
Discrete Comput Geom 2:65-84 (1987) 

© 1987 Springer-Verlag New York 

Steiner Minimal Trees for Regular Polygons 

D. Z. Du, ~ F. K. Hwang,  2 and  J. F. Weng 3 

University of California, Santa Barbara, California, USA, also from Academia Sinica, Beijing, China 

2 AT&T Bell Laboratories, Murray Hill, NJ 07974, USA 

3 Baoshan General Iron and Steel Works, Shanghai, China 

Abstract. Fifty years ago Jarnik and K6ssler showed that a Steiner minimal tree 
for the vertices of  a regular n-gon contains Steiner points for 3 <- n <- 5 and contains 
no Steiner point for n = 6 and n -> 13. We complete the story by showing that the 
case for 7 -< n -< 12 is the same as n -> 13. We also show that the set of n equally 
spaced points yields the longest Steiner minimal tree among all sets of n cocircular 
points on a given circle. 

1. Introduction 

A Steiner minimal  tree (SMT) for a set o f  points P in the plane is a shortest 
network interconnect ing P. The construct ion o f  an SMT for  a general set P is 
known [7] to be an NP-comple t e  problem. Recently, SMTs have been constructed 
for special po in t  sets P such as ladders [1], splitting trees [9], zigzag lines [5], 
cocircular points  [6], and bar  waves [4]. However ,  a special class o f  sets for  
which the s tudy of  SMTs was started a hal f  century back has remained an unsolved 
problem. Let An denote  the set o f  vertices o f  a regular  n-gon.  The SMT problem 
for A ,  was first studied by Jarnik and K6ssler  [10] in 1934. They  obta ined SMTs 
for n ~ 6 and  also proved a beautiful  theorem which says that  for  n -> 13 an SMT 
can be obta ined  by deleting an edge f rom the per imeter  o f  the regular  n-gon. 
Since an S M T  can also be obta ined  in this manner  for  n = 6, an  obvious  conjecture 
is that  an S M T  can be so obta ined for  all n>-6.  Kotzig [11] discussed some 
properties o f  the angles o f  an SMT  for  n -< 8. In  this article we will prove this 
conjecture in its entirety as our  Theorem 1. 

Theorem 1. The perimeter of  a regular n-gon minus any side is an S M T  for A ,  
for n >_ 6. 
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We also prove 

Theorem 2. For any n cocircular points on a given circle, the set of n equally spaced 
points yields a longest SMT. 

2. The Case n>_ l l  

In this section we show that some recent results on the Steiner ratio (to be defined 
shortly) can be used to dispose of the conjecture for all n -> 11. 

A minimal spanning tree (MST) for a set of  points P is a shortest tree 
interconnecting P such that the vertex-set of  the tree is P. The Steiner ratio p is 
defined as 

inf length of an SMT for P 
e length of  an MST for P '  

Gilbert and Pollak [8] cojectured that p = , J 3 /2  while Du and Hwang [3] proved 
that p > 0.8. Recently, Chung and Graham [2] announced a proof  that p > 0.8241. 
The Steiner ratio was surprisingly used in [6] to prove a result about SMTs for 
cocircular points, via the following lemma: 

L e m m a  0 .  Suppose that an n-gon circumscribed in a unit circle has at most one 
side longer than m with 

where 

m = min{[tzfl +x /a2+  (1 - ~2)14]/(a2+¼), y}, 

= ~/ '3+ I - I / ( 2 ~ ) ,  

p = 1 - ( I  - # ) ~ r / #  

(~ is a lower bound for p) and 

3' = 2 ( v ~ +  1 ) / [ ( v~ +  1)2+I]  = 0.708 . . . .  

Then its M S T  (which is the perimeter of the n-gon minus the logest side) is also its 
SMT. 

Set j5 = 0.824. We obtain m > 0.6034. On the other hand, the length of  a side 
of  the regular n-gon 

l " = ~ / 2 ( 1 - c ° s ~ )  =2sin~rn 

is monotone  decreasing in n for n -  3. Furthermore,  

1,<!1~<0.5635<0.6034<m for n_<l l .  
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By Lemma 0 we obtain 

Theorem 1. The M S T  of  a regular n-gon is also its S M T  for n >- 11. 

67 

3. Some Facts About SMTs 

Consider any tree T interconnecting a set of  points P = {p~, . . .  ,p~}. We will 
refer to the pi's as the regular points and any other points in T as Steiner points. 
T is called a Steiner tree if all subtending angles are at least 120 ° and each Steiner 
point has three incident edges (this implies that the subtending angles are exactly 
120 ° for a Steiner point). It  is well known [8] that a Steiner tree for n points has 
at most n - 2 Steiner points and is called a full  Steiner tree if  it has n - 2 points. 
It is also well known [8] that an SMT must be a Steiner tree and can always be 
decomposed into subtrees which are full Steiner trees. Finally, it is well known 
[8] that an SMT always lies within the convex hull of  P. 

