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Abstract. Let X be a given set of n circular and straight line segments in the plane 
where two segments may interest only at their endpoints. We introduce a new 
technique that computes the Voronoi diagram of X in O(n log n) time. This result 
improves on several previous algorithms for special cases of the problem. The new 
algorithm is relatively simple, an important factor for the numerous practical 
applications of the Voronoi diagram. 

1. Introduction 

The ubiquitous Voronoi diagram has been studied in areas such as biology, 
solid-state physics, pattern recognition, geography, stock-cutting, wire layout, 
geometric optimization, facilities location, computer  graphics, and robotics (see 
[5], [9], [12] for extensive references). In some literature, the alternative ter- 
minology of  Thiessen or Dirichlet tesselation is used. This paper  gives an algorithm 
for computing the Voronoi diagram of a set of  planar objects under the Euclidean 
metric. When restricted to the interior of  a simple polygon, this diagram is known 
as the medial axis or internal skeleton of the polygon. Many variations of  the 
problem studied here have been investigated. The following illustrates the range 
of  possibilities: 

(a) Using the general Lp-metric instead of  the usual Euclidean metric [11], 
[14]. An unusual metric that arises in computational fluid dynamics [3] 
is the problem of  computing the Voronoi diagram for a set of  points in 
the plane under the following metric: 

D(p, q) =min{d(p, q + r ) :  r ~ Z2}, 

* This work was supported by NSF Grants No. DCR-84-01898 and No. DCR-84-01633. 
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where Z are the integers, and d(p, q) is the Euclidean distance between 
points p and q. We may interpret this as computing the Voronoi diagram 
on the torusJ This problem can be linearly reduced to the standard Voronoi 
diagram for a set of  points. 

(b) Power diagrams or Laguerre geometry [8]. Another direction is to assign 
additive or multiplicative weights to points [1]. 

(c) Generalization to higher-dimensional spaces. An algorithm for the Voronoi 
diagram of  point sets in higher dimensions follows (by a certain transforma- 
tion) from Seidel's work on the convex hull [23]. An unusual space is 
R 2 x S ~ where R is the real line and S 1 the unit circle: the Voronoi diagram 
here is used for planning the motion of  a line segment [19]-[21]. 

(d) Voronoi diagrams arising from convex distance function [4], [6], [15]. 

We note here three recent applications of Voronoi diagrams for a set of straight 
and circular segments, all arising in robotics: 

(i) In [18] we show that planning the motion of a disk amidst polygonal 
objects can be reduced to searching in the Voronoi diagram of these 
objects. This result clearly extends to the case where the obstacles are 
bounded by line segments or circular arcs. (As an example of the use of 
circular arcs, the mobile robot in [ 17] approximates itself and the obstacles 
by disks; an O(n 4) time algorithm was implemented there.) The import- 
ance of  the case of a disk arises from the algorithm's efficiency compared 
with the best algorithm for even slightly more complicated shapes (e.g., 
[19]). Indeed, computing the Voronoi diagram can be regarded as a 
preprocessing cost in which case the actual path planning for a disk 
becomes a linear-time process. Thus an algorithm for moving a disk can 
serve as an important initial heuristic in general motion-planning 
algorithms. But until the availability of  an easily implementable 
O(n log n) algorithm for computing the Voronoi diagram, this importance 
remains mostly theoretical. 

(ii) Sharir [25] discusses the problem of  detecting if any two differently 
colored circles from a set of colored circles intersect each other. This 
problem can be easily solved if we have the Voronoi diagram of  these 
circles. 

(iii) Baker et al. [2] show how to find all stable three-fingered grasping 
positions of  a nonconvex polygon using the Voronoi diagram of a shape 
composed of straight lines and circular arcs. 

Previous Work. Before the advent of computational geometry, a number of  
algorithms for various cases of  the problem considered in this paper were proposed 
(mostly running in time ~(n2)). Here we review recent results that are asymptoti- 
cally efficient and which rely on the techniques of  computational geometry. 

m The points on the torus represent (moving) markers for solving Navier-Stokes equations. 
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(1) The first algorithm in this genre is due to Shamos and Hoey [24] who 
gave an O(n log n) algorithm for the Voronoi diagram for a set of  points. 

(2) In the thesis of Drysdale [5], the problem of the Voronoi diagram for a 
set of disjoint polygonal and circular objects was first studied. He described 
and implemented an O(nc ~vr~) algorithm. This bound is subquadratic 
but, since it is f l (n log k n) for any k, Drysdale also posed the problem 
(solved in this paper) of an O(n log n) solution. 

(3) Subsequently, Drysdale and Lee improved the bound in (2) to O(n log 2 n) 
[13]. 

(4) At the 1979 Symposium on Foundations of Computer Science, Kirkpatrick 
[9] outlined in O(n log n) solution. But the technique is complicated 
enough that the correctness of some of its details remains to be settled 
[10]. However, Kirkpatrick's ideas ("spokes" and the use of minimum 
spanning tree) have independent interest. 

(5) When restricted to the problem of computing the medial axis of  a simple 
polygon, Lee [12] presented an O(n log n) algorithm (improving an earlier 
one in [22]). 

(6) Sharir [25] describes an O(n log 2 n) algorithm for n circles that may 
intersec. Note that this improves (c) for the case of circles since the solution 
in (c) assumes that the circles are disjoint. 

We refer to a recent review [16] of most of the preceding results as well as 
the techniques and generalizations known. Recently, Fortune [7] discovered a 
very different O(n log n) algorithm for the problems considered in this paper. 
His elegant method is based on plane-sweep in a transformed space; the fact 
that an O(n log n) plane-sweep method exists is, in itself, a pleasant surprise. 
(Our own results were obtained in the fall of  1984 [26]). 

Discussion: Separability Condition. All the above algorithms (except for For- 
tune's) use the divide-and-conquer paradigm: let X be a set of line segments or 
circular arcs. To compute the Voronoi diagram of X, divide X into equal subsets 
XL and XR, recursively compute their Voronoi diagrams, and then "merge" the 
results. The merging is essentially defined by a certain "merge curve" C (intui- 
tively, to one side of C, the Voronoi diagram of X comes from the Voronoi 
diagram Of XL while to the other side, it comes from XR). To obtain an O(n log n) 
algorithm, the goal is to compute C in linear time. In the Shamos-Hoey algorithm 
for points, the merge curve is a simple connected infinite curve separating XL 
and XR (we view this as a kind of "separability" property of the two sets XL 
and XR). The work of Drysdale and Lee attempts to recover this separability 
property when the input is a set of line segments. As they reported, finding a 
computationally simple separability property remained elusive despite consider- 
able effort. Accepting the fact that the separability property is not easily achieved, 
C may have many connected components and the issue is now to find in linear 
time at least one point (called a "starter") in each component of C. From each 
starter, we can trace out a component of  C. The innovation of Kirkpatrick is to 
show that, to compute the Voronoi diagram of  a set of points, no notion of  
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separability is needed (i.e., XL and XR can be arbitrary). His idea is to subdivide 
each Voronoi cell (by introducing "spokes") into simpler subcells, and to use 
the fact that a certain minimum spanning tree of  X intersects the Voronoi edges 
and spokes of XL and XR in a fashion that allows one to find all the starters in 
linear time. This idea appears again in Sharir's work on intersecting circles. In 
some sense, the new idea in this paper is to reintroduce the separability condition 
in a radical way ("by simply imposing it"). 

Underlying Technique of This Paper. We now give our basic idea. Recall from 
the abstract of  this paper that we solve the following: 

Given a set X consisting of  n straight or circular segments (possibly degener- 
ated to points), where the segments do not intersect except at their endpoints, 
compute their Voronoi diagram Vor(X). 

It will be shown in the next section that Vor(X) is composed of  straight, parabolic, 
hyperbolic, or elliptic curves. Since all and only conics can appear in the diagram, 
our problem is a very natural level of  generalization of  the original problem for 
points. (In other words, if we do not wish to handle curves of  degree more than 
2, then our problem is the most general case to consider.) An O(n log n) solution 
to this problem would subsume the above-mentioned works (1)-(5) since polygons 
and circles can be decomposed into circular and straight segments. However, it 
would not subsume (6) since, there, the n circles may intersect arbitrarily (giving 
rise to II(n 2) circular arcs in the worst case). 

