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School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel 

Abstract. An O(n log n) algorithm for planning a purely translational motion for 
a simple convex object amidst polygonal barriers in two-dimensional space is given. 
The algorithm is based on a new generalization of Voronoi diagrams (similar to 
that proposed by Chew and Drysdale [1] and by Fortune [2]), and adapts and uses 
a recent technique of Yap for the efficient construction of these diagrams. 

1. Introduction 

In this paper  we consider the following problem. Given a convex object B of  
relatively simple shape and a set of  polygonal obstacles, which are composed of  
a set of  n line segments ("walls"),  plan a purely translational motion of  B from 
a given initial position to a desired final position during which B avoids collision 
with the obstacles, or determine that no such motion exists. A recent paper  by 
Kedem and Sharir [5] (see also [4]) has presented an O(n log 2 n) time algorithm 
for solving this problem, based on calculating the vector differences A i -  B of  
each of  the obstacles Ai and B, and then on calculating the union of  these 
differences, obtaining an "obstacle space" K for a reference point on B, and 
thus reducing the motion-planning problem to the calculation of  the connected 
components  of  the complement  of  K. Another related work is that o f  O'Dtinlaing 
and Yap [10] for the specific case where B is a disc. They showed that if  the 
free space available for B is bounded, a motion of  B between two positions Z, Z '  
exists if  and only if there exists a motion of  (the center of) B along the Voronoi 
diagram of  the obstacles from some initial pos i t ion  W to some final position W' 
on that Voronoi diagram, where W, W' are suitably defined retractions of  Z, Z' 

* Work on this paper by the second author has been supported in part by a grant from the 
U.S.-Israeli Binational Science Foundation. 
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into the Voronoi diagram. The complexity of the algorithm in [ 10] is O(n log n), 
which is the time required to construct the Voronoi diagram for a set of n line 
segments [14]. 

The idea behind the present paper is similar to that of [10]. The reason that 
the Voronoi diagram is a suitable tool for the case where B is a disc is that given 
a position Z of (the center of) B which is not on the Voronoi diagram of the 
obstacles, we can move B in a canonical manner to a position W on the Voronoi 
diagram in such a way that the distance of B from the set of obstacles when 
positioned at W is greater than the distance of B from the obstacles when 
positioned at Z. Hence no harm is done if we move B from Z to W. Our idea 
is to define a generalized Voronoi diagram which has a similar property for a 
given convex object B of relatively simple shape (e.g., a polygon with a small 
number of sides) which, however, is allowed only to translate and not to rotate 
(for a disc this further constraint is of course redundant). As it turns out, this 
generalized diagram has similar properties to those of more conventional Voronoi 
diagrams; it has O(n+N) edges and vertices, and can be constructed using 
similar techniques in O(n log N) time, where N is the number of obstacles and 
n is the total number of obstacle corners, and where the complexity of B is 
assumed to be fixed. This in turn also yields an O(n log N) time algorithm for 
planning a purely translational motion of arbitrary convex objects of simple shape. 

The idea of using generalized Voronoi diagrams of the sort proposed here has 
recently and independently been suggested by Chew and Drysdale [1] and by 
Fortune [2]. However, they had different motivations for introducing such a 
structure; for example, Chew and Drysdale were interested in the problem of 
determining the largest convex shape homothetic to a given shape, which will fit 
in the plane without touching any of n given points. Their analysis thus corre- 
sponds to assuming that the given obstacles are all singleton points. The present 
paper contains a detailed analysis of the resulting diagram, which is more general 
than the one studied in [1], presents a different method for the calculation of 
the diagram, and discusses applications of the diagram to the translational motion 
planning problem mentioned above. 

This paper is organized as follows. In Section 2 we define the appropriate 
generalization of Voronoi diagrams which we call a B-Voronoi diagram, and 
state and prove its main properties. In Section 3 we present an algorithm for the 
calculation of this diagram in O(n log N) time and in Section 4 we show how 
to use this diagram for the solution of the above-mentioned translational motion 
planning problem. 