A topology of  a Steiner tree T is a specification of  all edges in T. A Steiner 
tree for a given topology either exists uniquely or does not exist. When a full 
Steiner tree with a given topology exists, Melzak [ 12] gave a recursive construction 
for it which also yields a line segment, which we call the axis, whose length 
equals that o f  the Steiner tree. 

Let C denote a unit circle with center o. Let R~ denote a regular n-gon inscribed 
in C with vertex set A, = { a l , . . . ,  a,}. Throughout  the paper  we denote the line 
segment between two points x and y by [x, y]  and its length by (xy). 

Lemma 1. Let T be an S M T  for R~. Then we may assume that no Steiner point 
s of  T can have an incident edge as long as l~. 

Proof. Suppose to the contrary that I is such an edge. Delete I and decompose 
T into two subtrees. Then there must exist a j such that aj and aj+l are not in 
the same subtree. Connect  aj, a~+l and we obtain an interconnecting tree not 
longer than T. [] 

Lemma 2. Let C be a unit circle with center o. Let p, q be two points such that 
( po )> l>- (qo )  and ~ o q p < 6 0  ° (see Fig. 1). Then ( p q ) > ( p o ) .  

Proof. In A opq, ~ qpo <- ~ oqp < 60 ° since ( po ) >-- ( qo ). Hence ~.poq >- 60 ° > ~.oqp. 
It follows (pq) >_ (po). [] 

~ p 

Fis. t, ( ~ ) > ( ~ ) .  
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The  fo l lowing  L e m m a  is not  d i rect ly  re la ted  to  SMTs bu t  of ten faci l i tates an  
a rgumen t  tha t  a cer ta in  t o p o l o g y  does  not  exist .  

Lemma 3. Le t  C A t . . .  A m D  be a polygon lying within another polygon CBt  . . . BnD. 
Then 

~-As- ~ ~-Bi>-(m-n)180 °. 
S = l  S = l  

Proof. Using  the fact tha t  an  n-gon has to ta l  inner  degrees  ( n - 2 ) 1 8 0  ° and  the 
fact  that  ~_At C D  <- ~ .B1CD and  ~. CDAm <- ~- C D B . .  [] 

A pa th  ass t . . .  Smaj in an  S M T  T is ca l led  a Steiner path i f  s t , . . . ,  s , ,  are  all  
S te iner  po in t s  a n d  ~ss = 120 for  i = 1 , . . . ,  m in the  (m + 2 ) - g o n  ass~...sinai. 

Lemma 4. Suppose that T is an S M T  for  Rn. Le t  P = aist s2. . .Smaj be a Steiner path. 

(i) m -< 3. There are no regular points between a~ and aj. 
(ii) m = 4. There is at  most  one regular point  between ai and a i but none i f  n <- 9. 

N o  such P can exist  f o r  n <- 6. 
(iii) m = 5. N o  such P can exist f o r  n < 11. 
(iv) m --> 6. N o  such P can exist. 

Proof. I t  is eas i ly  verif ied that  (a~aj)<21, for  all  m. Thus at most  one regu la r  
po in t  can exist  be tween  as and  aj. 

m = 1 or 2. Suppose  to the  cont ra ry  that  a~ and  a t are not  adjacent .  Then n -> 4. 
Let  ak be  the  r egu la r  po in t  be tween  as and  aj. F o r  m = 1 cons ide r  the  quadr i l a t e ra l  

ass~ajak. W e  have  

~.as + ~_aj = 360 ° - ~-sl - ~.ak <-- 360 ° -- 120 ° -- 90 ° = 150 °. 

F o r  m = 2 cons ide r  the p e n t a g o n  ass~s2ajak. W e  have 

&ai + ~.aj = 540 ° -  &sl  - ~.s2 - ~a~  -< 540 ° -  120 ° - 120 ° - 9 0  ° = 210 °. 

Hence  e i ther  ~-ai or  ~.aj is less than  120 °. S u p p o s e  tha t  z~ai < 120 °. Then a k is 
connec ted  to  aj in  Z Let  T '  be ob ta ined  by  subst i tu t ing  [ak, a~] for  [ak, aj] in  T. 
Then  T'  a n d  T have  the s ame  length. Yet T '  c anno t  be op t ima l  since ~-akasst < 120 °, 

a con t r ad i c t i on  to  the  op t ima l i ty  o f  Z 

m = 3. W e  have  n -> m + 2 = 5. I f  n = 5, then  the re  is not  o ther  S te iner  po in t  a n d  
each  o f  s t ,  s=, a n d  s3 mus t  connec t  a dis t inct  r egu l a r  po in t  ou ts ide  o f  the  pen t agon  
assls2s3aj. Thus  there  is no  more  regula r  po in t  to  fill be tween  a~ and  aj. There fore  

we may  assume tha t  n > 6. 