If  there are m distinct endpoints among the segments of  X, we introduce m + 1 
vertical lines such that each endpoint lies between a unique pair of adjacent 
vertical lines. The region between any pair of (not necessarily adjacent) vertical 
lines is called a slab. In stage 0, for each slab between a pair of  adjacent vertical 
lines, we compute the Voronoi diagram of the restriction of the segments of X 
to the slab. In stage 1 we "merge" pairs of Voronoi diagrams of adjacent slabs 
computed in stage 0. In general, at stage i + 1 we merge pairs of adjacent slabs 
from stage i. In log m stages, we would have computed the Voronoi diagram of 
X. Note that in stage i we compute the Voronoi diagram of slabs that contains 
2 ~ endpoints of X. The obvious implementation of  this algorithm may take 12(n 2) 
time, simply because in the initial stages, merging each pair of  slabs can take up 
to linear time~ 

We overcome this problem by computing only the "'essential" part of the 
Voronoi diagram of  a slab, where, roughly speaking, this essential part has size 
only O(k) if  the slab contains k endpoints of  X. Furthermore, merging two slabs 
that collectively contain k endpoints takes only O(k) work. This implies that 
each stage takes linear time and our stated time bound follows. 

In the rest of  this paper we present the basic definitions in Section 2. Section 
3 describes some simple properties of  the process of  moving along the Voronoi 
diagram of  objects. Section 4 gives the merging process which is the heart of  the 
algorithm. Sections 5 and 6, respectively, prove the termination and the correctness 
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of  the merge process. After the overall algorithm is given in Section 7, we analyze 
its complexity in Section 8. Some concluding remarks are given in Section 9. 

2. Preliminaries 

Following [9] we take our primitive objects to be points, open line segments, and 
open circular arcs. It is important to remark that this "expedient" of Kirkpatrick 
is actually a crucial insight that solves several technical problems faced when 
trying to generalize the original definition of Voronoi diagrams for points: 
see [5] for a discussion of the issues. For simplicity we restrict the line segments 
to be finite and the circular arcs to be less than a semicircle. Motivated by robotics 
applications the open line segments and arcs will be called walls and the points 
will be called corners. An object is either a wall or a corner. (Note: depending 
on the context, a corner is treated as a point or a singleton set.) A set X of  
objects is said to be proper if (a) they are pairwise disjoint and (b) for each wall 
in X its endpoints are corners in X. Note that we allow isolated corners in a 
proper set. Hereafter, let X denote a proper set of objects. Assumption (b) in 
the definition of  "properness" is a technical convenience ensuring that each 
Voronoi edge is part of  a unique conic (see below). 

Some of  the following definitions are fairly standard: the projection of  a point 
p onto an object s is the point q in the closure g of s such that the Euclidean 
distance d(p, q) is minimized [13]. Note that this term is well defined except in 
this case: suppose s is an open arc of a circle centered at O and the line L, 
defined to be the bisector of the segment joining the two endpoints of  s. Let 
H ~ L be the closed half-line bounded by O and which does not intersect s. 
Then the projection of p onto s is undefined precisely when p lies in H. In our 
applications, whenever we project p onto s then p will in fact be as close to s 
as to any other objects (including the endpoints of s). It will be shown in Lemmas 
1 and 2 below that, under this condition, p does not lie in H. Henceforth, we 
only use projections when they are well defined. 

The distance d(p, s) between p and s is defined as inf{d(p, q): qe  s}. Define 
the clearance of  an arbitrary point p with respect to X to be the minimum of  
d(p, s) where s e X. Denote this by Clearancex(p) or simply Clearance(p). In 
our proofs it is often convenient to refer to the circle centered at p with radius 
equal to Clearancex(p): call it the clearance circle at p (with respect to X). The 
closed region inside the clearance circle is called the clearance disk at p. 

We consider two ways to define the Voronoi diagram. If  we regard X as a set 
of points obtained as the union of  the objects in X then we have a very simple 
"intrinsic" definition as in [18] or [20]. Precisely, if U x is the set of points in 
objects of  X, then the intrinsic Voronoi diagram of X is the set of points p with 
positive clearance such that the intersection of the clearance circle at p with the 
closure of  U X is a disconnected set) The definition of the intrinsic diagram 

2 This elegant definition of Voronoi diagrams is one simple way to overcome the previously 
mentioned difficulties faced when defining Voronoi diagrams, as discussed in Drysdale's thesis. 
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serves to motivate the next definition of the Voronoi diagram, which is similar 
in spirit to [9]. Say a point p is *-close to an object s in X if for all e > 0 there 
is a point q in the e-neighborhood o f p  such that (i) Clearance(q) = d(q,  s) and 
(ii) the projection of  q onto s is actually in s (rather than in i - s ) .  We can 
characterize *-closeness in this more explicit form: p is *-close to s iff 

(i) Clearance(p) = d (p ,  s) and 
(ii) if  the projection of  p onto s is not in s then s is a wall with p on the 

normal through an endpoint of  s. 

Defini t ion 1. The Voronoi diagram Vor(X) of X is the set of  points p such that 
there exist at least two objects sl and s2 that are *-close to p. 

Example 1. Let X consist of  the walls So, to and the corners s ,  ti (i = 1, 2), as 
in Fig. 1. Vor(X) consists of  all the points on the dashed curves, The intrinsic 
diagram of X consists of  all the points of  Vor(X) minus those that lie on the 
straight line segments perpendicularly through each of the corners. Thus it is the 
curve PoP~ . . .  Ps in Fig. 1. 

By the above characterization of  *-closeness, and from the example, it is 
intuitively seen that Vor(X)  is simply the intrinsic Voronoi diagram of  X aug- 
mented with additional line segments lying along the normals to the endpoints 
o f  walls. I f  X is not proper  then Vor(X) is not necessarily decomposable into a 
collection of  curves and this can be problematic. For computational purposes, 
and for most o f  this paper,  we prefer to use Vor(X);  but we will have occasion 
to consider the intrinsic Voronoi diagram. 

For any pair of  objects s, s', the (s, s')-bisector is the Voronoi diagram of the 
set (s, s'}. I f  s and s '  are objects from X then the properness of  X implies that 
the bisector is a simple curve that divides the plane into two infinite regions. But, 
in general, the bisector may contain branch points as illustrated by the following: 
if s and s '  are two straight walls such that one endpoint q of  s is in the relative 
interior of  s '  then the bisector consists of  three branches emanating from q. (This 
situation is excluded by the properness of  X since q would have to be an object 
in X but  q and s '  are not disjoint.) 

h . . . . .  ~ ! tz t |  
I 

Fig. I. Voronoi diagram. 
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Let us briefly note the types of  bisectors. In case the objects are corners and 
straight walls, the bisector is familiar from previous work: 

[CCl I f  s and s '  are both comers then the bisector is a line. 
[CW] I f  s '  is a straight wall and s is its endpoint then the bisector is the 

line through s and  normal to s'. 
[WW] I f  they are disjoint straight walls (except for a common endpoint) 

then the bisector is a curve that may be composed of up to seven 
sections of  straight or parabolic lines. This is illustrated in Fig. 1: the 
bisector of  the walls so and to is identical to the intrinsic diagram o f  
the points in the figure. 

Next we illustrate the basic types of  interactions involving circular arcs. To 
do this, we consider infinite lines and full circles instead of line segments and 
arcs. We allow these circles and lines to intersect freely here, and we will use the 
intrinsic Voronoi diagram. (It is shown later that edges of  Vor(X),  except for 
those normal through an endpoint of  a wall, are portions of  such intrinsic 
diagrams.) It  is then easy to verify the following: 

(1) Two nonintersecting circles, each external to the other: the bisector is one 
branch of  a hyperbola (unless the two radii are equal, in which we have 
a straight line). 

(2) Two intersecting circles: the bisector is the union of  an ellipse and one 
branch of a hyperbola, both passing through the two intersecting points 
of the circles (see Fig. 2). Degeneracy occurs when the two circles touch. 
There are two cases: the circles touch externally to each other and the 
circles touch with one contained in the other. In the first case, the ellipse 
becomes a line segment joining the two centers. In the second case, the 
hyperbola branch becomes a ray from the common point and directed 
away from both centers. 

(3) Two nonintersecting circles, one contained in the other: the bisector is an 
ellipse with foci the two centers of  the circles. The ellipse separates the 
two circles. 

(4) A circle of  radius r and a nonintersecting line A: a parabola with focus the 
center of  the circle and directrix a line A' parallel to A and at distance r 
from A. The line A lies between A' and the circle. 

! 

/ 

Fig. 2. Bisector of two intersecting circles. 
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(5) A circle o f  radius r and an intersecting line A: two parabolas both passing 
through the two intersection points of  A and the circle. The directrices of 
the two parabolas are the two lines parallel to A and at a distance r from 
A. In the degenerate case, where the line A is tangent to the circle, one 
of  the parabola becomes a ray emanating from the point where A touches 
the circle. 

