(F', F*)r(F*, F/) where the terms
of the sum vanish unless F' < F*< F’. The identity element is «(F', F’) =1 iff
F'=F’.

For any function ¢ defined on the faces of P, we may also define an element
¢, of A(P) by ¢,(F', F/) = o(F’). If we also write @*(F', F/)=(~-1)Y"'®(F' F’)
for ® € A(P), then McMullen’s result appears as:

Yi=¢,°B* and ¢, =y ,°;

This in turn depends on his identity * o y=1.

The question naturally arises as to what other functions a and @ in A(P)
could play the same roles as 8* and y? Or for what a and @ dowe have a o w =¢?
In general, for any nonzero a you may construct a suitable inverse, o, but there
will be little intuitive relationship between the two functions.

However, in the special case that a and o depend solely on the dimensions
of the faces involved—that is, when a(F’, F/)[w(F’, F/)] may be written as
a(i, j)[w(i, j), respectively]—the answer is quite nice. The description arises from
the observation that one large class of functions in A(P) is easy to invert. These
are the functions described in Theorem 1 which are of the form G(i)/ H(j),
where G and H are arbitrary functions. It turns out that very little additional
freedom is allowed in the most general case: there is some real number A and
G(i)/ H(j) is multiplied by powers of (1+A). The exact description of these
more general functions is given in Theorem 2. Showing that they, in fact,
characterize the functions of the required type constitutes the bulk of this paper.

Theorem 1. Suppose that an element of A(P) is defined by a(F', F/)=a(i,j)=
G(i)/ H ( j_) where G and H are nonzero functions defined on the integers. Then
a \(F', F)= w(i,j) = (1) ""H(i)/ G(j).

Theorem 2. Let a be an element of A(P) such that a(F', F')=a(i,j)#0 and
such that a '(F', F’) = w(i, j). Then there exist nonzero functions G and H defined
on the integers and a constant A such that a(i, i) =1/w(i, i) = G(i)/ H(i) and, for
i<j:

a(i,j)=G(i)/H(j)z(j-1),
w(i,j)=(=1Y"H(i)/ G(j)z(i),
where

1+A if kis even,

z(k)={1—)\ if kis odd.
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2. Proof of Theorem 1

We will actually establish a more general result which contains Theorem 1 as a
special case:

Suppose that an element of A(P) is a(F', F/y=G(F')/H(F’) where G

and H are nonzero functions defined on polytopes. Then 3)
w(F',F')=a \(F, F)=(-1)"H(F')/G(F’).

Denote by f.(F', F’) the number of k-faces, F¥, of a d-polytope P such that

F'c F*c F’, and let f, = fi(¢, P). Then there are two standard results we need
({1, p. 137 and p. 131}).

Euler’s Formula: If F' < F’ are faces of a d-polytope P, then

j o (4)
Y (-D(F, F)=0 if i#].
k=i

Suppose th;lm MSi(F', F?) = p, is a linear relation which holds for all

pairs of faces F' < F’ of all convex d-polytopes. Then (s)

Mar==hap=+ - =(=D "y and gy =An[1+ (=17

Proof of (3). Suppose « is g_iven as in the statement of the theorem, and
w(F', F')=(~1Y"'H(F')/ G(F’). We must show a ° w =1 If F' = F’, the asser-
tion is trivial, so suppose F' # F’. Then

a o w(F F)=Y a(F, F)o(F* F’)
=Y (G(F)/H(F))(-1yY “(H(F*)/ G(F))
=(~1, G(F)/G(F) ¥ (-1)%,

where each sum is taken over all k-faces F* such that F' < F*< F’, But (4) tells
us that this last sum is 0 and the theorem is proved. 0

3. Proof of Theorem 2

The proof essentially involves showing that all the a(j j) are determined by
a(i, i) and a(i, i+1) (i=—1) and by a(-1, 1). The function z(k) then arises in
a natural way from the fact that a(i,j) is computed from a(i—1,j~1) by
multiplying the latter by either 1+A or 1-A.

