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Abstract. For every polynomial time algorithm which gives an upper bound vol(K) 
and a lower bound vol(K) for the volume of a convex set K = R d, the ratio 
vo~(K)/vo__!l(K) is at least (cd/ log d) a for some convex set K = R d. 

I. Introduction 

The p r o b l e m  addres sed  in this p a p e r  is the behav io r  o f  a lgor i thms that  compute  
the vo lume of  convex sets. We  prove a negat ive result.  Fo r  any po lynomia l  t ime 
a lgor i thm which gives a lower  b o u n d  v o l ( K )  and  an u p p e r  b o u n d  vo ' i (K)  for  
the vo lume  o f  a convex set K = R a, the  ra t io  v-di(K)/vo__.!l(K) is at least  ( c d / l o g  d )  d 

for some convex b o d y  K c R d where  c is a cons tan t  i ndependen t  o f  d. 
Our  m o d e l  o f  a convex  set coincides  with that  of  Lov~isz [9] and  Gr6tschel  et 

al. [7]. In  this mode l  a convex set K = R d is b lack  box that  answers  quest ions 
o f  the fo l lowing type.  Given  a po in t  x ~ Qd, is x E K ? In this case we say that  
the b lack  box  (or  the  convex set) is given by a membersh ip  oracle.  The convex 
set K may  be  given by  a sepa ra t ion  orac le  as well. This is again  a b lack  box 
which, given a po in t  x ~ Qd, dec ides  whether  x e K and  if  it is not ,  the  box then  
gives a h y p e r p l a n e  sepa ra t ing  x and  K. 

A m o m e n t ' s  med i t a t ion  shows that  one needs  some further  in format ion  on 
the convex set given by  the b lack  box.  So the b lack  box will have to wear  an 
add i t iona l  guarantee :  the  convex set desc r ibed  by  this box is con ta ined  in R B  d 

and conta ins  rB a, where  B d is the Euc l idean  unit  bal l  a round  the origin and 

* This paper was partly written when both authors were on leave from the Mathematical Institute 
of the Hungarian Academy of Sciences, 1364 Budapest, P.O. Box 127, Hungary. 
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R > r > 0. In this case we say that the oracle describing the convex body is well 
guaranteed. For technical reasons we assume that R = 2 t, and r = 2 % where l~ 
and/2  are nonnegative integers; then the input size of the oracle is d + (1 + l l )+ 
(1 +/2). So we assume that convex sets are given by a separation oracle which is 
well guaranteed. Using a version of  the ellipsoid method, Lovdsz [9] gave an 
algorithm that determines a lower bound vol (K)  and an upper bound vol(K)  
for the volume of  the convex set /C This algorithm is polynomial in the input 
size of  the oracle and has the following property: 

v-dI(K) <_ dd /2(d  + 1)d. 

vol(g) 

Moreover, if the convex set described by the oracle is centrally symmetric, 
then the result is better: 

m 

voI(K) A dd" 

vol (K)  

Both estimations seem to be very poor, but the following result of  Elekes [5] 
(see Lovdsz [9]) shows that any polynomial time algorithm must leave a huge 
gap between vo--](K) and vo__[(K). He proved, in fact, that there is no polynomial 
time algorithm which would compute a lower bound and an upper bound for 
vol(K)  with 

v"~(K) ~ 1.999d" 
vo__j(K) 

Lov~isz [8] thought that even ( v ~ ( K ) / v o l ( K ) )  t/d cannot be bounded. We 
prove this in a stronger form in Theorem 1. 

Theorem 1. There is no polynomial time algorithm which would compute a lower 
and an upper bound for vol(K)  with 

"~ C 
vol(K) 

where the constant c does not depend on d. 

Theorem 1 shows that Lov~isz' algorithm is very close to being optimal when 
the oracle contains centrally symmetric convex bodies only. 

Let V(d, n) denote the maximum volume of  the convex hull of  n points from 
B d. Theorem 1 will follow from Theorem 2. 
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Theorem 2. If n = d4, then, for sufficiently large d, 

~_V(d' n) <(2ael°g d) d/2 

The estimation in Theorem 2 is fairly good. This can be seen from Theorem 3. 