2. The B-Voronoi Diagram for a Set of Convex Polygonal Objects 

Let B be a compact convex object of some simple shape (the term simple will 
be defined more precisely in the next section), which we assume to have nonempty 
interior, and let 0 be an arbitrarily chosen fixed interior point of B. Let S be a 
set of N closed interior-disjoint polygonal objects ("obstacles") composed of a 
total of n line segments ("walls") which form the boundary of the free space V 
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available for B. We assume that each object in S is convex and allow objects in 
S to share a common wall (in this way nonconvex obstacles may be represented 
as the union of several interior-disjoint convex subparts). To avoid certain 
technical difficulties, we will assume that the obstacles in S and B are placed in 
"general position" and thus exclude degenerate configurations of these objects. 
These assumptions are required either to prove the properties which we state in 
this section or for the algorithm which we describe in Section 3, and are as follows: 

Assumptions on general position: 

(a) No boundary edge of B or of an obstacle in S is vertical. 
(b) No boundary edge of B is parallel to the boundary edge of an obstacle 

or to a line joining a pair of boundary comers of these obstacles. 
(c) No more than three objects in S can be tangent to any homothetic copy 

of B and lie in its exterior. 
(d) No homothetic copy of B is such that two adjacent boundary segments 

of it simultaneously touch two wall comers and their common endpoint 
touches a wall. 

Remarks. (1) Assumption (a) is required only for the construction of the diagram 
in Section 3, but not for proving its properties, and can always be ensured by an 
appropriate rotation of the coordinate frame. 

(2) Assumption (b) is required to ensure that the B-Voronoi diagram will be 
one-dimensional. Degenerate configurations which occur when this assumption 
is not satisfied can be handled by standard techniques; for example, one can use 
the method of infinitesimal perturbations mentioned in [13]. 

(3) Assumption (c) resembles the assumption, usually made in the analysis 
of the standard Voronoi diagram for a set of points, that no more than three 
points in the set may be cocircular (see [11]). If this assumption is violated the 
diagram may have vertices of degree greater than 3. This will cause some problems 
in the contour tracing procedure described in Section 3 but, as in the calculation 
of standard diagrams, the algorithm can be slightly modified to handle such a 
degeneracy. 

(4) Assumption (d) is required to prove property (9) below which states 
roughly that the diagram does not contain "'degenerate" vertices. In practice a 
slight modification of our algorithm will suffice to make it work even if this 
assumption is not satisfied. 

We will refer to the position of B in the plane in which O lies at the origin 
as the standard position of B and denote by Bo the set of points in B when given 
that standard position. Let p, q be two points in V. We define the B.distance from 
p to q (or equivalently, the B-closeness of p to q), denoted by da(p, q), as 

ds(p, q)= inf{A: q~p+ABo}. 

Note that since 0 is an interior point of B, the B-distance function is always 
finite and continuous, obeys the triangle inequality but need not necessarily be 
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symmetric, and is thus not induced by a metric in general (such a notion was 
introduced by Minkowski in 1911 and was called a convex distance function (see 
[7])). The B-distance from a point p ~ V to a given object st ~ S is defined in a 
natural way as 

dB(p, st) = inf{A: p + ABo c~ st ~ ~}. 

(Note that under our assumptions that B and S are in general position, there 
exists a unique y ~ st at which the B-distance from p to s~ is attained.) 

Using dB we define the B-Voronoi diagram VorB(S) associated with the set S 
and B as follows. For each i ~ j  define 

n (  i,j) = { y e  E2: de(y, s,) <- dB(y, sj)}, 

i.e., the set of  all points whose B-distance to st is no greater than their B-distance 
to sj. Then define the (closed) B-Voronoi cell CB(S~) associated with si to be 

CB(si) = ("] H(i , j ) ,  
j # i  

i.e. the set of  all points y whose B-closeness to si is not greater than y 's  B-closeness 
to any other element of  $. Finally, the B-Voronoi diagram Vora(S) is defined to 
be the set o f  points which belong to more than one B-Voronoi cell. The edges 
of  this diagram are maximal connected arcs which belong to exactly two 
B-Voronoi cells and the vertices are those points which belong to more than two 
ceils. To simplify the following analysis we shall assume that for each pair of 
objects sl, s2 in S which share a common boundary segment/ ,  the exterior angles 
formed between sl, s2 at the endpoints of  I are both less than or equal to 180 °, 
and thus the locus of points equidistant from any given pair of  objects in S is 
always a one-dimensional set (if that angle is 180 °, this property follows from 
our assumption that B and S are in general position), so that in this case the 
B-Voronoi diagram is indeed one-dimensional. If  this assumption is violated at 
some point x common to the boundary of  two obstacles sl, s2 (i.e., the exterior 
angle between sl and s2 at x is greater than 180°), then we can treat x as a 
singleton obstacle, replace s~, s2 by s~-  {x}, s2-{x},  respectively, and redefine 
B-closeness similar to the definition of  closeness in [6] and [14]. However, for 
the sake of  simplicity we will continue to make this assumption, which can always 
be enforced when partitioning a nonconvex obstacle into a collection of  openly 
disjoint convex parts. By our assumptions that B and S are in general position 
no point on VorB(S) lies in more than three B-Voronoi cells. Figure 2.1 shows 
an example o f  such a B-Voronoi diagram. Note that the B-Voronoi diagram for 
the case where B is a disc is exactly the standard Voronoi diagram of  the set S 
of  obstacles [10]. 