We first define some auxiliary functions g and h. Set h(—1)=1. Then define
h(j+1)=h(j)a(j,j)/a(j,j+1) and g(j)=g(j)a(j,j). Then by definition
a(i, i) =g(i)/h(i) and a(i, i+1)=g(i)/h(i+1).
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At this point it is possible to define A. Let a(—1,1)=(1-A)g(—1)/h(1) and

let z(n) be defined as in the statement of Theorem 2. Finally, we define the
functions used in our theorem:
G(i)=g(D)z(i-Dz(i-2) - - - z(-2),
and

H(j)=h{j)z(j-1)z(j-2) - - - z(-2).
Note that G(i)/ H(i) = g(i}/h(i)=a(j, i), and

G(i)/H(i+Dz(iy=g(i}/h(i+1)=a(i,i+1).

Let w be the inverse function to «; that is, @ e w =+ in A, Writing out this
multiplication explicitly shows that:

a(i, Dw(i,i)=1 forall i

(6)
$ ali, K)ok ), (F, F))=0 if F'c F’ and i #]. ™
k=i

Now by using (5) in conjunction with (7}, we get two further sets of equations
for all i <j. The designations of the equations are at the left.

(i,j, k) a(ikelk j)=—a(i k+Lw(k+1,j), i+lsk=sj~2,
Now from (6), we get

w(i, i)y=1/a(i, i)= H(i)/ G(i).

Then since
eew(F F'Y=a(ii)w(,it)+a(ii+)e(i+1,i+1)=0, we see w(i,i+1)
H(i)/ G(i+1)z(i). Thus w(i,j) is also of the proper form for j=4i, i+1.

Now we combine equations (i, i+2,*) and (i —1, i +2, i) to show, after a little
algebra, that

a(i,i+2)=w(i+1,i+2)a(i+2,i+2)

x [—2::(:’, i+1)+—i_{i’—i),- a(i—1,i+ 1)].
al(i—1,1)

But since we know most of the terms, this expression simplifies to:

(®)

o G(i) _H(i+1)a(i-1,i+1)]
"‘("‘+2)“’H(i+z)z(i)z(i—1){2 Gli-D2(i-1) ®

Using the fact that a(—1, 1) = F(—1)/ H(1)z(0) and noting that 2~ z(i) = z(i +1),
(9) may be employed inductively to get, for all i=—1:

a(i,i+2)=GU)/H(i+2)z(i+1).

(10)
Using (10) in conjunction with equation (i—1,i+2,i) we find w(i,i+2)=
H{i)/ G(i+2)z(i).
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The rest is easy to do by induction on n=j—i So far the theorem has been
proved for both «(i,j) and w(i,j) when j—i=0, 1, 2. Assume it is known if
j—i=n. Then from equation (i, i+n+2, i+n) we have

ali,i+n+1)=—alii+ne(i+ni+n+2)/w(i+n+1,i+n+2). (11)

Using our induction hypothesis this becomes

.. -G(i)
+n+l)={——-"—z(i+n-
a(i,i+n+1) {H(H—n)z(H-n 1)}
H(i+n) . }{ G(i+n+2) }
X{—————"—z(i+ ———" (it n+
{G(i+n+2)z(‘ M\ T HGTarn 2ETHD
__Ga) ,
“HG+nin 0t
since z(k)=1z(k+2) for all integers k. We may verify the induction step for
w(i, i+n-+1) in the same way by using equation (i~2, i+n+1,i). O
4. Remarks

1. These results generalize the Euler relation which is the special case arising
when a(i, i)=—a(j,i+t1)=a(-1,1)=1.

2. The result stated in (3) can be extended even further to the case where
a(F' F)= G(F')/H(F’)z(j—1), and z is the function described in Theorem 2.

3. The set of values a(i, i), a{i, i+1), i=1, and a(~1,1) will generate an
element of the incidence algebra whenever a(i, i) # 0. However, it is much more
difficult to write down the values of the a (i, j) explicitly if some of the a (i, i+1) =
0. When this happens, many different cases arise of patterns of a(i, j) which are
forced to be zero. The only easily described case occurs when a(—1,1) =0. Then
A =1 and the results of Theorem 2 hold when recast in a form using the auxiliary
functions g and A
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