Steiner Minimal Trees for Regular Polygons 69 

Suppose  to  the  con t ra ry  tha t  ak exists be tween  at and  a t. Cons ide r  the  hexagon  
a~sts2s3aiak. Note  that  al l  angles except  ~.a~ and  , a j  are  at  least  120 °. Hence  
ei ther  the  hexagon  is regular ,  or  at  least  one  o f  ~.a~ and  ~.aj < 120 °. The  former  
case is imposs ib le  since we do  not  a l low (s~s2) = (aka~) = 1,. The  la t ter  case is also 
imposs ib le  by  ana logous  a rgument  as used  in the  case m = 1 o r  2. 

m = 4 .  n_> m + 2 = 6 .  I f  n = 6 ,  the hexagon  ais~s2s3s4a~ has in ternal  degree  less 
than 720 °, an absurdi ty .  F o r  n >-7 suppose  that  ak exists be tween  a~ and  a i.  Fo r  
n -< 9, the  h e p t a g o n  aisl S2SaS4ajak has in terna l  degrees  less than  900 °, an absurdi ty .  

m = 5. C o n s i d e r  the h e p t a g o n  atsls2s3s4ssaj, 

2fai+~aj=9OO°-5"120°=3OO°>2La~_ta~ai+l+~aj_laja~+l for  n - l l ,  

an absurdi ty .  

m-> 6. C o n s i d e r  the (m + 2)-gon a d l . . ,  sinai, 

, 6 a i + ~ _ a j = m .  1 8 0 ° - m  • 1 2 0 0 = m . 6 0 ° - > 3 6 0  ° for  m->6 ,  an absurdi ty .  [ ]  

Lemma 5. Let T be an S M T  for  A , ,  n <- 10, with a Steiner point s. Then T must 
be full. 

Proof. Let T'  ~ T be a full  Steiner  tree con ta in ing  s. Then  T'  par t i t ions  the  unit  
circle into convex regions each b o u n d e d  by  a Steiner  pa th  and  an arc. By Lemma 
4 such an arc  can  con ta in  at most  one add i t iona l  regula r  point .  In  fact, the only 
case in which  an add i t i ona l  regular  po in t  may  exist  is when  n = 10 and  the Steiner  
pa th  b o u n d i n g  the  region has m = 4. We now show that  even for  this case  no 
add i t iona l  r egu la r  po in t  can  exist on the arc,  i.e., T is a full SMT. 

Suppose  to the con t ra ry  that  a regular  po in t  ak exists on the arc  a~a~ (see 
Fig. 2). In  the  hep t agon  a#~s2s3s4ajak 

Therefore  

and 

~-ai + z~aj = 900 ° - 4 x 120" - 144 ° = 276 °. 

~sla ia  i+1 + ,'Laj-lajs4 = 2 x 144 ° -  276 ° = 12 ° 

min{(slai÷~),  (s4aj-1) >- I, sin 48*/sin 120°> 0.858/, 

% ,S// 

Ok 

Fig. 2. A Steiner path with m = 4 and a regular point. 
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(it is easily verified that (sla~+l) will be greater if s~ connects a~+~ through another 
Steiner point). Now it is a simple matter to show that (s~s4)> 21n which implies 
that one of  (8152)  , (S2S3) , and (s3s4)> In, a contradiction to Lemma 1. [] 

Define D to be the diameter (of the unit circle c)±[a~, an]. 

Lemma 6. Suppose that a topology is symmetric with respect to an edge e. Then 
the Steiner tree it yields is symmetric with respect to D with e overlapping D for odd 
n and e Z D f o r  even n. Suppose that a topology is symmetric with respect to a point 
p. Then the Steiner tree it yields is symmetric with respect to the center o with p 
being o. 

Proof. Clear from Melzak's construction for SMT. [] 

4. Proof of  Theorem 1 for 8 >  n ~ 10 

Suppose that T is an SMT for An with a Steiner point. By Lemma 5 we may 
assume that T is full. Let d be a point o f  T closest to the center o and let d lie 
on the edge e. Let q be an endpoint of  e. Partition T into two trees T~ and T2 
at q and without loss of  generality assume that T~ contains e and the k regular 
points {al,  a 2 , . . ,  ak}. By Melzak's construction of  the full Steiner tree, there 
exists a line segment [p, q] which is the axis of  T~ and overlaps e. Our goal is 
to show that for certain n T~ cannot exist by proving (pq)> kin, so T~ can be 
replaced by the path a~a2...ak and some suitable [aj, aj+l] to obtain a shorter 
connecting tree. However, since (po) is much easier to compute than (pq), we 
will prove po > kln instead and use Lemma 2 to justify the replacement. One 
condition of  Lemma 2 is that &pqo <- 60. The following lemma will take care of 
that condition. 

Lemma 7. ~.dqo > 60 °. 

Proof. Let e' be a second edge of T at q such that o lies in the. 120 ° angle 
enclosed by e and e' (possibly their extensions). Let (od') be the distance from 
o to e'. Since (od)<-(od'). 6dqo<-~.d'qo. But , d q o + , d ' q o = 1 2 0  °. Hence 
~dqo <- 60 °. [] 

Lemma 8. k ~ l f o r n > 6 .  

Proof. From Lemmas 7~aiqo <-60 °. From Lemma 2 

(a lq)>_(alo)=l>ln  for n > 6 .  [] 

Lemma 9. k ~ 2 f o r 8 < - n < - l O .  

