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Abstract. If g and h are any nonzero functions on the class of convex polytopcs 
then a(Fi, F~)=g(Fi) /h(F j) is a valuation whose inverse is oJ(Fi, FO = 
(-l)J-Jh(F~)/g(FO. This is proved and a smaller class of valuations are character- 
ized: those ct(F i, F j) which depend only on i andj and which have inverses of the 
same form. 

1. Introduction 

Let ~a  be the class of  all d-dimensional convex polytopes in E d, d-dimensional 
Euclidean space (see GriJnbaum [1] for definitions and basic facts). A few years 
ago, McMullen [3] demonstrated an interesting method of constructing invertible 
functions on faces of a polytope P: if ~ is any function defined on the faces of  
P, and F ~ denotes a j-dimensional face of P, we may define 

$(F #) = E (-l)J-~/3 ( F~, FJ)q(F'), (i) 

where the sum extends over all nonempty faces F i c_ F j and/3(W, F j) denotes 
the internal angle of F ~ at F ) normalized so that the total measure is 1. This 
method is of  interest largely because ~0 may be recovered from ~ in much the 
same way (see [2]) 

,p( F') =E y( F', FJ)C,( F'), (2) 

where the sum is again taken over all nonempty faces F i c F j and y ( F  i, F j) 
denotes the (normalized) external angle of  F i at F j. 

The underlying ideas appear more .clearly when viewed (as in [2]) in terms 
of Rota's Incidence Algebra A ( P )  defined on the lattice of faces of P where the 
lattice ordering is defined by set inclusion [4]. Here, an element O ~ A ( P )  is 
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defined on pairs o f  faces o f  P where O ( F  i, F j) = 0 unless F ~ c_ F j. Multiplication 
in the algebra is defined by O o r( F ~, F j) = ~ O( F ~, Fk)r(  F k, F j) where the terms 
of  the sum vanish unless F ~ ~ F k ~ F j. The identity element is ~(F ~, F j) = 1 iff 
F i = F j. 

For any function ~ defined on the faces o f  P, we  may also define an element 
~l o f  A ( P )  by ~ I ( F  ~, F j) = ~(F~). I f  we also write O * ( F  ~, F j) = ( -  1)J-~®(F, F j) 
for 19 e A(P) ,  then McMul len ' s  result appears as: 

~1=~1  ° /3 .  and ~ l=~b l °3 ' ;  

This in turn depends  on his identi ty/3* o 3' = ~. 
The quest ion naturally arises as to what  other functions a and to in A(P)  

could play the same roles as/3* and y?  Or for what  a and to do we have a o to = ~ ? 
In general, for any nonzero  a you may construct  a suitable inverse, to, but  there 
will be little intuitive relationship between the two functions. 

However ,  {n the special case that t~ and to depend  solely on the dimensions 
o f  the faces involved that  is, when a ( F  i, FJ) [ to (F  i, F i ) ]  may be written as 
a(i , j )[ to(i , j ) ,  respect ively]- - the  answer is quite nice. The description arises f rom 
the observat ion that  one large class o f  functions in A(P)  is easy to invert. These 
are the funct ions described in Theorem 1 which are o f  the form G ( i ) / H ( j ) ,  
where G and H are arbitrary functions. It turns out that  very little addit ional 
f reedom is al lowed in the most  general case: there is some real number  A and 
G ( i ) / H ( j )  is multiplied by powers o f  ( I + A ) .  The exact description of  these 
more general functions is given in Theorem 2. Showing that they, in fact, 
characterize the functions o f  the required type constitutes the bulk o f  this paper. 

Theorem 1. Suppose that an element o f  A (P)  is defined by a ( F  ~, F j) = a ( i , j )  = 
G ( i ) / H ( j )  where G and H are nonzero functions defined on the integers. Then 
a - l (  F ', F j) = to( i,j ) = ( -  l y - ' H  ( i) / G ( j  ). 