The B-Voronoi diagram just defined has the following properties. 

(1) The collection of  B-Voronoi cells covers the whole plane. 

Proof. Follows immediately from the definition of  dB and the fact that O is an 
interior point o f  B. [] 
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Fig. 2.1. The B-Voronoi diagram. 

(2) Let y be a point in some cell Cs(s~) and let y'  be the B-closest point to it 
on st. Then 

(a) The line segment I = yy' is wholly contained in CB(s~) and in addition, if 
there is a point ze  I which is contained also in another cell CB(sj) then 
the whole segment yz is also contained in C~(sj) (we capture this property 
by calling Cn(s~) star-shaped with respect to s~). 

(b) If  p is any point such that y'yp is a straight line, then the B-closest point 
on s~ to p is y'. 

Proof. (a) Suppose that there is an interior point z ~ I which belongs to a second 
cell Cs(sj) and let z' be the B-closest point to z on sj (see Fig. 2.2(a)). We have 
by our assumption 

ds(z, sj) <- dB(z, s,). 

Let ds(y, s~) = A. If  the inequality were strict (i.e., z did not belong to CB(s~)) 
then z' would belong to the interior of  the triangle yy'y" where yy" is a line 
segment parallel to zz' such that do(y, y")= A. But since the triangle yy'y" is 
wholly contained in y + aBo, this would imply da(y, s i) < dB(y, s~) contrary to our 
assumptions. Therefore z' must lie on the segment y'y" and also be a boundary 
point o f  y + ABo which, however, implies that every point on I between y and z 
is equally close to s~, sj as asserted. 

(b) Let A be the scalar multiple of  B such that ABo+y touches sf at y'. Since 
y'  is the B-closest point to y on si and since B and s~ are convex there is a line 
T passing through y' which separates them (see Fig. 2.2(b)). Let a ' >  A be the 
multiple of  B such that A'B0+p also touches s~ at y'. It is easily checked that T 
also separates A'B0+p and s~. But then since B and s~ are convex it follows that 
the B-distance from p to any point on T (and hence also to any point in s~) is 
greater than or equal to A', and this proves our  claim. []  
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(3) Suppose 11,/2 are two line segments in CB(si) which connect two points 
x~, x2 in CB(s~) to their respective B-closest points y~, Y2 on si. Then either I1,/2 
do not intersect except possibly at their endpoints or else one of these segments 
is wholly contained in the other. 

Proof (the technique used here resembles that of [5]). Suppose 11,/2 intersect 
at a single point and let ds(xl,  s,)= A and dB(x2, st)= A'. Let zl (resp. z2) be a 
point at a B-distance A (resp. A') from xl (resp. x2) in the direction x2y2 (resp. 
xl Yl) (see Fig. 2.3). Clearly the triangle xlz~ Yl is contained in xl + ABo and the 
triangle x2z2y~ is contained in x2+ A'Bo and therefore both these triangles do not 
contain a point (in particular the points y~, Y2) of st is their interior. But since 
the two triangles xlzl Yl, x2z2y: are similar and have pairwise parallel sides, and 
their two s ides/1 , /2  intersect one another, we must have either Yl ~ Ax2z2y2 or 
Y2 ~ Ax~z~ Yl. Therefore z~ y2y~z2 must be a straight line segment and Yl Y2 must 
therefore be a subsegment of the boundary of st. But this means that the boundary 
of  B contains a line segment which is parallel to a boundary segment of st which 
contradicts our assumptions of  general position. [] 