Theorem 3. If n = d a, then, for sufficiently large d, 

V(d, n) > / ( 2 a  - 3 )  tog d~ d/2 
d J 

Theorems 2 and 3 may be written as 

[a log d~ 1/2 

c 'V- - f - )   vo,t , 

and these inequalities are the approximation of  the ball by polytopes with "few" 
vertices. We have some other results in this direction which will be published in 
a forthcoming paper [1]. 

We will use a beautiful new result of Bourgain and Milman [2] which we now 
describe. Let ~ be the family of  all centrally symmetric (with respect to the 
origin), convex, compact, d-dimensional bodies in R d. The polar, K*, of K ~ 
is defined as 

K * = { x ~  R~: (x,y)<- 1, Vye  K}, 

where (x, y) denotes the scalar product. An old conjecture says that for all K ~ Yf 

vol(K)  vol(K*) -> 4d/d !. 

Bourgain and Milman [2] proved this in a slightly weaker form: for all K e Yt" 

vol(K)  voI(K*)-> Cdo/ d !, 

where Co > 0 is a universal constant. 
We will see from the proofs that the constant c in Theorem 1 can be taken 

for Co(4~rae) -1 when the algorithm considered tests the membership on n = d ~ 
points. 

In the last section we give some results about the complexity of  computing 
the width of  a convex body. 
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2. Proof of  Theorem 1 

We use a well-guaranteed separation oracle with some additional properties. The 
first is that the oracle discloses (as a first step, say) that e~ei e K and K c 
{x ~ R a : (x, eie~) <- 1} for each e~ ~ {-1,  1} and i = 1 , . . . ,  d where e l , . . . ,  ea form 
an orthonormal basis in R a. This property simply means that K is contained in 
the cube of  side length 2 and contains the cross polytope of diameter 2. In 
accordance with this l~ = r½ log d ] and/2 = [-½ log dJ.  Thus the input size of  the 
oracle is d + 1 + l~ + 1 + 12 < 2d if d is large enough. 

We need some notation. For x e  R d (x ~ 0) define x°=x/llxll and H+(x °) = 
{z ~ Ra: (z, x°) <- 1} and H - ( x  °) = { z ~  Ra: (z, x°) >- -1}. The second additional 
property of  the oracle is that for the question "is x ~ K "  it answers " x  ° e K and 
- x  ° e K and K c H+(x  °) and K = H- (x° ) .  '' So the oracle gives the endpoints 
o f  the line segment {Ax: A c R} n K and also the supporting hyperplanes at the 
endpoints. We mention that this information (with any prescribed precision) can 
be obtained from a separation oracle in polynomial  time. So our oracle is just a 
little stronger than a usual separation oracle on centrally symmetric convex bodies. 

Now we begin the proof. Assume that we have an algorithm that gives an 
upper  bound and a lower bound for the volume of  a convex body given by the 
above separation oracle. Let us run this algorithm with K = B a first, the points 
whose membership has been asked by the algorithm are x~, x2, •. •, xn with n = d a 
(a  > 1). Assume the algorithm produced "~dl(B a) andvo l (Ba ) .  

Now set C = c o n v { + e ~ , . . . ,  +ea, ± x ° , . . . ,  +x°}. It  is clear that when running 
the algorithm with C or with C* (the polar o f  C),  the questions and the answers 
are the same as with B a, so 

and 

Then 

voI(B a ) = v-oI(C*) -> vol(C*)  

v o l ( n  d ) = v o l ( C )  ~-~ v o l ( C ) .  

-V'-~(Ba) vol (C *) 

vol(B a) vol(C)  

/¢ ~ 1 2 
- - - ~ - v o l ( C * )  v o l ( C ) | ~ }  . 

\ v o l ( C ) /  

From the result of  Bourgain and Milman [2] we infer 

Now the number  of  vertices of  C is 2(n + d ) ~ - d  a, so from Theorem 2 we have 

vo___!l(B a) \47rea log d )  " 
[] 



Computing the Volume is Difficult 323 

Remark. It may seem strange that the volume of  the unit ball (when it is given 
by a separation oracle) cannot be determined within a large factor. However, 
this is not so surprising when one thinks of the fact that among all convex bodies 
the ellipsoids admit the worst approximation by polytopes. (See Macbeath [10] 
for an exact statement.) 