(6) A circle and a point outside the circle: a branch of  hyperbola. 
(7) A circle and a point inside the circle: an ellipse inside the circle. (Note: in 

the analysis, we can essentially treat cases (6) and (7) as degeneracies of 
(1) and (3), respectively.) 

Remark. The reader familiar with [25] will note that our definition of  Voronoi 
diagrams (when restricted to full circles) differs from Sharir's (which is the same 
as in [13]). Sharir works with circles and defines the distance D(p ,  C )  from a 
point p to a circle C of  radius r centered at q as d (p ,  q) - r. So distance could 
be negative and the diagram for a set of  circles defined by Sharir has no elliptic 
curves. But it is easy to see that by removing all the elliptic curves in our diagram, 
we obtain Sharir's. Negative distances have the disadvantage that they do not 
generalize easily to circular arcs. 

The Voronoi diagram can be decomposed into Voronoi edges where each edge 
e is a maximal connected portion of the (s, s ')-bisector determined by some pair 
of  objects s, s'; e is called an (s, s')-edge. 

Example 2. Because X is proper, each Voronoi edge is a segment of  a unique 
conic (rather than a union of such segments). To see this, consider the set X of 
objects in Fig. 1. There are 15 Voronoi edges, of which eight are normals emanating 
from comers. Consider the Voronoi diagram of  X ' =  {So, to}, i.e., the improper 
set of objects obtained by omitting the corners in X. Then Vor(X') consists of 
the curve PoP~ " " "Ps (thus, Vor(X') coincides with the intrinsic diagram of X).  
The entire curve makes up one Voronoi edge, and is clearly not part of a unique 
conic. 

The endpoints of  Voronoi edges are called Voronoi vertices. The set of points 
in the plane that are neither on the Vor(X) nor in any object of  X is partitioned 
into connected components called Voronoi cells. For example, there are eight 
cells in Fig. 1. Each cell is associated with an object s where for all points p in 
the cell, p is *-close to s. Conversely, a comer (resp. wall) is associated with at 
most one (resp. exactly two) cells. A cell associated with an object s is called an 
s-cell. 

We now show that the Voronoi diagram for a set of  straight and /o r  circular 
segments are portions of  the curves (1)-(7) described above. To indicate why 
this is not immediately obvious, suppose e is an (s, s ')-edge where s is a circular 
arc of a circle C~. Let p be a point in e and assume that q e s  such that 
d ( p ,  q) = d ( p ,  s). It is conceivable that the line segment [p, q] properly contains 
a radius o f  the circle C~. If this were so, then none of  the bisectors (1)-(7) fits 
this description and e cannot be a portion of  these curves. Another possibility 
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Fig. 3. Cone of Influence of s. 

.... X, 

that does not fit (1)-(7) is when the line through p and q does not pass through 
the center of  Cs. We will show that such possibilities do not arise. First, we state 
a simple geometric lemma whose proof  is left to the reader. 

Lemma 1. Let s be a circular object and C~ be the circle containing s. I f  the endpoints 
of  s are u and v, then let Ks be the cone bounded by the pair of rays H~, Hv emanating 
from the center of Cs and passing through u and v, respectively. Then for any point 
p, p is not in the interior of  Ks if  and only if the projection of p onto s is either u or 
v (i.e., d(p,  s) = min{d(p, u), d(p, v)}). 

We call Ks the "cone of  influence" of  s (Fig. 3). We generalize this to any 
object s: if s is a corner then its cone of influence is the whole plane, and if s 
is a straight line segment, its cone of  influence is the strip bounded by the pair 
of  parallel lines normal through its endpoints. The line segment joining any point 
p on the Voronoi diagram to its projection q on any *-close object s is inside 
the cone of  influence of s, and in fact these line segments must be normal to s. 

Lemma 2. I f  e is an (s, s')-edge in Vor(X) then e lies in Ks n Ks, where Ks and 
Ks, are the respective cones o f  influence. 

Proof. By symmetry, it is sufficient to show that e lies in K,. I f  s is a circular 
arc, then the above lemma shows that e lies in Ks (otherwise if p e e lies outside 
K~ then p would be closer to an endpoint of  s, contradiction). There is 
nothing to show if s is a point. The case where s is a straight line segment is 
easy. [] 

From this lemma, it follows that the types of  Voronoi edges have been 
exhaustively enumerated by [CC], [CW], [WW], and (1)-(7) above. To see this, 
if e is an (s, s ' ) -edge then we just have to consider the types of  cones of  influence 
for s and s', and then observe that the corresponding Voronoi edge matches one 
of  the cases enumerated. When s is a circular wall then Ks is divided into two 
parts by s that must be treated differently. We omit the details. Now we prove 
a basic result showing that the usual linear size of  Voronoi diagrams remains 
true in our setting. 

Lemma 3. Given a proper collection X of n objects, the number of  edges in Vor(X) 
is at most 3n - 6 .  
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Proof. We construct an embedded graph G* in the plane with n vertices such 
that embedded edges corresponds to Voronoi edges in Vor(X).  For each object 
s e X, we choose an arbitrary representative point r(s) ~ s; likewise for each edge 
e in Vor(X),  we choose a representative point r(e)~ e (in the relative interior 
o f  s). (So if s is a corner, r(s) = s.) If  e is an (s, s)-edge,  let p(e, s) and p(e, s') 
be the projections of  r(e) onto s and s', respectively. (Note that r(e) avoids the 
singularities where the projections are not well defined.) Now the embedded 
graph G* has vertex set V = {r(s): s ~ X} and edge set E consisting of polygonal 
paths of  the form 

[r(s),p(e,  s), r(e), p(e, s'), r(s ')] ,  

where e is an (s, s ' )-edge.  The embedded edges to no intersect except for sharing 
portions o f  objects (to see this, notice that the property holds in each Voronoi 
celt). By a simple perturbation, we can ensure that these embedded edges do 
not intersect except at their endpoints: simply replace each point p(e, s) by a 
point between r(e) and p(e, s), sufficiently close to p(e, s). Hence G* has n 
vertices and at most 3 n - 6  edges. [] 

The remaining definitions in this section have been invented for the technique 
in this paper.  Let m ~ n be the number of  comers  in X. As in Section 1, let us 
introduce m + 1 vertical lines called separators such that each corner is between 
a unique pair of  adjacent separators. The region between any two (not necessarily 
adjacent) separators is called a slab. We will assume that a circular wall has the 
property that an arbitrary vertical line intersects it at most once, and that no two 
corners are covertical. 

Let S be a slab. A wall is long with respect to S if it intersects both of the 
separators that bound S. The set o f  long walls of  S partition the slab into closed 
regions that we call quads that belong to S. Quads are so-called because these 
have four sides when they are bounded regions. Thus if a slab has no long walls 
then the whole slab is the quad; otherwise, all but two of  the quads are bounded. 
A quad is said to be active if there is at least one corner in it; otherwise it is 
inactive. Let A be a separator. A crossing (or s.crossing) is the intersection of a 
separator with a wall s. I f  A has k/> 0 crossings, then A is divded in k + 1 segments 
called windows. A window is active with respect to S if it is part of  the boundary 
of  an active quad belonging to S. 

Example 3. In Fig. 4 we have a slab with four (not five!) quads of  which the 
upper  two quads are active. The second quad from the top has three windows 
on the left boundary and two on the right. 

Let Q be a quad. Roughly speaking, a Q-object s is obtained by restricting 
some object s'  e X to Q. More precisely, s is one of  the following: 

(i) A comer  corresponding to a crossing at a vertical boundary of  Q. Note 
that each long wall contributes exactly two corners of  this type, and all 
other walls contribute at most one. 
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i 

Fig. 4. A slab between two separators (the dotted lines). 

(ii) An object of  the form s = s ' n  int(Q) where s '  is an object o f  X and int(Q) 
is the interior o f  Q. 

(iii) An object of  the form s=s'nint(S) where s '  is one of the long walls 
that bound Q, and Q belongs to the slab $. There are at most two Q-objects 
of  this form. 

Note that a Q-object s occurs in the original set X if and only if g ~  int(Q). 
Note that the set of  Q-objects is proper. We also refer to a Q-object as a Q.wall 
or Q-corner as the case may be. For instance, if s '  is a long wall that defines the 
upper  or lower boundary of Q then s '  contributes three Q-objects corresponding 
to the two s'-crossings and the wall s ' n  int(S). The Q-diagram, denoted Vor(Q) 
(by abuse of notation), is the Voronoi diagram of the Q-objects. It is important 
to realize that although the Q-objects are confined to Q, the Q-diagram is defined 
in the whole plane. Clearly, the notion of  Q-objects and Q-diagrams can be 
extended to the case where Q is a union of several quads in a slab. I f  Q is quad 
(or a union of  quads), we again abuse notation by writing Clearanceo(p) for the 
clearance of p with respect to the Q-objects. 