(4) Each edge of the B-Voronoi diagram is simple (i.e., the removal of a single 
point on such an edge divides it into at most two connected components). 
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Proof. Let p be a point on an edge e on the boundary of  Ca(s1), CB(s2) such 
that the removal of p divides e into more than two disconnected components, 
and let C~, C2, C3 be any three such components in some small neighborhood 
of p. Define $i(x),  i = 1, 2, for x e e to be the B-closest point on si to x. Denote 
$~(p) by Pi. Plainly $1 is continuous and thus $~(Ck), k = 1, 2, 3, are connected 
portions on the boundary of  st whose closure contains Pl. The star-shapedness 
of Ce(s~) and the fact that the B-diagram is one-dimensional easily imply that 
pt is an endpoint of  all three projections $;(C~) and that these projections are 
all disjoint. Thus one of  them, say $~(Ct), must be the singleton point pt .  But 
then property (2b) implies that C~ must be a line segment all of  whose points 
are equally B-closest to p~ and to s2. Arguing as in the proof  of  (2), it follows 
that Pl P2 must be parallel to a side of  B; thus our assumptions on general position 
of B and S imply that P2 must be a comer  of  s2 (see Fig. 2.4). However, a 
symmetrical argument, using $2 instead of  $1, would imply that Pl must be a 
comer  of  sl ,  thereby contradicting our assumptions of  general position, namely 
that no side of  B is parallel to the line joining two comers of obstacles in S. 

[2 

'1 (c,, 

Fig. 2.4 
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(5) Let a be a point on the locus C of  points which are equally B-close to two 
distinct objects s~, s~ and let y~ (resp. yj) be the (unique) B-closest point to a on 
si (resp. s~). Denote the B-distance from a to Yt and y~ by A. Let T~ (resp. T~) be 
a common tangent at y~ (resp. yj) to st (resp. sj) and a + ABo and suppose that 
these tangents are unique. Then the (unique) tangent to C at a is the line T 
which passes through a and the intersection point z of  T~ and Tj. 

Proof Let a'  be a point on T sufficiently near a, let y[ be a point on T~ such 
that a'y[ is parallel to aye, and let y~ be a point on Tj defined in an analogous 
manner. Let 

la'y~l=A, a'y~ A'= A- lay, t taYjl" 

Then it is easily seen that a '+A'Bo contains y~, y~- and is fully contained in the 
wedge between Ti and Tj. Since at least one of  the two objects s~ (resp. sj) and 
a +AB0 is smooth at their point of  contact y~ (resp. yj), it follows that the 
B-distances of  a '  from both si and s t are equal to A' up to first-order approximation, 
proving that T is indeed the tangent to C at a. This argument can also be used 
to show that T is the unique such tangent. [] 

(6) Corollary. (a) I f  the boundary of B is smooth (i.e., B has a unique tangent 
at each point on its boundary) then each B-goronoi edge is smooth. 

(b) I f  B is a polygonal object then each edge of the B-Voronoi diagram is a 
polygonal arc. Furthermore, if B has k sides then the total number of corners 
in the edges of Vors(S) is at most kN  + n. 

Proof. (a) is trivial, because in this case the conditions of  (5) hold at each 
interior point  of  any of  the edges of the diagram. 

(b) Let e be a B-Voronoi edge separating CB(s~) from Ca(st). Clearly, e can 
be broken into portions at each o f  which the two contacts between the appropriate 
expansion of  B and s~, sj are made between fixed comers or segments of  B and 
fixed segments or comers of  si and sj. As long as these type of  contact are fixed, 
it is easily seen that e traces a straight line segment (this follows, e.g., from (5)). 
Moreover, this straight segment is terminated when contact is made between a 
comer  of  B and a comer of  either s~ or s~. It can be shown that if O moves 
around the boundary of  Cs(st) with B expanding or shrinking so as to maintain 
contact with s~ then the total number of  points at which a comer  o f  B makes 
contact with a comer  of  si during that traversal is at most k +  n~, where n~ is the 
number o f  sides o f  st (see, e.g., [3]). Hence, summing over all B-cells of  the 
diagram, we obtain the asserted bound. [] 

Remark. The same arguments used to prove (6b), combined with the observa- 
tions in [3], can be used to show that, under the assumptions in (6b), the locus 
of  points B-equidistant to two objects si, sj having hi, nj sides, respectively, can 
be calculated in time O(k+ hi+ n~). This observation will be significant in the 
algorithm for constructing the diagram, given in Section 3 below. 
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Fig. 2.5 

(7) VorR(S) need not be connected. In fact it can have up to O(n) connected 
components. However, every connected component of Vors(S) is unbounded. 