3. Proof of Theorem 2 

Some preparation is needed. Given a convex set C c R d with L = aft(C), define 
L j- as the maximal subspace of  R d orthogonal to L. Further, for p > 0 let 

C p := C + ( L ' n p B d ) ,  

i.e., C p is the set of points x ~ R d such that if x '  is the nearest point to x in C, 
then t l x - x ' l l  -< p and x - x '  is orthogonal to L. Define p(d,  1) = 1, p(d,  d)  = d -~ 
and for l < k < d  

- k + l ~  1/2 

p ( d , k ) = \ d ( k _ l ) ]  " 

We need a lemma which says that any point of  a simplex in B d is "near" and 
"orthogonal" to some ( k -  1)-face of the simplex. 

Lemma. Given a simplex F in Bd and k c {1, 2, . . . , d } and a point x ~ F, there is 
a (k  - 1)-face Fk o f F  with x ~ F~ (d' k). 

Proof. An easy calculation shows that the statement of the lemma is true when 
k = 1. The case k = d is equivalent to the following well-known fact (see Fejes 
T6th [6]). The ratio of  the radii of the circumscribed and inscribed balls of a 
simplex in R d is at least d. We prove the lemma using this fact for the cases 
k = 2, 3 , . . . ,  d - 1. Rename x as xa+~ and F as Fa+~. By the above fact there is 
a facet Fa such that ifxa denotes the projection of  xa+~ to Fd, then I I x ~ ÷ , - g a l l - <  
d -1 and xa+~-xa  is orthogonal to a t t (Fd)=Hd.  NOW Fd lies in H d c ~ B  d, so Fd 
lies in B d-1 if we choose the origin in Ha properly. On applying the same argument 
to F d c B  a-I and Xd we get a point Xd-~ in a facet Fa-i  of Fd such that 
I l x d - x ~ _ , f l  -< 1 / ( d - l )  and Xd--Xd-1 is orthogonal to a f f ( F d - i ) = H d - l .  And so 
on. We stop with x k e F k .  The  vectors x j+~-x j  ( j = d ,  . . . .  k)  are pairwise 
orthogonal and all of  them are orthogonal to Fk. Consequently, Xd+~--Xk 
is orthogonal to Fk. By Pythagoras' theorem, IIx~+l - xk 112 = 
I I x ~ + , - x ~  112+ IIx~ - x ~ - l l l = +  • • • + I l x k + , -  x~ll 2--- 1 /d2+ 1 / (d  - 1)2+ • • • + l/k2< 
1 / ( d ( a  - 1))+  1 / ( (d  - 1)(a - 2 ) ) + . . .  + 1 / ( k ( k  - 1)) = ( d  - k +  1 ) / ( a ( k  - 1)), as 
claimed. []  

Remark. It is very likely that the smallest value of  p(d,  k)  for which the lemma 
holds is ( ( d - k + l ) / ( d k ) )  ;/2. This is the value of  p(d, k)  when F is a regular 
simplex with its vertices in S d. However, for our purposes the p(d,  k)  from the 
lemma will do and we could gain nothing in Theorem 2 with the best value of p. 



3 2 4  I. Bf i r f iny  a n d  Z .  F i i r ed i  

Now we prove Theorem 2. Let X l , . . . ,  x~ e B a. By Carath6odory's theorem 
(see Danzer et al. [4]) every point x e conv{x~, . . . ,  xn} belongs to some simplex 
with vertices from {x~ , . . . ,  x,}, i.e., x e conv{x~, . . . ,  x~} = F for some indices 
1 --< io < i~ <-  • • < id <-- n. By the lemma, F has a (k - 1)-dimensional face Fk with 
x ~ F~ (a" k). This implies that c o n v { x ~ , . . . ,  Xn} CZ U { Cp(d'k): C = 
conv{xj, . . . .  , xj~}) where the union is taken over all k-tuples from ( x ~ , . . . ,  x.}. 
This shows that 

vol(conv{xl , . . . ,  xn }) 

< ( k )  mRX{VoI(CPCd'k)): C--  cony{a1 . . . . .  ak}, a l , . . . ,  ak E Bd}. 

It is now easy to see that 

max{vol(CP(a'k)): C = c o n v { a l , . . . ,  ak} c_ B a } 

= m a x { v o l k _ l ( c o n v { a z , . . . ,  ak}): al . . . .  , ak ~ B d } 

x vola_k+l(Ba-k+l)[p(d,  k)]  a-k+1 

\ k - l ]  ( k - 1 ) ! r ( ( d - k + l ) / 2 + l )  [p (d ' k ) ]d - k+ ' '  

This implies that 

( k ) ( ~ _ k  1) (g-l)/2 kl/2cr (d-k+')/2 
V(d,  n) ~- ( k -  1)! r((d - k +  1)/2+ 1) 

[p(d,  k)] d-k+'. 