Proof. Suppose to the contrary that k = 2. Let papa2 be a regular triangle with 
p outside o f  the unit circle. Then by Melzak's construction [p, q] is the axis of  
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TI. We now prove that (go) > 21,, or ( ( ~ o ) / l . ) ~  > 4: 

(Po)'= (a10)~+ ( a l ~ ) ~ - 2 ( a I o ) ( a l ~ )  cos O a l P  

= 1+1:-21, cos (90•‹-1800/n+600) 

= l+l',+filn cos (180•‹/n)-1, sin (180•‹/n) 

= 1+1:+fi1,,JiT5-1:/2 

= 1 + 1 : / 2 + , 6 l n J C i 5 .  

Clearly, (p0)~/1: is monotone decreasing in 1:. For 8 1 n 1 10 1: is largest for 
n = 8  and 1~=2(1-cos45")=2-fi. Now 

Lemma 10. k # 3 for 8 zs n 5 10. 

Proof: Suppose to the contrary that k = 3. Let a,a,p, and plalp2 be regular 
triangles such that p1 and o are on different sides of [a,, aJ, and p2 and o are 
on different sides of [plal] (see Fig. 3). We now prove that (p20)>31, or 
(p20)/ l,), > 9. Note that 

( P Z O ) ~ =  (PIO)'+ ( P I P ~ ) ~ - ~ ( P I O ) (  ~ 1 ~ 2 )  COs &OPIP~- 
Now 

(PIP,) = (p1a1) = [(~la2)2+(~la2)2-2(a1a2)(~la2) cos &aIa2~11~ '~  

= 21,[(1- cos &ala2pl)/2]"2 

= 21, sin(&ala2pl/2) 

= 21. sin(60•‹+ 180•‹/n). 
Hence 

(pI p2)/ 1, = 2 sin(60•‹ + 180•‹/ n) r 2 sin(60•‹+ 18") > 1.956 

and (plp2)2/12, > 3.827 for n 5 10. Furthermore, 

Fig. 3. ( p 2 0 )  > 31, for k = 3. 
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and 

- 2  cos 2Lop~p2 = 2 cos(60°+ 180°/n),  

which is clearly mono tone  increasing in n for  n - 6. Therefore ,  for  8 < n < 10 

- 2  cos ~.optp2 > 2 cos 82.5 ° = 0.261. 

Therefore ,  for  8 -< n - 10 we have 

(p2oy 
-7,-, ] -> 4.297 + 3.827 + (0.261)x/(4.297)(3.827) = 9.182 > 9. [] 

L e m m a l l .  k # 4 for S < n-< lO. 

Proof Suppose  to the contrary  that  k = 4. There are three non i somorph ic  
topologies  for  7"1 which we will call topologies  4, 5, and 6 and their  Melzak 's  
construct ions are shown in Figs. 4-6, respectively.  We show that  the axis o f  T1 
is too long for  all three topologies.  

Topology 4 (Fig. 4) 
As shown in the p roof  of  L e m m a  10, 

/ o 180°\ 
(a2P2) = 21n sin~60 + - - n - - ) ,  

o 18 
Z~a3a2p ] = 9 0 ° - ( 6 0  + - ~ )  

180 ° 
= 3 0 o - ~  

n 

P2 

Pl 

P3 

Fig. 4. Melzak's construction for topology 4. 
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Therefore, 

~ala2P2=900+ - 
540 ° 

n 

(alp2) 2= ( a l a 2 ) 2 +  (a2p:) 2 -  2( ala2)( a2P2) c o s  ~.ala2P2 

+ 4  2 o 1 8 0 °  =l~[1  s i u ( 6 0 + - - - ~ - - ) + 4  [ ° 180°' sin~60 +--~--)s in  ~0-~]. 

Furthermore, 

Hence 

I . .  I. 540 ° 
sin Ka2p2al = (alp2) sm ~ala2p2 = (alp2) cos n 

~-oa~ p3 = ( 900 -180n ° ) +60°+ ~-a2a~ p2 

= 150 ° -  1 8 0 ° + ( 1 8 0 0 - /  ° 500°~ ) 
n [ 9 0  +---~'-)--~a2P2al 

720 ° 
= 240 . . . .  ~-a2p2al. 