Proof. Since the B-Voronoi diagram for B a disc is the standard Voronoi diagram 
of S, the first claim follows from the fact that the standard Voronoi diagram may 
have O(n) connected components (see [12]). The diagram can also become 
unbounded due to nonsmooth comers of  B. Figure 2.5 shows examples of both 
these types of  unboundedness. Let K be a bounded connected component of 
VorB(S). Since the set of  B-closeness cells covers the whole plane there is an 
object s~ whose cell surrounds K. Obviously s~ lies outside K. Let y be any point 
in K and let x be the B-closest point to it on s~. Continue the segment xy past 
y and away from s~ until it reaches an interior point p in CB(s~) (such a point 
must exist since CB(s~) surrounds K).  But then by property (2b) the closest point 
to p is x and this contradicts the fact that CB(S~) is star-shaped. []  

(8) Corollary. There are no isolated points in Vora(S).  

(9) Let p be a vertex of  Vor~(S) on the boundary of three cells Cs(s~), C~(sj), 
CB(Sk). Then every neighborhood of  p intersects the interiors of  all three cells. 

Proof. Suppose to the contrary that there is a point p, whose B-distances to 
s, sj, Sk are all equal to some ;t, such that there exists a small neighborhood N 
of p which contains no interior point of  Ca(si). We may assume that N contains 
no point of  a fourth cell, since if this were the case for all sufficiently small such 
neighborhoods N, then p would be equally B-close to four objects and we have 
ruled out such cases by our assumptions on general position. Let the B-closest 
point to p on si be y~ and consider the intersection I of the line segment py~ with 
N. By property (2) py~ is contained in Cs(s~) and therefore it cannot intersect 
interior points of  any other cell. Also, by our assumption, there are no interior 
points of Cs(s~) on either side of a portion of  I near p, and therefore that portion 
of I lies entirely in the interior of the union of Ca(s t) and CH(sk). But (as in the 
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sj " / 

Fig. 2.6 

proof of property (2)) since B and the objects in S are all convex, this is possible 
only if YjYi and YkY~ both lie on the boundary of p+ABo where yj (resp. Yk) is 
the B-closest point to p on s l (resp. Sk) (see Fig. 2.6). This, however, contradicts 
our assumptions that B and S are in general position (assumption (d) at the 
beginning of Section 2), and thus establishes our claim. [] 

(10) VorB(S) consists of at most O(N) edges and vertices, where the edges 
are maximally connected components of Vora(S) which lie on the boundary of 
the same two cells of the diagram and the vertices are points which are equally 
B-closest to more than two obstacles. 

Proof. Property (9) implies that each neighborhood of a vertex v of the B- 
Voronoi diagram intersects three cells of the diagram and thus contains at least 
three edges separating these cells. Thus the degree of u is at least 3 (therefore 
by our assumptions the degree of v is exactly 3). From this and Euler's formula 
for planar graphs we obtain the required result. [] 

Remarks. (a) Note that in (10) we have taken each edge of VorA(S) to be a 
maximal connected component of Vora(S) which lies on the boundary of the 
same two cells of the diagram. In practice, e.g., when B is polygonal, one may 
want to break such an edge into several (connected) subparts, each corresponding 
to different comers and edges of the obstacles in S and of B which touch one 
another at the appropriate expansion of B. It is not hard to see, using Corollary 
(6), that if the boundary of B is regarded as a single closed curve, then VorB(S) 
will consist of O(N+ n) such subedges. If B is a polygonal object with k sides 
and we wish to distinguish between subedges of the diagram induced by different 
sides or comers of B, then, as in Corollary (6b), VorB (S) will consist of O(kN + n) 
subedges, which, in this specific case, are all straight line segments. 

(b) From (10) we can easily deduce that the number of positions of B in 
which it touches Simultaneously two distinct objects in S and does not penetrate 
into any other object in S is O(N). Indeed, any such position must lie on an 
edge of Vora(S). On the other hand, any edge e of Vors(S) can contain at most 
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two such positions, as follows from the argument given in [5]. Thus the properties 
of B-Voronoi diagrams provide a different proof of this property. (A more general 
proof which uses a somewhat different technique has recently been given in [9] 
and [4].) 

3. Efficient Construction of the B-Voronoi Diagram 

In this section we present an efficient algorithm for constructing Vors(S) for 
simple convex objects. By simple objects we mean objects for which certain 
operations, which are used during the construction of the B-Voronoi diagram as 
described below, can be accomplished in constant time. Such operations are: (a) 
computing the B-distance between any two points in V or from a given point in 
V to a straight line; (b) calculating the intersection points of the locus of points 
which are B-equidistant to two sides or corners of objects in S and another such 
curve or a straight line segment. For more complex objects the actual complexity 
of such operations should be taken into account in estimating the complexity of 
the algorithm. 