Theorem 2. Let a be an element of  A( P) such that a(  F i, FJ)  = a(i,j)~0 and 
such that ct-l( F~, F j) = to ( i,j ). Then there exist nonzero functions G and H defined 
on the integers and a constant A such that a ( i, i) = 1~to(i, i) = G( i) / H ( i) and, for 
i<j :  

where 

a(  i , j)  = G( i)/  H ( j ) z ( j  - 1), 

to( i ,j) = ( -1 )J - 'H(  i)/  G ( j ) z (  i), 

z( k ) = { i + A if k iseven,  
- A if k is odd. 
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2. Proof of Theorem 1 

We will actually establish a more general result which contains Theorem 1 as a 
special case: 

Suppose that an element of  A( P) is c~( F', F j) = G( F ' ) /  H( F j) where G 
and H are nonzero functions defined on polytopes. Then (3) 

to( F', F') = o,-'( F', F) = (-I )'-'H( F')/ G( F'). 

Denote  by f k (F  ~, F ~) the number  of  k-faces, F k, of  a d-polytope P such that 
F ~ ~ F k c F j, and let fk =fk(~, P). Then there are two standard results we need 
([1, p. 137 and p. 131]). 

Euler' s Formula: l f  F~ c_ F j are faces of  a d-polytope P, then 

J 
Z (-1)kfk(F ', F j) = 0 if i / j .  

k = i  

(4) 

J - I  Suppose ~.k,~+l Akfk( F~, F : )=  I~j is a linear relation which holds for all 
pairs o f  faces F' c F: of all convex d-polytopes. Then 

Ai+l = -A,+2  . . . . .  (-lY-~Aj-1 and /z U = A i + , [ l + ( - l Y - i ] .  

(5) 

Proof o f  (3). Suppose a is given as in the statement o f  the theorem, and 
to(F ~, F j) = ( - l Y - i H ( F ~ ) / G ( F : ) .  We must show a o to = ~. I f  F i = F~ the asser- 
t ion is trivial, so suppose F ~ # F ~. Then 

a o ~o(F ~, F ~) = E  a ( F ' ,  Fk)to(F k, F:) 
=~, ( G(F')/ H(Fk))(-1)J-k(H(Fk)/ G(FJ)) 

= (-~, G(F')/G(F:) E (-I) ~, 

where each sum is taken over all k-faces F k such that F ~ c F k c F j. But (4) tells 
us that this last sum is 0 and the theorem is proved. [ ]  

3. Proof of Theorem 2 

The p roof  essentially involves showing that all the a(i , j )  are determined by 
a( i ,  i) and a(i, i + 1 )  ( i - > - 1 )  and by a ( - 1 ,  1). The function z (k)  then arises in 
a natural way from the fact that a( i , j )  is computed from a ( i - l , j - 1 )  by 
multiplying the latter by  either 1 + A or 1 - A. 

We first define some auxiliary functions g and h. Set h ( - l )  = I. Then define 
h ( j + l ) = h ( j ) a ( j , j ) / a ( j , j + l )  and g ( j ) = g ( j ) a ( j , j ) .  Then by definition 

a(i, i) = g ( i ) / h ( i )  and a(i, i+ 1) = g( i ) /h ( i  + 1). 
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At this point it is possible to define A. Let a ( - 1 ,  1 ) = ( 1 - A ) g ( - 1 ) / h ( 1 )  and 
let z(n) be defined as in the statement of  Theorem 2. Finally, we define the 
functions used in our theorem: 

G(i) = g(i)z(i- 1 ) z ( i - 2 ) - - -  z ( -2 ) ,  

and 

n( j )  = h( j )z( j -  l ) z ( j  - 2 ) - - -  z ( -2 ) .  

Note that G( i)/ H( i) = g( i)/ h( i) = a( i, i), and 

G(i)/n(i+ 1)z(i) = g(i)/h(i+ 1) = or(i, i+ 1). 