It follows 

1 00o) ~ - - ~ /  ?~ ~ lo cos~ n ~a~p2a~ 

We compute ((p3o)/l,) 2 for n = 8, 9, 10. 

n (alp2)2/12n (alp2)/l n sin ~a2P2a I l/l .  (p3o)2/l~ 

8 > 8.595 > 2.937 < 0.137 > 1.306 > 16.3 
9 > 8.290 > 2.879 <0.175 > 1.461 > 17.7 

10 > 7.990 > 2.826 < 0.210 > 1.618 > 18.9 

Topology 5 (Fig. 5) 

Note that /Xp~p2a3=/Xpla2a 4. Hence (p2aa)= (aaa~). Also note that (PIP2)= 
(pxa4) = (plaO. Hence/Xpla3P2 = Aala3pl. It follows 

~ pla3P2 = ~ala3pl = 60°+ 180°/n 

and 

~.alaaP2= 120"+ 360°/n. 
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P2 

P~ 

Fig. $. Melzak's construction for topology 5, 

Furthermore, 

(p2a3) = (a2a4) =(aza3) = 21.[.1--cos(18~(n -- 2)/ n); '/2 

( r o) = o  = 21. sin 180o_ 1 = 21. cos 
n 

Therefore, 

(p3az) -- (az p2) = [(aia3) 2+ (a3p2)2-2(aza3)(a3p2) cos ~aza3p2] 1/2 

18°° r 1 - c o ~  120 ° + 360°/.)  ] ~ 
=4/.cos n L "2" ..] 

180 ° / o 180°\ 
= 4/. COS n sin~60 + T )  

o 360 ° 
= 21.[sin(60 +--~--)+sin 60 °] using 2 sin A cos B 

= sin(A + B) + sin(A- B) 

o 360 ° __ [ ( )+sin60 °] for > 2 / .  sin 60 +--~-- >3.663/. n->8. 

Finally 
( 0~_) \/ o + '-~')160°\ 540 ° 

&oalp3=60°+ 90 ° -  -90°-[60 = 1 8 0 ° - ~  
n 

(p3o) 2 (a lo )  2 , (paal)2+ (p32al)2 2 (a lo )  2 .-~ ~ - t - ~  (P2aI) cos ~oazp3 

> (3.663)~+2 (3.663) cos '8 " 

= ( 1.306Y + ( 3 . ~ 3 Y  + 2(1.306)(3.663) (o.382) 

= 18.778> 16. 
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Topology 6 (Fig. 6) 
(pip3) 2= (piP2) 2= (plo)2+(p20) 2-2(p~O)(p20) COS ~p20pl 

= 2(plo)2(1-cos 72n°° ), 
( p 3 0 )  2 =  (plo)2 + (p, p3) 2-  (P,o)(plp3) cos 2~oplp3 

2 720° 

2 720° = (plo) [3 - cos ---~- + 2 ~ /2 (1  72n0° ) [ ° 3 6 0 ° ' ' I  - o o s  

[ 720° ~ / (  72n0° ) \ / ° 360°\]  + --n---/ ((p30)/ln)2=((plo)/l,) 2 3--2COS + 2  2 1 - -COS C O S { 3 0 .  
n 

We compute (p3o/ln) 2 for n = 8, 9, 10. 
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n First term Second term Product 

8 > 4.297 > 3.732 > 16.039 
9 > 6.536 > 3.056 > 19.963 

10 > 8.073 > 2.525 > 20.384 

We now prove Theorem 1 for 8 < - n-< 10. Suppose that T is an SMT for An 
with a Steiner point. Since q can be either endpoint of e, we may assume that 
the number of  regular points in TI does not exceed that of T2, i.e., k<- n/2. For 
n =8  and 9 Lemmas 8-11 say that 7"1 is not optimal. For n = 10 the only case 
that needs to be considered is when T1 and T2 cover five regular points each. 

Consider the two Steiner paths P1 and/>2 containing e. We may assume without 
loss of generality that al and alo are the endpoints for P1, while a5 and a6 are 
the endpoints of P2. Let ml and m2 denote the number of  Steiner points on/ '1  
and P2. By Lemma 5 ml, m2 <- 4. Since 

(alas) = x/2(1 - c o s  144 °) > 1.9> 311o 

P. 

Fig. 6. Melzak's construction for topology 6. 
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(a) 

Fig. 7. Two topologies fo r  m~ = m2 = 4. 
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(b) 

and each edge in T is shorter  than/~o, there mus t  be at least four  edges connect ing 
a~ and as. Therefore m~ = m2 = 4. 

There exist two nonisomorphic  topologies for  m~ = mE = 4 as shown in Fig. 7. 
I f  T has topo logy  7(a), then by Lemma 6 T must  be asymmetric with respect to 
the center  which is on e. Therefore we can turn  the left half  o f  the tree upside 
down and  obtain  a tree o f  the same length bu t  having 7(b) as its topology (Fig. 
8). Namely,  it suffices to prove that T cannot  have 7(b) as its topology.  

In As+a4as, ~.s4a4a5 =~o" 180°=36°:  

(a4as) sin 36 ° (0.618)(0.588) 
(asa4) = sin 120 ° 0.866 = 0.42. 

Extend [as ,  s+] and  [a l ,  si] to meet at b. Then  bs~s3s+ is a parallelogram. Hence  
(s4b) = (s3sl) and  (slb) = (s3s4). In Abasal, ~-basal = ~-asalb = 30 and  zfalba5 = 
120. Fur thermore,  

Therefore 

(azb)  = (asb) = (ass+) + (s3sl) - 0.4204+ 0.618 = 1.038. 