In our algorithm, a slab is said to be processed when the Q- diagram is computed 
for each active quad Q belonging to the slab. We represent a Voronoi diagram 
as an embedded planar graph, i.e., a graph such that at each vertex the cyclic 
order of  the incident edges are available and at each face of  the embedding, the 
cyclic order of  the bounding edges are available. For unbounded faces, we 
introduce fictitious edges at infinity. 

3. Properties of Moving Along a Bisector 

Let s and s '  be objects. In our merge algorithm, we need to identify one of the 
two directions along the (s, s ' )-bisector e as being "clockwise" with respect to 
s. This is rather natural and can be made precise as follows: 

Let p be a point in e. For our purposes we may assume that it is not the case 
that one of  the objects s, s' is a wall and the other an incident corner; we may 
further assume that p is not at a transition between two segments of  e correspond- 
ing to different governing equations. Then there is a well-defined tangent to e at 
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Fig. 5. Moving along a bisector. 

p. Let Ps denote the projection of  p onto s (so p~ e i) .  Let u be a tangent vector 
at/7. Let v be the vector from Ps to p. It is easy to show that the tangent at p 
cannot pass through p~, i.e., if we write u as uxi+ uyj+0k,  then the k-component  
of  u x v is nonzero. We say u represents a clockwise (resp. anticlockwise) direction 
about s ill the k-component  of  u x v is > 0  (resp. <0).  3 By symmetry, it is easy to 
see that a direction along e is clockwise about s ill it is anticlockwise about s'. 

We now state without proof  some elementary properties. Let SL and SR be 
objects; e and e '  be the (SL, SR)- and (s~, SR)-bisectors, respectively. Let p*(t), 
for t--> 0, be a parametrized curve, regarded as a moving point p*. Initially, p* 
is moving along e. Let po(t) (fl = L, R) be the projection of  p*(t) onto so, and 
again we regard it as a moving point P0- 

(1) See Fig. 5. Suppose that p* moves along e in the direction that is clockwise 
about  SL. I f  SR is a wall then the motion of  PR (reflecting the motion of 
p*)  either is stationary at an endpoint of  SR or is continuous and unidirec- 
tional along SR. I f  PR is stationary then the vector from PR (=SR) to p* is 
turning continuously anticlockwise about PR. 

(2) Let q be a point in e c~ e'  such that the moving point p* meets q and 
subsequently moves along e'  in the direction that is clockwise about s[.  
We claim p* made a left turn at q. More precisely, if u (resp. v) is the 
tangent to e (resp. e') at q in the direction of  motion of  p* then the 
k-component  of  u x v is ->0. 

(3) Let A be a separator  such that SL lies in the open half-plane to the left of  
A, and SR lies in the closed half-plane to the right of  A. Then there is a 
point on the (SL, sR)-bisector e beyond which the clockwise motion of p* 
about  sL has a positive component  in the downward (vertical) direction. 

(4) The front arc of p* is defined to be the arc of  the clearance circle at p* 
obtained by traversing the circle anticlockwise from PL tO PR. The back 
arc of  p* is defined analogously, as the complement  of  the front arc with 
respect to the clearance circle. As p* moves along e, this front arc is 
sweeping monotonically forward in a sense made precise in the following 
lemma: 

3 Assuming a right.hand coordinate system. 
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Lemma 4. Let SL, SR~: X and e be a n  (SL, sR)-edge in Vor(X). I f  qo and q~ are 
the Voronoi vertices bounding e such that moving along e from qo and q~ corresponds 
to clockwise about SL then the clearance circle at qo (with respect to X )  can only 
touch objects of  X on the back arc. Similarly, the clearance circle at q~ can only 
touch objects of  X in the front arc. In all intermediate positions between qo and q~, 
the clearance circle touches no other objects except SL and SR. 

The proof of  this lemma uses a technique taken from [20]. We sketch the 
method here. It is now convenient to regard e, as a parametrized curve p*(t),  for 
real values t, with increasing t corresponding to the direction clockwise about 
SL. We will define two closed planar sets F,, E, of  points with the following 
properties: 

(i) F, c~ Xt equals the clearance disk at p*(t),  
(ii) the sets Ft and E, are continuously parametrized (in the Hausdorff metric 4 

on sets) by t, and 
(iii) the F (resp. E) sets are monotonically growing (resp. shrinking). More 

precisely, for t < u we have Ft c F,  and Eu c 5~ t. In fact, the growth and 
shrinkage have the following stronger property: the front (resp. back) arc 
at p*(t) (resp. p*(u))  lies in the interior of Fu (resp. E,). 

The preceding growth properties of  Ft and ~, immediately imply the lemma. (In 
[20], one of  the cases also has a third family of  sets At, but this can be avoided.) 
We now describe the F and E sets. We describe these sets according to the type 
of conic that e conforms to. To avoid repetition, we only treat the cases of  
hyperbolas and ellipses: the cases where e is parabolic or straight are essentially 
treated in [20]. 

(a) Hyperbolas. If the bisector e is hyperbolic then both objects s~ (13 = L, R) 
must be circular walls (possibly one of  the s~ degenerated to a point). Let 
s~ be part of a circle C~ centered at q~. So the hyperbola containing e is 
(part of) the (CL, CR)-bisector. We assume the centers are on the x-axis, 
with qL left of  qR. There are two cases, depending on whether the two 
circles intersect. First suppose they do not intersect (see Fig. 6). Then they 
must lie external to each other. Consider the polygonal path P(t)  composed 
of  the ray from qL extending away from qR, the ray from qR extending in 
the other direction, the segments [qL, p*(t)]  and [p*(t),  qR]" Clearly, P(t)  
divides the plane into an upper and a lower part. Define Ft (resp. ~,) to 
be the union of  the region above (resp. below) P(t) with the clearance 
disk at p*(t). It is elementary to verify properties (i)-(iii) above. Now 
consider the case where CL and CR intersect at a pair of  points r, r'. So 
the hyperbola passes through r and r'. Since SL and SR are assumed not 
to intersect, e must lie in one of  the three sections of  the hyperbola. If  e 

4The Hausdorff metric on closed subsets of ~ metric space Y is as follows: for any set S_c Y, 
e > O, let S~ be the union of  the e-balls about the points o f  S. Then the distance between two closed 
subsets S,S' c Y is given by d(S,S')=inf{e ~-O: S c  S~ and S 'c  S~}. 
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The case of hyperbolas with nonintersecting circles. 

were in the two infinite sections then the treatment is identical to the 
previous case. So assume e lies between r and r' inside the " lune" formed 
by intersecting the circles CL and CR. The front arc of p*(t) divides the 
lune into two parts: define Ft to be the upper part. Similarly, define E, to 
be the lower part in the division of  the lune by the back arc of p*(t) .  The 
reader can verify properties (i)-(iii). 
Ellipses. Again, e is elliptic implies that both objects s~ (13 = L, R) are arcs 
of  some circles C,.  Let K denote the strip bounded by the two horizontal 
lines through the centers of CL and CR. We allow the degenerate case 
when the two horizontal lines defining K coincide. Again we consider two 
cases depending on whether the circles intersect. First suppose they do 
not. Then one  (say CR) must lie inside the other and let J' be the interior 
of  CL minus the interior of  CR. So e lies inside J'. Note that, because of  
our assumption that a vertical line intersects an object at most once, the 
edge e must lie inside the strip K or entirely outside. Suppose e lies above 
K, since the cases where e lies below K or inside K are similarly treated. 
Let J be the part of  J '  above K. Roughly, J has a crescent shape. If D, 
is the clearance circle at p*(t) then J - Dt is divided into a left and a right 
part (one of  them possibly empty). Define Ft to be the union of  Dt and 
the right part. Similarly, define Et to be the union of Dt and the left part. 
It is again easy to verify (t)-(iii) for the sets F, and ~,. The final case, 
where the two circles intersect, also presents nothing new. 

4. Merging 

We now show how to process a slab S where S is the union of two slabs S L and 
SR separated by a separator A. By definition, this means we compute the Q- 
diagram of  each active quad Q belonging to S. Note that Q, = Q n S~ (/~ = L, R) 
is a union of  one or more quads belonging to S~, none of  which are necessarily 
active. The diagram of  each quad Q' in Q~ is either already recursively computed 
(if Q' is active) or else the Q'-diagram is trivial and can be computed in constant 
time. Thus with O(m) additional work, where m is the number of  walls and 
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corners in Q c~ S, ,  we can assume all Q'-diagrams are available. Similar to the 
previous well-known algorithms for Voronoi diagrams of  curve segments, the 
Q-diagram is obtained by "merging" the set of  Q'-diagrams for all Q' in QL and 
QR° We do this in two steps: 

(1) (Vertical merge.) For fl = L, R, form the Qa-diagram by "merging" all the 
Q'-diagrams, for Q' in Q~. 