As will be seen, the properties of Vora(S) which have been proved in the 
previous section, and which are quite similar to the properties of more conven- 
tional Voronoi diagrams, enable us to construct VorB(S) by much the same 
technique as that described by Yap [ 14] for the construction of (standard) Voronoi 
diagrams for a set of simple curves. 

Our algorithm proceeds as follows. Let P be the set of the 2N leftmost and 
rightmost points on objects in S (recall that these points are unique by assumption 
(a) of general position). Following [14] we divide the plane by vertical lines into 
2N slabs such that (the interior of) each slab contains exactly one point of P. 
The algorithm runs in stages. In each stage it partitions the set of slabs into 
disjoint pairs of adjacent slabs and combines each such pair into a new, larger, 
slab. That is, in the first stage the 2N slabs are combined in disjoint pairs into 
N new slabs, in the second stage these N slabs are combined in pairs into N/2  
slabs and so on. After O(log N) stages only a single slab remains and the algorithm 
terminates. 

With each slab the algorithm associates a partial B-Voronoi diagram for an 
appropriate set of objects which intersect that slab. These diagrams are merged 
together whenever two adjacent slabs are combined to form a new slab. However, 
to keep down the cost of creating and merging those diagrams, we will maintain 
for each slab a partial diagram which covers only those portions of the slab that 
contain points in P (see below for a more detailed description of this process; 
note that slab portions for which no diagram is yet maintained are simple 
"corridors" extending through the entire width of a slab and containing no inner 
obstacles). 

The general merging step of the algorithm thus combines partial B-Voronoi 
diagrams of two adjacent slabs into a (possibly partial) B-Voronoi diagram of 
the combined slab. This is done as follows. Consider a slab Q divided by a 



20 D. Leven and M. Shafir 

i Q L  I 
' 

~ t  I l l  I t t I I 

t ! 

' W 2 J I I I 

T I  ,I I t I t I , t t i t I ~ l  t ' 
I I 

Fig. 3.1 

vertical line into two slabs; a left slab QL and a right slab QR- The intersection 
of  the free space V with Q is divided into several components by the boundary 
of  objects which cross Q through its entire width from left to fight (i.e., objects 
whose leftmost points lie to the left of Q and whose rightmost points lie to the 
fight of Q; see Fig. 3.1). Each such component is called a window; note that our 
definition of  windows is somewhat similar to that of quads in [14]. 

With each window W we associate a B-Voronoi diagram, defined over the 
entire plane, which is induced by the portions of objects contained in W, as 
follows. For each object s which intersects (the interior of) W, let s w denote 
that intersection. In addition let Uw (resp. Dw) denote the upper (resp. lower) 
portion of  the slab Q bounded below (resp. above) by the portion of  the object 
which forms the upper (resp. lower) boundary of  W. Then the B-Voronoi diagram 
of  W is the B-Voronoi diagram for the set S ( W )  consisting of Uw, Dw, and all 
the nonempty s w, for s ~ S (see Fig. 3.2). Note that Uw, Dw may not be convex, 
in which case they are split into convex subparts at their concave corners, each 
of  which is regarded as a corner of P (see the comment at the beginning of 
Section 2). It is clear that the B-Voronoi diagrams of different windows in the 
same slab Q can overlap one another only outside Q (in fact, as will be noted 
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below, such overlapping is always of a very trivial nature), and our algorithm 
will therefore calculate and maintain each of these partial diagrams separately. 
As already noted, we will maintain B-Voronoi diagrams only for those windows 
which contain at least one of the pints in P. This ensures that at each stage of 
the algorithm there are at" most 2N windows for which the diagram need be 
constructed (a fact which is crucial for the linearity of each stage), and also, of 
course, that upon termination the diagram of the last remaining slab will indeed 
be the complete B-Voronoi diagram of S. 

The main step that needs to be described is thus the step which computes the 
B-Voronoi diagram of a given window W of Q. W is divided by the vertical line 
separating QL, QR into two sets of windows, those in the slab QL (which we call 
the L-windows) and those in the slab QR (which we call the R-windows). Let L 
(resp. R) be the set of intersections of the objects in S with the L-windows (resp. 
R-windows). The construction of the B-Voronoi diagram of W is accomplished 
by the following three steps. First we construct the partial diagram for each 
L-window (resp. R-window) that contains at most one point of P (and whose 
diagram has not yet been constructed). Next we combine the B-Voronoi diagrams 
of all the L-windows (resp. R-windows) into a full diagram VorB(L) (resp. 
VorA(R)) of the left (resp. right) part of W. Finally, we merge the diagrams of 
the left and fight parts of W into the B-Voronoi diagram of W. We now describe 
each of these steps in detail. 