(a~as) = x/3a~b - (1.732)(1.038) = 1.798. 

o5 

a4 

a3 

o2 

Fill. 8. A tree for topology 7(b). 
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a 4 ~  "a3 

~ az 

a' 5 'a t 

Fig. 9. A unique topology for n = 6. 

But from A a ~ a s o  

(alas) = x/2(1 - cos 144 °) > 1.9, a contradiction. 

5. Proof o f  Theorem 1 for n = 6, 7 

For n = 6, Lemma 4 reduces the nonisomorphic topologies to the unique one 
shown in Fig. 9. Since this topology is symmetric with respect to s2, s2 must be 
the center o and T must be symmetric with respect to o. Therefore the length of  
T is 3x/3> 5 which is the length of an MST. 

For n = 7 Lemma 4 reduces the nonisomorphic topologies to the three shown 
in Fig. 10. Topology 10(a) can be quickly disposed of by comparing the angles 
of the polygonal path ala2a3a4asa7 and those of  the Steiner path als ls2s3s4aT,  

using Lemma 3. The length of the tree yielded by topology 10(c) has been 
computed in [13] to be 5.6676 > 5.2068 which is the length of an MST. We now 
show that the tree yielded by topology 10(b) is not an SMT as (a4s3)>/7. 

Since the topology 10(b) is symmetric with respect to [a4, s3], T must be 
symmetric to D and [a4,  S3] must overlap with D (see Fig. 11) Extend [a3,  s2] 

to b such that  [al ,  bill[s,, s21. Extend [a4, $3] to c such that [a l ,  c]ll[s,, s33. Then 

Now 

(a4s3) = (a4c)  - (aab) + (a352). 

, ~ a 4 a l c  = ,~-a3a2s2 = ~ a a a 2 a 6 -  2~-s2a2a6 = 3 .  180 o_ 30 ° = _ _  
330 ~ 

7 

a 5 

a5 a4 a 5 
a 3 

a2 a 6 
a6 

a 7 at 

a4 

a7 o I 

(a} (b) (o} 

az 

Fig. 10. Three topologies for n = 7. 
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Hence 

( a 3 s 2 )  = 

( a 4 c )  = 

Furthermore, 

Hence 

(a3b) = 

Therefore, 

osy"  
i s3 s 

I ! 

Fig. 11. Tree for lO(b). 

(a2a3) sin(330°/7) = x/2[1 - cos(360°/7)] sin(330°/7) 
sin 120 ° sin 120 ° ' 

(ala,)  sin(330°/7) = 42{i ''± cos(1080o/7)] sin(330°/7) 
sin 120 ° sin 120 ° 

~bala3 = ~ssa6a5 = ~.aaa2s2 by symmetry. 

(ala3) sin(330°/7) = x/211 = cos(720°)/7)] sin(330°/7) 
sin 120 ° sin 120 ° 

(a4s3)= ~/2  1 - c o s ~  ~ )  [ ( )+J (loos 
- ~ / 2  1 - c o s ~  

sin 120 ° 

= (1.950 + 0.868 - 1.563 ) (0.733)/0.866 = 1.06 >/7. 

6. The Longest Steiner Minimal Trees for n Cocircular Points 

The MST for any n cocircular points is clearly longest when the n points are 
equally spaced. Now for any n given points, the length of an SMT never exceeds 
that of an MST. Furthermore, Theorem 1 tells us that an MST is an SMT for the 
equally spaced set if n > 6. Therefore Theorem 2 is proved for n -> 6. The proof 
of Theorem 2 for n = 3, 4, 5 will each be given separately. 

Let (7, denote a set of n points on the unit circle. Let P, denote the enclosing 
polygon of  C,. 
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Lemma 12. For 3 <-- n <-- 5, i f  one of  the angles of  P. is 120 ° or larger, than an 
S M T  for C.  is shorter than that for A. .  

Proof We show that an MST for C~ is shorter than the SMT for A,. [] 

Without loss of generality, assume ~.ala2a3 > 120 °. Then 

~at  oa2 + ~a20a3 <. 120 °. 

By standard minimization techniques it is easily seen that the longest MST for 
n cocircular points satisfies the angle conditions 

~aloa2 = ~.a20a3 = 60 °, 

and 

~a3oa4 . . . . .  ~anoal = 240°/(n - 2 ) .  

The length of such an MST is 

2 4 2 ( 1 - c o s 6 0 ° ) + ( n - 3 )  2 1-cOS~n_2].]~ 

f 2 < 3  for n =3, 
= ~2 + v'g <, , '~+ ~/'g for n = 4 ,  

[2+2.572 < 4.574 for n = 5 ,  

where the right side of the inequality is the length of an SMT for A~. 

Corollary. I f  an S M T  for  C~ is not full, then its length is shorter than that o f  A~. 

We now prove Theorem 2 for n = 3. Consider C3 such that all angles of  P3 
are less than 120. Construct a regular A B C D  such that A and D are on different 
sides of [B, C]. Then ( A D )  is the length of  the SMT for C3 (see Fig. 12). Let 
~.oBD = 0: 

( A D )  <- (Ao) + (oD) 

- 1 ~ (oB) sin__.___~0< 3. 
sin 30 

Fig. 12. A Steiner tree for n = 3. 
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C 
D 

A G 

Fig. 13. A Steiner tree for n = 4. 