(2) (Horizontal merge.) Merge the QL- and QR-diagrams. This is the most 
important part of  the algorithm. 

The vertical merge is rather easy and depends on next lemma whose easy 
proof  is omitted. Let Q1, Q2 be two adjacent quads belonging to the slab SL, 
and let so be the long wall that separates Qz from Q2. So the intersection of so 
with SL gives rise to three objects s~, s2, s3 that are simultaneously Q~- and 
Q2-0bjects. Without loss of generality let sl (resp. s3) be the left (resp. right) 
endpoint of s2. 

Lemma 5. I f  Ci(sl) ( i=  1,2) denotes the s~-cell in the Q~-diagram then the 
horizontal ray extending leftward from s~ is contained in Cl(sl) ~ C2( sl). 

Informally, this ray forms a natural boundary preventing interaction of the 
Qt- and Q2-0bjects. Using this lemma, it is easy to justify the following method 
for computing the Qo-diagram where Qo = Q~ u Q2. For each Qo-object s, the 
s-cells Co(s) in the Qo-diagram is obtained as follows: 

(1) Suppose s=s~. The above lemma implies that C~(sl) ( i = 1 , 2 )  is 
unbounded. Assume Q~ lies above Q2. The boundary of Co(s) is obtained 
partly from the boundary of C~(s~) starting from s~ counterclockwise to 
its infinite edge, and partly from the boundary of C2(si) starting from s~ 
clockwise to its infinite edge. Similarly for s = s3. 

(2) If s = s2 then there are two s-cells: the Co(s) below (resp. above) s2 is 
equal to the corresponding cell in the Q2-diagram (resp. Qt-diagram). 

(3) If s is not one of  the s~, s2, or s3, then it is a Q;-object for a unique i = 1, 2 
and Co(s) is equal to the corresponding cell in the Q~-diagram. 

By repeated application of  these observations, the QL-diagram can be obtained 
in O(m) time. We can compute the QR-diagram similarly. This completes the 
vertical merge step. 

The main part in constructing the Q-diagram is the merging of the QL- and 
QR-diagrams. This merging is defined by a certain "merge curve" which generally 
consists of several connected components. Indeed, there is a one-to-one corre- 
spondence between these components and the windows in A c~ Q. Therefore, we 
will call the component corresponding to window W the W-contour, and the 
procedure for computing the W-contour is called the W-merge. We mainly focus 
on the mechanism of  the procedure at present, leaving the correctness proof to 
the next two sections. 

Let W be fixed window in Q n A. Refer to Fig. 7. We will assume that W is 
finite; at the end we will handle the other cases. Let So and s~ be the Q-objects 
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RI 

Fig. 7. Illustrating the start (s 2 is a walt). 

whose crossings at A determine the lower and upper endpoints of  W, respectively. 
Let ri (i = 0, 1 ) be the srcrossing. Consider the ray R~ emanating from rl downward 
and normal to s~. The initial part of R1 is part of  the boundary of  the r~-cell in 
the QL-diagram as well as the QR-diagram. Let r~ (fl = L, R) be the first vertex 
of the Qa-diagram lying in R~. Then define Pl to be the closer of rE or r~ to r~. 
We call p~ the starter for W. Note that the starter is well defined for a finite 
window because the ray Rt has a downward component and must eventually get 
closer to ro than to r~. Similarly, let Ro be the ray emanating upward from ro 
and normal to so, and define the ender Po to be the first point along Ro that is a 
vertex of  the QL- or QR-diagram. The W-contour will begin at p~ at the top and 
terminate at Po- 

Without loss of  generality, let p~ represent the intersection of the ray R1 with 
the (sl, s2)-bisector where s2 is a QL-object. It is possible that s2 is the So-crossing 
r0. In this degenerate case, the starter coincides with the ender and the W-contour 
is defined to be empty (we do nothing). Hence we may assume that this is not 
the case. 

The procedure we now describe is a conceptual simplification of  the Lee- 
Drysdale scan [13], which in turn is a modification of  the Shamos-Hoey scan. 
To do this we follow Kirkpatrick's idea [9] of  dividing each Voronoi cell into 
subcells by the systematic introduction of  "spokes": for each Voronoi vertex v 
and for each point q in some object of X where d(v, q) = Clearancex(v), we call 
the line segment [v, q] a spoke of  X. The augmented Voronoi diagram of X is 
Vor(X) together with all such spokes. (Henceforth, Vor(X), Q-diagram, etc., 
refer to the augmented version.) Note that some spokes are already in V o r (X ) - -  
these are precisely the Voronoi edges emanating normally from the endpoints of 
walls. The augmented Voronoi diagram is still a planar graph with at most 9n - 18 
edges. This is because each Voronoi vertex v with degree k->3 in Vor(X) 
contributes at most k spokes. Let the connected planar regions that form the 
complement of  the augmented Voronoi diagram be called subcells. Clearly, each 
Voronoi cell is now divided into a finite number of subcells. The most important 
computational property is that each subcell has at most four sides: 

(a) If  a bounded subcell has three sides then the subcell is incident to a corner 
c of  X. The three sides consist of  two spokes emanating radially from c 
and a portion of  a conic connecting the free ends of the spokes. We call 
this a c-subcell. 
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(b) I f  the subcell has four sides then one side s of  the subcell is a portion o f  
a wall w, and the side s '  opposite to s is a portion of  a conic. Two spokes 
then connect s and s'. We call this is a w-subcell. 

We describe the construction of  the W-contour. The contour will be obtained as 
a sequence of  conic segments 

o ' 1 , 0 " 2 , . . . ,  O ' i , . . .  , 

where each o-~ is bounded between two endpoints p~ and P~-I. We call the p : s  
the breakpoints of  the W-contour. The segment o-~ is contained in the intersection 
of  two subcells: 

~, ~_ C~ r~ C~, 

where C~ is a subcell of the augmented Qz-diagram. Furthermore, if C~ is an 
s~-subcell then 0"~ is a portion of the (s L, sa)-bisector e~. Here we observe the 
convention that moving "forward"  along e~ from p~ to P~-1 corresponds to 
clockwise direction about s L. 

To initilize, oh begins at the point Pl which is the starter, and the construction 
halts when we reach the ender (we will prove later that this is inevitable). The 
subcells C L and C~ are defined naturally. For example, if the starter p~ is the 
intersection of the ray emanating from the s :c ross ing  with the (sl, s2)-bisector 
where s2 is a QL-object, then s L = s2 and s R is s~ c~ int(SR). Although s L, s~ each 
has several subcells, it is easy to decide locally which should be used as C L, C~. 

Inductively, suppose that t~, Pi, C L, and C R have been defined. We extend 
this to i +  1. Now tr~ is a portion of the (s L, s~)-bisector e;. Moving along ei from 
breakpoint  p~ in the forward direction, suppose r~ is the first point on the boundary 
of  C~ for fl = L, R. We define the breakpoint P~+I to be the first of  r E or r~ as 
we move from p~ forward along e~. By symmetry, we may assume that P,+I is r E. 
There are two possibilities: (i) Ifp~+l represents an intersection of  e~ with a spoke 
(but not a segment emanating normally from endpoints of  walls) then SL+I = S L 
and sR+1 = S~ R (both unchanged), and the equation of the curve does not change." 
We have simply moved from one subcell of  si to an adjacent one. (ii) I f  p~+~ 
represents an intersection with a Voronoi edge of the QL-diagram, then P~+I is a 
Voronoi vertex of the Q-diagram. I f  we assume "general position," then there is 
a unique qL-Object S such that the clearance circle at p~+~ intersects s L, s~, and 
s. We then define sL+~ to be s and SR+~ to be siR. The subcells C~+~ are naturally 
obtained. But, in general, the clearance circle at p~+~ (with respect to Q-objects) 
may touch more than three objects. By property (4) in the previous section, these 
objects only touch the clearance circle along the front arc (recall this is the arc 
from the contact point with s R clockwise to the contact point with s~). I f  we 
order these objects in the order of their contact with the front arc, starting with 
sir and moving clockwise around the arc, we will encounter all the QR-objects 
before the QL-objects. Then s ~ l  (resp. sL+t) is defined to be the last (resp. first) 
o f  these QR-objects (resp. QL-objects). For later reference, we call this the front-arc 
scan. 
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This completes our description of  the W-merge for the case of  a finite window 
W. Note that as a consequence of going to subcells, we have removed (or 
trivialized) any need for analogues of the Hoey-Shamos or Lee-Drysdale scan 
in the literature. It remains to consider the two cases when W is infinite: 

(a) Suppose W is a half-line. Without loss of generality, assume W extends 
infinitely upward from the So-Crossing for some Q-object So. The ender Po for 
the W-contour can be defined exactly as above, except that it may not always 
be well defined (this happens if the ray from the So-Crossing meets no Voronoi 
edges of  Vor(QL) and Vor(QR)). If  the ender is undefined, then we say the 
W-contour is empty and we do nothing. Otherwise, we must now define the 
starter. Let H (resp. HL, HR) be the convex hull of  the set of Q-objects (resp. 
QL-, QR-Objects): the hull is composed of line segments and circular arcs. There 
are at most two choices for a pair PL, PR of  points in H where the straight line 
segment [PL, PR] is an edge of H that intersects A; this is because H as the 
boundary of  a convex region intersects A at most twice. We let [PL, PR] be the 
higher of  the two (if any) choices, where "higher" is relative to where each 
segment intersects A. 