Let to be the inverse function to a ;  that is, a o to = ~ in A. Writing out this 
multiplication explicitly shows that: 

a(i, i)to(i, i) = 1 for all / .  (6) 

J 
Z o,(i,g)to(g,J)A(F',F~)=O if F'~_F and i~j. (7) 

k ~ i  

Now by using (5) in conjunction with (7), we get two further sets of  equations 
for all i < j .  The designations of  the equations are at the left. 

(i,.~k) ct(i,k)to(k.,j)=-ct(i,k+l)to(k+l,j), i+l<-k<-j-2, 
(i,j,*) a(i, i)to(i,j)+a(i,j)to(j,j)=-a(i, i+ l)to(i+ l,j)(l +(-1)~-'). 

Now from (6), we get to(i,i)=l/a(i,i)=H(i)/G(i). Then since 
a oto(F', F+l)=a(i, i)to(i, i+l)+a(i, i +  1)to(i+ 1, i+1)  =0 ,  we see to(i, i+1)  
=-H(i) /G(i+ 1)z(i). Thus to(i,j) is also of  the proper form for j = i, i+  1. 

Now we combine equations (i, i+2 ,  *) and (i - 1, i+2 ,  i) to show, after a little 
algebra, that 

ct(i, i + 2 ) =  to(i+ 1, i+ 2)a(i+ 2, i+2 )  

[ a(i,i) ] 
x -2a( i , i+l )q-a( i_ l , i )o t ( i - l , i+l )  . (8) 

But since we know most o f  the terms, this expression simplifies to: 

G(i) [ H(i+l)a(i-l,i+l)]G(i_l)z(i_l) a(i , i+2)=n(i+2)z(i)z(i_l)  2 . (9) 

Using the fact that a ( - 1 ,  1) = F(-1)/H(1)z(O) and noting that 2 - z(i) = z(i+ 1), 
(9) may be employed inductively to get, for all i -  > -1 :  

a( i ,  i + 2 ) =  G(i)/n(i+2)z(i+l). (10) 

Using (10) in conjunction with equation ( i - l , i+2 ,  i) we find t o ( i , i + 2 ) =  
n(i)/G(i+2)z(i). 
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The rest is easy to do by induction on n = j -  i. So far the theorem has been 
proved for both a ( i , j )  and ¢o(i,j) when j-i=O, 1, 2. Assume it is known if 
j - i<n .  Then from equation (i, i+  n+2 ,  i+n) we have 

a(i,i+n+l)=-c~(i,i+n)to(i+n,i+n+2)/to(i+n+l,i+n+2). (11) 

Using our induction hypothesis this becomes 

=~-G(i)  z(i+n-1)} ct(i,i+n+l) [H(i+n) 

~ H(i+n) }{ G(i+n+2) z(i+n+l) } 
XtG(i+n+2) z(i+n) H(i+n+l) 

G(i) z(i+n), -H(i+n+l)  
since z(k)= z (k+2)  for all integers k. We may verify the induction step for 
to (i, i + n + 1) in the same way by using equation (i - 2 ,  i + n + 1, i). [] 

4. Remarks 

1. These results generalize the Euler relation which is the special case arising 
when a(i, i) = -ct(i, i+1)  = a ( - 1 ,  1) = 1. 

2. The result stated in (3) can be extended even further to the case where 
ct(F i, F j) = G(Fi)/H(F~)z(j- 1), and z is the function described in Theorem 2. 

3. The set of  values a(i ,  i), a(i,  i+  1), i_> 1, and a ( - 1 ,  1) will generate an 
element of  the incidence algebra whenever a(i, i) ~ O. However, it is much more 
difficult to write down the values of the a(i,j) explicitly if some of  the a(i, i+ 1) = 
0. When this happens, many different cases arise of  patterns of ct(i,j) which are 
forced to be zero. The only easily described case occurs when a ( - 1 ,  1) = 0. Then 
A = 1 and the results of Theorem 2 hold when recast in a form using the auxiliary 
functions g and h. 
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