Next  we prove Theorem 2 for n = 4. Cons ider  C4 such that all angles o f  P4 
are less than  120 °. Suppose  that  the diagonals  [A, C]  and [B, D ]  meet  at E. 
Without  loss o f  generality, assume that 4 A E B - <  90. Then the Steiner tree T as 
shown in Fig. 13 exists. 

Construct  a regular A A B F  and a regular AFCG. Then the length o f  T is 
(DG). But AGFB--ACFA,  hence (GB)=(AC)  and 4FBG=~FAC.  Fur- 
thermore,  

~.GBD = 360 ° -  ~ GBF - ~DBF 

= 360 ° - £FAC - ~EBF 

= 360 ° - (360 ° - 60 ° -  ~AEB) 

= 60 ° + ~.AEB. 

In  A GDB 

( G D )  2 = [(GB)2 + (BD)  2 -  2(GB)(BD) cos ~.GBD] 1/2 

= [ ( A C )  2 + (BD)  2 - 2(AC)(BD) cos (60 + 4AEB)] 1/2 

~ ( 2 2 ÷ 2 2 - - 2  • 2 - 2 .  cos 150°)  1/2 

= (8 + 4x/3) 1/2 

<~+~. 

Finally, we prove Theorem 2 for n = 5. Without  loss o f  generality, assume that  
the polygons  under  study are inscribed in a unit  circle. Let M denote  the length 
o f  an SMT for As.  Then it is s traightforward to  calculate 

M = 4(sin 36°+ sin 72 °) sin 96 ° 

= 4.574. 

Cons ider  a C5 with points  A, B, C, D, and  E. By Lemma 12 we may  assume 
that  ~A,  ~B,  ~.C, ~¢D, and ~ E  are all less than 120 °. Therefore there exist five 
full Steiner trees where one  o f  them is as shown in Fig. 14 and the other  other  
four  can be obta ined  by rotat ing the points. 
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Fig. 14. A Steiner tree for n = 5. 

Let M c, M2,/I//3, M4, and M5 denote the lengths of these five trees, respectively. 
We prove that 

5 

E M,< 5M, 
i = 1  

where M is the length of  an SMT for A5. Therefore the SMT for C5, which is 
the shortest one among the five trees, must be shorter than M. 

Construct equilateral triangles AABD', ABCE', ACDA', ADEB', AEAC',  
AA'C'B", AB'D'C",  AC'E'D",  AD'A'E", and AE'B'A" (see Fig. 15). Then 
[A, A"], [B, B"], [C, C"], [D, D"], and [E, E"] are the five axes. Since (x", x) < - 
(x", o) + (o, x) = (x", o) + 1 for x = A, B, C, D, E, it suffices to prove 

S -~ (A"o) + (B"o) + (C"o) + (D"o) + (E"o) <-- 5(M - 1). 

Construct a circle through the three points A", B', and E '  and meet [A", o] 
(or its extension) at G. Then 

(A"o) = (GB')+(GE')+(Go) (or -(Go)). 

/ 
/ 

C,~ i 

B II 

b \  x. A" 
,/ \ . . . .  "7 

/ / ~  '~'" . ] [  
~.:" /! ~ ",,,. / 

. . :~  / ~ D  2_~t / 
i I , / r  ~ / 

/ _ l - " r  9 :7 "~  \. I 
c' i~"- t  I / I I "X. \. I / \ /  .. ",,\ :x 

\\ ~ 71 ._k, E" 
\ I / 
\ I 
\ i 
\ I 

\ i / 
7 

Ng.  15. Axes for the five full Steiner trees. 
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Define 

Since 

we have 

Note  that 

we have 

(A"o) = 

D. Z. Du, F. K. Hwang, and J. F. Weng 

~,A"oB'= al,  ~B"oC'= a 2 . . . .  , ~E"oA'= as, 

~.E' oA" = //1, ~A'  oB"= g2, . . . ,  ~-D' oE" = 35, 

~CoD=201,  ~-DoE=202, . . . ,  ~BoC=20s.  

~.A"GB'= ½~.E'GB' = ½(180 ° - ~,B'A"E') = 60 °, 

sin as . . . . .  sin//1 . . . .  sin(60 ° -  a l )  (oB') 
( A " O ) = s i n 6 o o t O ~ ) r ~  tot~ )4 s in60 o 

(oB') = 2 sin(30°+ 02), 

(oE') = 2 s in(30°+ 05), 

sin(60 ° -  a l )  sin(60 ° -/31) 
( o B ' )  - 

sin 60 ° sin 60 ° 
(oE'). 