Lemma 6. Let [PL, PR] be as above, and  let p~ c s~ where s~ (/3 = L, R) is a 
Q~-object. Consider the infinite strip S of  region bounded by [PL, PR] and the two 
parallel rays emanating upward from PL, PR and normal to [PL, PR]. Let yc_ X 
consist of  SL and SR together with those wall objects incident on SL or SR. Choose 
D1 > 0 so that for each s ~ Y and any point p ~ S at distance greater than DI from 
[PL, PR], the point q in g nearest top  is at pL or pR. Define e > 0  to be the minimum 
distance of  any object s ~ X - Y from the line through PL, PR. Choose Do> D~ such 
that 

Doe > d(pL,PR) 2. 

Then Vor(X) confined to the strip S is equal to the (SL, SR)-bisector at all points 
further than distance Do from [PL, PR]. 

Proof. We see that any point p in the strip S at distance D > Do from [ PL, PR] 
satisfies 

d(p,  s t j ) - D < e .  

But for all object s e X - Y ,  d ( p , s ) - D > - e .  In particular, p is in the (SL, SR)- 
bisector if and only if p is in Vor(X). []  

We define the starter to be the point on the (SL, SR)-bisector at distance Do 
from [PL, PR]- 

The W-merge is done as follows: inductively assume the availability of  the 
convex hulls HL and HR. We can compute H in time linear in the number of  
comers in Q: this is a simple modification of the standard algorithm of  Hong 
and Preparata for the case of  the convex hull of  points. Indeed, this amounts to 
computing the points PL and PR from HL and HR. After checking that the ender 
is defined we can do the usual merge. 
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(b) Suppose W is the entire separator A. The W-contour is always defined 
in this case. We use the previous lemma to define a starter and ender. Note that 
this case is analogous to the "separable" situation that arises in the original 
algorithm of Hoey and Shamos. 

This completes the description of the W-merge. In Section 6 we will describe 
how to use the W-contours obtained here to piece together the Q-diagram from 
the QL- and QR-diagrams. 

5. Termination 

The notations relative to a window W from the previous section are retained. 
We first consider the case where W is finite. It is now convenient to regard the 
W-contour as a parametrized curve p*(t), and p* as a moving point. Let q*(t) 
be the horizontal projection of p*(t) to the separator A. We first prove the q*(t) 
is monotonic in t: 

Lemma 7. For all t ~ t', q*(t) ~ q*(t'). 

Proof For the sake of  contradiction, suppose q*(t)= q*(t'). Without loss of  
generality, assume that p*(t)=PL is strictly to the left of  p*(t')=pR. Let C ,  
(/3 = L, R) be the clearance circle at pa (with respect to Q-objects). Since C a 
must touch both a QL- and a QR-object, it follows that A intersects C a. It is 
impossible for any clearance disk centered at a point in the W-contour to be 
fully contained in another clearance disk. This implies CL and CR must intersect. 
Let A' be the vertical line through the two intersection points u, v of  CL c~ CR- 
I f  A is strictly right of  A' then note that CL must touch some QR-Object at a point 
in the interior o f  CR, a contradiction. By another contradiction in the symmetrical 
case, we conclude A coincides with A'. But then since CL must touch a Qa-object, 
CL must touch the QR-object at one of the two intersection points, say u. Since 
u lies in A, u must be either r0 or r~. I f  u = r~ (i =0 ,  1) then we see that the wall 
si must intersect the interior of  CL or CR, contradiction. [] 

Corollary. The horizontal projection q*(t) of  the W-contour p*(t) into A is 
monotonic along A. In particular, the W.contour does not self-intersect. 

Proof I f  the projection q*(t) is not monotonic then we contradict the previous 
lemma. [] 

Lemma 8. Let the horizontal projections of  the starter p~ and ender Po on A be q~ 
and qo, respectively. Then ql lies above qo. 

Proof There is nothing to prove if Po = Pl. Otherwise, we show a contradiction 
by assuming that qo lies above ql. By the corollary, qo lies strictly above q~. By 
symmetry, let us assume d(qo, ro)>-d(q~, rO. Then the clearance circle at Po 
contains r I in its interior, contradiction. []  
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The preceding lemmas imply that, in tracing out the W-contour p*(t), the 
projection q*(t) is monotonically moving downward, from q*(t) = qt until event- 
ually q*( t) = qo. 

Lemma 9. When the horizontal projection o f  the W-contour reaches q*( t ) = qo then 
the W-contour reaches the ender, p*( t) = Po. 

Proof. Let Co be the clearance circle at Po and C* be the clearance circle at 
p*(t)  when q*(t) = qo. If  Co = C* then the desired result holds. Otherwise, neither 
circle can be contained in the other and they must intersect in exactly two points. 
As in the proof of Lemma 7, let A' be the vertical line through the intersection 
points of C* and Co. A similar argument shows a contradiction (there are three 
cases depending on the relative positions of A' and A). [] 

The preceding three lemmas are not quite sufficient for concluding that our 
algorithm terminates: although it is true that the projection of the W-contour is 
monotonically descending, it logically possible to take infinitely many steps, 
hence not reaching the ender in finite time. 

Recall that the W-contour is divided into curve segments o-1, cr2,.., by break- 
points Pl, P 2 , . . . .  The next two lemmas bound the number of breakpoints. 

Lemma 10. Let W be a window in A c~ Q and let or be any spoke in the QL- or 
QR-diagram. 

(a) The W.contour is a portion o f  the Q-diagram. 
(b) Each W-contour meets ~r at most once. 
(c) I f  W and W'  are two windows in Q n A  then the W-contour and the 

W'-contour do not both intersect or. 

Proof. (a) By construction, the clearance circle at points p of the W-contour 
touches at least two Q-objects, and thus p is in the Q-diagram. 

(b) A spoke or is a straight line segment emanating from a point p in some 
object s. Suppose the W-contour intersects or at distinct points x and y. Then 
the clearance circles at x and y must both touch p. This implies that the clearance 
disk at y contains or is contained in the clearance disk at x. This is impossible 
for points x and y in the Q-diagram. The same argument applies in (c). [] 

Lemma 11. I f  the number o f  Voronoi edges in the Q-diagrams (resp. QL" and 
QR-diagrams) is mo (resp. mE and mR) then the number o f  distinct breakpoints 
made by all the W-contours is m O + mL + mR where W ranges over the windows in 
Qc~A.  

Proof. The breakpoints corresponding to vertices of the Q-diagram is at most 
m o. The remaining breakpoints correspond to intersections with spokes in Q'- 
diagrams (Q' in QL or QR), and these number at most mL+ mR. (This is because 
each Voronoi vertex of  degree k has k spokes emanating from it, and the number 
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of  spokes in the QL" or QR-diagram is at most the sum of  the number  of  spokes 
in the Q'-diagrams,  Q'  in QL or QR.) By the previous lemma, the number of  
such breakpoints is bounded by mL+ mR. [] 

Theorem 12 

(a) 
(b) 

(c) 

(Termination) 

The W-merge algorithm terminates. 
l f  m is the number of  Q-objects then the total number of steps for the W-merges 
is O(m) when summed over all W in Q.n A. Here a "step" corresponds to 
advancing from one breakpoint to the next. 
The total work done summed over all W-merges, W in Q n A ,  is O(m).  

Proof. (a) Consider the case of  a finite window W. The case of  infinite windows 
is similar. By the previous lemma, the number  of  distinct breakpoints in a 
W-contour is bounded. Since the W-contour does not self-intersect, this number  
is also the number  of  steps in a W-merge. So the algorithm terminates. 