Step 1. Construction of the B-Voronoi Diagram of  an L-Window or an 
R- Window 

If the B-Voronoi diagram of an L-window or an R-window has not yet been 
constructed, then either we are in the first (innermost) stage of the algorithm and 
the window W* in question contains just one point in P, or W* contains no 
point of P. Therefore at most three objects s~, s2, s3 can intersect W* in one of 
the following situations; either (a) Uw. (resp. Dw.)  consists of (at most) two 
objects (it may consist of two objects if it is a part of an original nonconvex 
object which has been split into convex subparts as discussed at the beginning 
of Section 2), Dw,  (resp. Uw.)  consists of one object and there is no interior 
object in W*, or (b) each of Uw.,  Dw.  consists of one object and there is one 
interior object in W*. Hence we can compute the B-Voronoi diagram of W* by 
first computing the locus of points which are equally B-close to sl, s2 (by Corollary 
(6b) and the remark following it can be done in time O(ml + m2) if we assume 
B to be simple or O(k + m~ + m2) if we assume B to be a k-gon, where m~ (resp. m2) 
is the number of segments and points composing s~ (resp. s2)), and then by adding 
to the diagram s3. By a careful implementation, which resembles the contour 
tracing procedure which is outlined below, this stage can be done in time 
O(ml + m2+ m3) (or O(k+ m~ + m2+ m3)) where ma is the number of segments 
composing the third object s3 (see also [8] for a description of the contour tracing 
technique). Thus the construction of the B-Voronoi diagram of W* requires 
O(k+ m) time, where m is the number of comers of objects in W*. 
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Step 2. Vertical Merge of the Diagrams of the L-Windows 
(resp. R- Windows) 

Let X, Y be two adjacent L-windows which are separated by a portion of an 
object A and assume that X lies above Y. We claim that the only cells of the 
B-diagrams of X, Y which can overlap are a cell of the upper portion of Y and 
a cell of the lower portion of X. This follows from the following argument. First 
observe that these two diagrams can overlap only outside QL- Let z be a point 
lyir~g (outside QL) in a cell CB(sl) of VorB(L) where sl is in X and is not 
contained in Dx. Then the object B-closest to z in Y must be (part of) Uv. 
Indeed, suppose to the contrary that this object s2 is not (part of) Uv. Let 
dB (z, sl-) = A~, dB(z, s2) = h2, and p~ e st be the B-closest point to z on s, i = 1, 2. 
Then it is easily seen that A2-----A 1 (since z~ Cs(s~) in VorB(L)) and that both p~ 
and P2 belong to z+h2Bo. But then the segment PiP2 is contained in z+A2Bo 
and it follows that z + A2Bo must intersect the interior of Uv (because Bo has no 
vertical boundary edge), contradicting the assumption that dB(z, s2) < da(z, Uy). 

Thus to merge the B-diagrams of two adjacent L-windows X, Y as above, all 
we have to do is to intersect the cell of Dx in the diagram for X with the cell 
of Uy in the diagram of Y to obtain the cell of the object A = Dx c~ Uy in the 
combined diagram, and leave all other cells in both diagrams unchanged. This 
can plainly be clone in time which is linear in the number of edges of the two 
cells CB(Dx), CB(Uv) and thus VorB(L) can be constructed from the partial 
diagrams of the L-windows in linear time. Similarly, Vor~(R) can also be 
constructed in a completely analogous manner from the partial diagrams of the 
R-windows in linear time. 

Step 3. "Horizontal" merge of Vora(L), Vora(R) 

The final step merges VorB(L) and VorB(R) to obtain the B-Voronoi diagram 
of S(W). Note that the objects in S(W) which intersect both QL and QR are 
split by the vertical line separating QL and Qa into two parts, one in L and the 
other in R. The present merge first calculates the B-diagram for L u  R (i.e., with 
each such object remaining split), and only then patches up the diagram to obtain 
Vora(S(W)). 