This holds for every k =  1, 2 , . . . ,  d. Now we choose k-- d(2 log n) -~ = 
d ( 2 a  log d) -~. This gives, after a tiresome calculation, 

V(d,  n) ed(l/2-1/a+~)2a/2(a log d)  a/2 

vol(B a) d d/2 

for every e > 0 if d is large enough. [] 

4. Proof of  Theorem 3 

We would like to compute the expected volume of the convex hull of n points 
chosen uniformly and independently from S a. Unfortunately there is no known 
formula for this. We use instead an integral formula due to Buchta et al. [3] 
which gives the expected surface area E(d ,  n) of the convex hull of n points 
chosen uniformly and independently from Sd: 

E (d ,  n) = (d  - 1) d-i \ wa / 

f: f, )- x Wd-1 (1 - -  q2)(d-3)/2 dq (1 --p2) (d2-d-2)/2 dp, 
~ \  wa 
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where wa = Area(S d) denotes the surface area of  S a. In order to use this formula 
we choose n - d points x l , . . . ,  x,_a uniformly and independently from S a. Then 
we take d points Yt , .  • . ,  Ya ~ S a in such a way that x t ,  y~ . . . .  , Ya form the vertices 
of a regular simplex. Denote by L ~ , . . . , L , ,  the facets of C =  
conv{xl, . . . ,  X,,-d, Yl . . . .  , Y a } .  C contains d- I  B a hence 

voI(C)-> d -2 ~ vola_](L~) = d -2 Area(C). 
i = l  

Moreover, C ~ Co = conv{x~, . . . ,  x , -a} .  Thus 

vol(C) > d -2 Area(C) -> d -2 Area(C0). 

This dearly implies that 

V(d,  n) >- d -2E(d ,  n - d).  

After a lengthy computation (the details can be found in Bgtrfiny and Fiiredi [1]) 
we get that for d large enough 

V( d, n) > ( 2 ( a  - 1) log ci~ a/~ 
voI(B a ) -  \ d -:) (log d) -a:°¢a. 

[] 

5. The Error in Computing the Width 

Lovfisz [9] gives a polynomial time algorithm which computes a lower bound 
w(K) and an upper bound i f (K)  for the width w ( K )  of a convex body K c R d 
with f f , (K ) /w_(K)<_d~ / : (d+l ) .  The convex sets are again given by a well- 
guaranteed separation oracle. Elekes [5] proved that there is no polynomial time 
algorithm which would compute ff,(K) and w(K) with f f~ (K) /w(K)<-2 .  We 
improve on this result. 

Theorem 4. There is no polynomial t ime algorithm which would compute an upper 
bound ff~( K ) and  a lower bound w( K ) f o r  the width o f  convex bodies K c R a with 

f f ~ ( K ) / w ( K )  <- ( d / ( c  log d))  '/2. 

Proof. We consider the same model as in the proof  of  Theorem 1. Then 

ff,( B d) = ff,(" C*) >- w( C*)  = 2 

and 

w_ (B") = w_ (C)<- w(C). 
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So the theorem will follow if we can show that 

w( C )  <-- 2(2a(log d ) /  a )  '/2, (1) 

when C c B d is a centrally symmetric polytope with n = 2d ~ vertices, because then 

~ ( B  d) 
_ w ( C * )  > 2 > ( d ti'~ 

w ( B  ~ - 2((2a log d ) / d ) ~ / 2 - k 2 a  log 

To see this one finds a spherical cap S c S d with 

S n {:t:el, . . . , + ed, ± x ° ,  . . . , +x°} = Q 

and 

dist(0, conv S) = (2a log d / d )  1/2. 

This can be shown by a simple averaging argument. 
Another way to see that (1) holds with the slightly weaker constant 2ae  (instead 

of  2a)  is to' use Theorem 2. It follows from there that C cannot contain the ball 
rB  d with r >  (2ae(log d ) / d )  1/2. So there is a point z on the boundary of C with 
IIz[[ <-(2ae(log d ) / d )  ~/2. Taking supporting hyperplanes to C at z and at - z  we 
get (1) with the weaker constant. [] 
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