(b) The O(m)  bound follows immediately from the preceding lemma, since 
mo + mL + mR = O(m). 

(c) There is only one subtle point here: it is not true that a single "s tep" takes 
constant time since, without assumptions of nondegeneracy, the clearance circle 
at a breakpoint may have an arbitrary number k of  objects suddenly appearing 
on its front arc. In doing the "front-arc scan" we take O(k)  time. However, 
whenever the breakpoint has this property, we have "met"  k Voronoi edges e of  
the QL- or QR-diagram. We can meet each Voronoi edge e at most twice this 
way. I f  the W-contour meet e more than twice, then the intersections are in the 
relative interior of  e, and new Voronoi vertices are generated in the Q-diagram. 
We can thus charge the work done by the front-arc scan to either Voronoi vertices 
of the Q-diagram or to the Voronoi edges of  the QL- and QR-diagram. The charge 
to each Voronoi vertex and to each Voronoi edge is constant. Therefore the O(m) 
bound holds for both types of  charges. [] 

6. Correctness 

We will show how to construct the Q-diagram from the QL- and QR-diagrams, 
and the different W-contours. We first show that there is no interference between 
the W-contours for different windows W. 

Lemma 13. Let W and W' be two windows o f  Q n A. Assume W lies above W' 
and ro is the lower endpoint of  W. The IV- and W'-contours are disjoint. In fact, i f  
A is the horizontal line through I"o then the two contours lie on opposite sides of  A. 

Proof. The W-contour projects horizontally onto A in a monotonic fashion. The 
desired result now follows since the ender for W is above A while the starter for 
W' is below A. [] 
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If  W is finite, define the extended W-contour to be the union of  the W-contour 
with the two segments [ro,Po] and [r~,p~], where Pi are the starter and ender 
and r~ are the two crossings bounding W. Suppose W is infinite. I f  the W-contour 
is nonempty,  the extended W-contour can be defined analogously. I f  the W- 
contour is empty,  then W corresponds to a half-line determined by an s-crossing 
(for some Q-wall s). In this case, define the extended W-contour to be the 
half-line originating f rom the s-crossing in a direction normal to s and away 
from the Q-objects. Define ~ to be the union of  all the extended W-contours 
where W ranges over those windows in A that intersect Q. Observe that ~ divides 
the plane into two infinite regions that can be naturally distinguished as the left 
and right sides of  ~. This follows from the fact that the horizontal projection of 

onto A is a bijection. 

Lemma 14. All the QR-objects lie to the right of ~ and, similarly, all the QL-objects 
lie to the left of ~. Only the objects corresponding to crossings at A lie on ~ itself 

Proof Let s be a QR-object to the left of  c¢, and assume that s does not lie in 
A. We will derive a contradiction. Pick any point q in s and let p be the (unique) 
point on ~ horizontally on to the right of  q. Note  that s and hence p is to the 
right o f  A. 

(a) Suppose p is in the W-contour for some W. The clearance circle C at p 
(with respect to Q-objects) must touch a point q'  in some QL-object. Hence 
the radius of  C is at least the distance from p to A. Since the shortest line 
segment from p to A is the horizontal one, it follows that q lies on this 
shortest segment. So q is in the interior of  C, contradiction. 

(b) Suppose for some W, p is in the extended W-contour but not in the 
W-contour. The clearance circle at p touches a crossing r in A. This means 
the starter (similarly if it were the ender) for W lies beyond p in the ray 
R1 emanating from r. But it is easy to see that the presence of q implies 
that the first vertex of  Vor(QR) lies between r and p, contradiction. [] 

We come to the main result of  this section: 

Theorem 15 (Correctness). The Q-diagram Vor(Q) is the union of all the W- 
contours (where W bounds Q) together with the portion of  Vor(QL) to the left of 

and the portion of Vor(QR) to the right of cg. 

Proof For each point p in ~, it is easy to see that p is in some W-contour iff 
p is in Vor(Q).  So assume p is strictly left of  ~. The lemma then follows from 
the following claim: 

ClearanceQ c (P) < ClearanceoR (P). 

Suppose the claim is false and for some QR-object s, Clearancet~(p)>-d(p, s) = 
Clearances(p). Let q e s  such that d ( p , s ) = d ( p , q ) .  Then ~ intersects the 
half-open segment (p, q]. Let r be any point in the intersection of  ~ with (p, q]. 
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Let Co be the circle centered at p with radius d(p ,  q) and let CI be the clearance 
circle at r (with respect to Q-objects). By assumption, the interior of  Co does 
not intersect any QL- or Qa-object. Clearly, CI is contained in Co (otherwise q 
would be in the interior of  C~) and also Co is a clearance circle of  Q. Consider 
two cases: 

(a) q is not a corner (i.e., crossing) in A. Then s is not a QL-object. Since C~ 
must touch some QL-object s', it follows that the interior of  Co intersects 
s', contradiction. 

(b) q is a corner in A. Let q be the s'-crossing where s' is a Q-wall. But s' 
would have to be tangent to C~ (and hence to Co) at q. Thus s' is vertical, 
contradicting our assumption that no two vertices are covertical. [] 

Determination o f  Subcells. As a corollary, we see that the subcells of  the Q- 
diagram can be obtained as follows. Fix any window W ~  Q n A: 

(i) The new subcells created by the W-merge have the following form: if 
p~ . . . . .  pj (i < j )  form a contiguous sequence of breakpoints such that p~ 
and pj are Voronoi vertices in the Q-diagram and p~+~ . . . .  , P:-t represent 
intersection with spokes, then the W-contour between Pi and p~ is a 
portion of  the (s L, sa)-bisector. (Of course, s~ =Sk ~ for k =  i + 1 , . . .  ,j, 
/3 = L, R.) If the projection of p~ onto sf  (/3 = L, R) is q~ then we obtain 
the new subcell D~ bounded by o-~, the line segments [p~, q~] and [p~, q~], 
and the portion of  s~ between q~ and q~. Note that if i < j -  1 then the 
formation of  D~ is the result of  merging two or more subcells in the 
Q~-diagram. It is not hard to see how to create these new subcells 
on-the-fly during the W-merge. 

(ii) For each crossing r at Qc~A, discard the r-subcells in Vor(QL) and 
Vor(QR). 

(iii) For each Q-wall s that intersects A, we form two new s-subcells. Note 
that there may be many s-subcells but we are interested in the two (one 
on each side of the wall) adjacent to the s-crossing s n A. Each new 
subcell is obtained by merging an appropriate subcell from Vor(QL) with 
a subcell from Vor(Qa). 

(iv) All other subcells of QL- and Qa-diagrams unaffected by the preceding 
steps remain intact in the Q-diagram. 

This procedure is correct because there is no interaction objects on different 
sides of the W-contour. For instance, D L in step (i) is an sL-subceil of the 
Q-diagram because of  two properties: (a) since D L is left of  the curve ~g, D L is 
closer to QL-objects than to any Q~-objects and (b) by construction, D L is a 
subset of  an SL-cell in the QL-diagram. 

7. Putting It Together 

The main procedure consists of  two preprocessing steps followed by a call to a 
recursive procedure: 
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Main Procedure 
Input: a proper set X of  objects (points, open line segments, open circular 
arcs). 
Output: a representation of the augmented Voronoi diagram Vor(X).  

(1) Presort: Sort the set o f  corners according to their vertical projection onto 
the x-axis. We introduce the set of  separators in this step. Let left(s) and 
right(s) indicate the two separators adjacent to a corner s. (Note: to handle 
the case of  more than one corner in any vertical line, only trivial 
modifications are necessary in our entire development.) 

(2) Prescan: Do a scan-line sweep of the line segments to determine for each 
corner s the walls that are immediately (vertically) above and below s. 
This is essentially the algorithm of  Hoey and Shamos for detecting line 
segment intersections. Use above(s) and below(s) to represent these walls. 
I f  s has no walls above or below it then this is given a special indicator. 
This step uses the information gathered in the presorting. Also at this step 
we determine at corner s the circular list of  walls incident on s. 

(3) Recursion: Call a recursive procedure to process the slab S bounded by 
the leftmost and rightmost separators. Note that the entire slab S constitutes 
an active quad, so the diagram of  this quad is the desired Vor(X).  
End Main Procedure. 

We now present the recursive procedure for processing an arbitrary slab S 
(represented by a pair  of  separators). We assume that X, as well as the other 
information from the presort and prescan steps, is available to the procedure via 
global variables. The recursive procedure returns (i) a list of  the active quads of 
S and two lists of windows for each quad where these lists are sorted in the 
natural top-to-bottom order; (ii) a list of  the Voronoi diagrams of  these quads; 
and (iii) the convex hull of  the entire set of  S-objects (i.e., the union of the 
Q-objects for all Q c_ S). 