{[(oB') sin al + (oE') sin//1] 

+ (oB' ) [s in  a l  + sin(60 ° -  a l ) ]  + (oE ' ) [ s in / /1  + s in(60°-/ /1)]} 

{[(oB')  sin as + ( oE') sin/31] 

× (oB') cos(30 ° -  al) + (oE') cos(30 °-/31)} 

1 t • = "~  {(oB )[sin a l  + cos(30 ° -  a t ) ]  + (oE ' ) [ s in / /1  + cos(30°- / /5)]}  

1 
= ~ {(oB') [s in  a l  + sin(60° + a l ) ]  + (oE')[sin//1 + sin( 60°+/ / t ) ]}  

=-~3{(oB') sin(30°+ a l )  cos 30°+ (oE  ') sin(30°+//1) cos 30 ° } 

= s in(30°+ a l )  s in(30°+ 02) +s in(30°+/ /1 )  sin(30°+ 05) 

= cos(a1 - 02) - cos(60 + as + 02) + cos(//1 - 05) - cos(60 + / / l  + 05) 

= cos(a1 - 02) + sin(a1 + 0: - 30 °) + cos(//1 - 05) + sin(//1 + 05 - 30°). 
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There fore  we c a n  wri te  

where  

S = S'  + S", 

S '=  cos (a1 -  02) + cos([31 - 05) + ' - - +  c o s ( a s -  01)+ cos([35- 04), 

S" = s in(  a 1 + 02 - 30 ° ) + sin(/31 + 05 - 30 °) + .  • • + s in(  a5 + 01 - 30 °) 

+ c0s(/35 + 0 4 -  30°). 

To  b o u n d  S '  a n d  S" we need  the fo l lowing  l emma.  

L e m m a  13.  Let  ~ X Y Z = y  where 6 0 ° < y < 1 8 0  °. Construct equilateral tri- 

a n g l e A X Z W  and  define K W Y Z  = w (see Fig. 16). T h e n  

min{60  ° , y - 60 °} - w -< max{60 °, y - 600}. 

Proof. C o n s t r u c t  a c i rcle  c i r cumsc r ib ing  the  three  po in t s  X, Y, a n d  Z. T h e n  W 
lies ou t s ide  o f  the  circle i f  y < 120 °, o n  the  circle i f  y = 120 °, a n d  ins ide  the  circle 
if  y > 120 °. C o n s i d e r  the  first case. W h e n  Y moves  f rom Z to X a l o n g  the  arc 
Z X ,  clearly,  w increases  f rom y - 6 0  ° to 60 ° s ince the  ang le  o f  the arc  it  faces 
also increases .  A n  a n a l o g o u s  a r g u m e n t  p roves  L e m m a  13 for the  o ther  two cases. 

[ ]  

We m a y  a s sume  w i t h o u t  toss of  genera l i ty  tha t  0i <- 41.25 ° for  1 -< i - 5 s ince 
o therwise  t he  M S T  for  C5 is a l r eady  shor te r  t h a n  M. 

Def ine  06 = 01 a n d  00 = 05. By L e m m a  13 

ai  - min{60  °, 0 i -  l + 2 0i + 0 i+ 1 - 60 ° } > 0 i+ l- 

F u r t h e r m o r e ,  ~ - 0~+i - max{60 °, 0~_1 + 2 0 i  + 0i+l - 6 0  °} - 0~+1 - 63.75 °. S imi lar ly ,  
we can  s h o w  0 < [3~- 0 ~ - 1 -  63.75 °. S ince  cos x is concave  for  00<- x <-90 ° a n d  

4 5 

(a~ - 0,+,)  + a5 - Ol + [3, - 05 + ~ (/3, - 0,-1) = 360 °, 
i = 1  i = 2  

S'  achieves  its m a x i m u m  w h e n  

or1 - -  02 = a 2 -  03 . . . . .  Or5 -- 01 = fll -- 05 . . . . .  [35 -- Ol = 360° /10  = 36 °. 

× 

Fig. 16. 

~ Y 

The range of  angle w. 
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Next note that 0~ + 02 = 180 ° -  z~ CDE > 60 ° and 0~ -< 41.25 ° implies 02 > 15 °. Hence 

0°--< oq + 0 ~ + 1 - 3 0  ° <  m a x { 3 0 ° +  0~+1, 0 i -1  +20i +20i+1-90 °} 

-< m a x { 7 1 . 2 5  °, 113.75°}. 

S i n c e  s in x is c o n c a v e  for 0 ° <  x - <  180 ° a n d  

Or1 + 02 - 3 0 ° +  fl l  "~- 05 - 3 0  ° + .  " • + a s +  0~ - 3 0 ° + / 3 5 +  0 4 -  30 ° = 780 °, 

S" ach ieves  its m a x i m u m  w h e n  

or1 + 02 - 30 ° =/31 + 05 - 30 ° = . . . .  as  + 01 - 30 ° = / 3 s  + 04 - 30 ° = 7 8 0 ° / 1 0  = 78 °. 

It is eas i ly  ver i f ied  that  w h e n  Cs  = As  the  c o n d i t i o n s  on  a . / 3 ~ ,  a n d  0~ to m a x i m i z e  
S '  and  S" are exac t ly  fu l f i l l ed  a n d  S = 5 ( M -  1). 
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