Recnrsive Procedure 
Input: (m, S) where S is a slab and m the number  of  corners in S. 
Output: The active quads, window lists, and convex hulls as described 
above. 

(1) Basis: I f  m -- 1, then use the prescanning information to determine the 
unique corner p in S and also the quad Q containing p. Compute  the 
Q-diagram and return. Observe that if p has k -- 0 incident walls then 
the Q-diagram takes time O(k). (Note: the subdivision of walls into 
subobjects at their crossings is done at this point. This ensures that we 
do not introduce l )(n 2) crossings.) 

(2) Divide: Divide the slab S into two two slabs SL and SR with [m/2 ]  and 
[m/2J  vertices, respectively. (This is easy to do assuming that the 
separators for S are just indices into an array.) Recurse on ( [m/2] ,  SL) 
and ( [m/2J ,  SR). Let A denote the separator between SL and SR. 

(3) Conquer: 
(3.1) Determination of active quads. On return from recursion, we have the 

two lists of  active quads belonging to SL and SR, respectively. It is 
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(3.2) 

(3.3) 

(3.4) 

actually quite interesting to determine the list of  active quads Q belonging 
to S. In order to preserve the continuity of  the main description, we 
defer this to the end of  the section. We just note here that for each active 
Q belonging to S we also determine (a) two lists T0(Q) ( v =  L, R) 
consisting of the quads (both active and inactive) belonging S o whose 
union constitutes Q0 = Q n So, and (b) two lists of the windows on each 
side of  Q. Recursively we have the diagrams of  active quads in T o, so 
here we only need to compute the diagrams of  the inactive quads. 
Furthermore, if S has a total of m corners and has k edges incident on 
these corners then this substep takes time O(k+ m). 
Vertical Merge. For each list To(Q) of quads, we do the "vertical" merge 
of  their diagrams, resulting in the Qo-diagram. The method is described 
in Section 4. 
Horizontal Merge. For each active Q belonging to S, we apply the 
W-merge to each window W ~  A n  Q. Here, before doing the W-merge 
for the topmost and bottommost quads, we first compute the convex 
hull of the set of all Q-objects, using the recursively computed convex 
hulls of  the Q0-objects. 
Determination of the subcells. Finally, we construct the Q-diagram for 
each active Q. This is basically the computing of all the subcells of the 
Q-diagram described at the end of the previous section. Most of the 
work here may be done as part of the horizontal merge. 
End of Recursive Procedure. 

We are now done except for the details (step (3.1)) for determining the active 
quads of  S. Let us introduce some terminology relative to any slab S and separator 
A: an S-interval I in A has the form I = A n Q  for some quad Q in S. If Q is 
active, then we call I an active S-interval. So an S-interval is a union of windows. 
(We will use this definition in the case where A is part of the boundary of S as 
well as when A is in the interior of S.) Two intervals in A overlap if their interiors 
intersect. Given a set `9 of intervals in A, the `9-equivalence relation on ,,~ is 
defined as the reflexive, symmetric, and transitive closure of  the overlap relation 
on .9. 

Lemma 16. Let the slab S be divided into slabs SL and SR by the separator A. Let 
9̀t3 be the'set of active Strintervals in A. There is a bijective correspondence between 
the set of active S-intervals in A and the set of (`gLU ̀ gR).equivalence classes such 
that if l is an active S-interval corresponding to an equivalence class then I is equal 
to the union of the intervals in that equivalence class. 

Proof. Suppose 1I is an active S-interval. The set 

Gt ={J~`gLU 1R: J~- l} 

of  So- and active SR-intervals inside I must be nonempty. Note that an interval 
not in G, cannot be (,gLU ̀ gR)-equivalent to any interval G,. Hence G, is a union 
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of equivalent classes. We must show that there is only one equivalent class in 
G~. Let E! be the set of  endpoints of intervals in Gt. Sort E~ as x~, x 2 , . . . ,  Xk 
(k--> 2) according to their height. If  k = 2 then the claim is immediate, so let k > 2. 
Note that if xi is not one of  the endpoints of  I (i.e., 1 < i < k) then x~ cannot be 
the endpoint of  both an SL- and an SR-interval. Suppose x2 is the endpoint of  
some SL-interval. Then we see that x2 is in the interior of  some active SR-interval 
I~: this is because x2 represents an s-crossing for some Q-object s and one of  
the endpoints of  s is in SR, making the SR-interval containing x2 active. So let 
x~ ( i > 2 )  be the lower endpoint  of  I~ (the upper endpoint is seen to be x0.  If 
i < k then a similar argument shows that x~ is in the interior of  some active 
SL-interval/2. Furthermore, I~ and/2  overlap. Continuing this way, we eventually 
get to an interval lm (m ->2) whose lower endpoint is Xk. Let I~, 12 . . . .  ,Im be 
the sequence of  intervals so obtained. Since members of  this list are equivalent 
and I is covered by these intervals, every J e  (51 is (SLU la)-equivalent, as we 
wanted to show. [] 

Using this lemma, we can compute the list of  the active S-intervals at each of  
the two separators bounding S: assume that inductively we have a list of  the 
active Sa-intervals at each of  the separators bounding S~. We can now "merge" 
the list o f  SL-intervals at A and the list o f  SR-intervals at A. This is done in linear 
time in the standard way, only making sure that we record certain additional 
information. For instance, the crossing of  a long Q-wall is detected as the 
coincidence of  endpoints of  intervals in both lists. 

Once the list of  active S-intervals is compiled, we can easily construct the list 
of active quads belonging to S. Similarly, we can obtain the corresponding list 
of  active S-intervals at each of  the two separators bounding S (we need to do 
this when we next merge S with an adjacent slab S'). 

The inactive quads belonging to S, which will now be incorporated into the 
active quads of  S can be determined at this point. These quads together with 
their diagrams are created at this point. If  S has m corners and incident edges, 
then it is not hard to see that the overall work done is still O(m).  We conclude: 

Lemma 17 The work done in step (3.1) is linear in the number o f  active objects 
in the slab and the number o f  walls incident on these slabs. 

8. Complexity 

We first analyze the complexity of the Recursive Procedure of the last section. 

Lemma 18. l f  a slab S contains m comers of  the original input set X and the total 
number of  edges incident on these m comers is k, then the nonrecursive part of  the 
Recursive Procedure (steps (3.1)-(3.4)) takes O( m + k) time. 

Proof Step (3,1). We have already determined that this step takes O(m + k) time. 
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Step (3.2). This is bounded by the number of subcells in the Q-diagrams over 
all active Q. This number is O(m+k).  

Step (3.3). In our termination proof, we showed that the work for tracing all 
the W-contours is bounded by the number of breakpoints encountered, and there 
is a linear number of these breakpoints. The other work done in this step is 
computing the convex hull of  all the S-objects, assuming the convex hulls in SL 
and SR, respectively. This work is also linear by standard techniques. 

Step (3.4) This is bounded by the number of cells that eventually appear in 
all the active Q-diagrams. [] 

Theorem 19. The Voronoi diagram of a set X of n pairwise disjoint straight and 
circular arcs can be computed in time O(n log n). 

Proof. The presort and prescan steps of the Main Procedure takes O(n log n) 
time by standard methods. The Recursive Procedure also takes O(n log n) time 
because of the preceding lemma. [] 

9. Conclusion 

This paper solves the open problem of an O(n log n) algorithm for computing 
the Voronoi diagram of a set of points, line segments, and circular arcs. The 
algorithm is simple enough that we think it can have an impact on practical 
applications such as in robotics. 

The following simple observation is useful for implementing Voronoi diagram 
algorithms when the input has line segments only: although the Voronoi edges 
here consist of  straight and parabolic segments, there is never a need to compute 
Voronoi vertices by intersecting pairs of parabolas. This is because every Voronoi 
vertex arises as the intersection of  the pairwise bisectors among three (and possibly 
more) objects s, s', s". Now note that either two objects are corners or two are 
walls. The bisector of  two corners or two walls is a straight line. 

The technique introduced in this paper seems to extend to more general 
algebraic curves, provided we take care to break up each curve into a number 
of  suitably small sections. The technique may also be extendible (with additional 
ideas) to computing the Voronoi diagram of a set of polyhedral objects. This is 
a subject of further research. 

Another direction which we have undertaken (jointly with 6'Dt~nlaing and 
Goodrich) is to parailelize our algorithm to run in O(log 2 n) steps using a linear 
number of  processors. In contrast, it is not known at present whether the plane- 
sweep algorithm of  Fortune can be parallelized to run in poly-logarithmic parallel 
time. 
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