To merge the diagrams Vor~(L), VorB(R), we have to compute the locus C 
of points which are equally B-closest to an object in L and to an object in R. 
Following Kirkpatrick [6] we call C the contour separating L from R. It is easy 
to see that C is a simple, topologically closed curve since each vertex of the 
combined diagram has degree 3 (for details concerning this standard argument 
see, e.g., [8]). Hence, C partitions the plane into disjoint open connected regions 
each of which consists either entirely of points which are B-closer to objects in 
L than to objects in R (in which case we call such a region, as in [8], an L-region) 
or entirely of points which are B-closer to objects in R than to objects in L (in 
'which case we call such a region an R-region). Since by our construction each 
object in L lies to the left of each object in R we have the following lemma. 
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Fig. 3.3. The setting of Lemma 3.1. 

Lemma 3.1 (Fig. 3.3). Let c ~ , . . . ,  c2, be the common endpoints of segments of 
objects in L and in R on the vertical line which separates QL and QR, and suppose 
that these points are given in increasing order of their y-coordinates. Then the contour 
C consists of  t portions C ~ , . . . ,  Ct such that Ct starts at c2~-1 and ends at c2~. I f  
the leftmost and rightmost points of  B are smooth then C ~ , . . . ,  C, are all simple 
connected arcs; otherwise each of these portions Ct is still simple but not necessarily 
connected. In this case each C~ is the limit (in the Hausdorff topology of closed sets) 
of a sequence of simple connected arcs connecting the corresponding points c2i-~ and 
c2~ ; thus every connected portion of Ci is unbounded in both directions (except at 
the endpoints c2t-1, c2t). 

Proof. We will first show that if the leftmost and rightmost points of B are both 
smooth then each pair of objects in L can be connected by an arc which does 
not intersect the contour and (by a symmetric argument) that each pair of objects 
in R can also be connected by such an arc. This will imply that if the leftmost 
and rightmost points of  B are both smooth there is only one L-region and only 
one R-region in Q and hence the contour must have the form asserted by the 
Lemma, since it obviously passes through the points c t , . . . ,  c2,. For objects B 
whose leftmost or rightmost point is not smooth we will obtain the result by 
approximating B by the vector sum B~ of B and a disc with a sufficiently small 
radius e > 0. 

Details are as follows. Let si, s i E L and let y, (resp. yj) be the leftmost point 
on st (resp. sj). For each h > 0  let a~(h) (resp. aj(h)) be the leftmost point whose 
B-distance to s~ (resp. sj) is h. Since we assume that B has no vertical boundary 
edges, it follows that the locus A; (resp. Aj) of  all points at (A) (resp. aj (A)), A - 0, 
is an infinite ray emanating leftward from y~ (resp. yj), and that A~ and Aj are 
parallel. Let e~ be the line segment connecting ai(A) and aj(h.) and e0 the line 
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segment connecting Yi and yj. We claim that if the dghtmost  point of  B is smooth 
then for a large enough A every point p e e^ lies in an L-region, so that si and 
sj are connected by the polygonal arc yi ai (A)aj (A)yj which is completely contained 
in an L-region, as asserted. It is easily checked that for each ~ > 0 there exists 
Ao(8)> 0 such that for all ;t > )to(f) and p ceA, the B-distance of p to yi, yj is 
less than A + 8 (here we use the fact that the rightmost point on B is smooth).  
Choose 8 to be the smallest B-distance from points in eo to objects in R. Then 
the above observation implies that the B-distance from any point in ea to s~, sj 
is less than  its B-distance to any object in R, as asserted. [] 

I f  the rightmost point on B is not smooth consider B, as defined above for 
some e > 0. We have the following lemma. 

Lemma 3.2. (a) For each e > 0 and p, q ~ R 2 we have 

da,(p, q) <- an(p, q) <- (1 + e' /  K)da,(p,  q), 

where e'-~O as e--*O and K > O  is the Euclidean distance from 0 to the 
boundary o f  B. 

(b) Let sl e L, s2 ~ R be two obstacles. For each e > 0 let F ~ be the locus of  points 
x satisfying 

d~(x ,  s,) = d.~(x, s2) 

and similarly let F be the locus of  points x satisfying 

d.(x ,  s,) = d . (x ,  s2). 

Then F is the limit set (in the Hausdorff topology of  closed sets) of  F, as 
e --> 0 (Fig. 3.4). 

B CONTOUR 

- - -  B t CONTOUR / 

. . . . . . .  Vor B (R) - - . . . . .  . /  

- " -  Vor B (E l  " " ' ~ . _ ~ . . . _ . ~  " 

Fig. 3.4 
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Proof (a) Since B~ _D B the left inequality is obvious. As for the other inequality, 
it is easy to see that for each e '  > 0 there exists 6 > 0 such that for each e < 8 we 
can write the vector f rom O to any point on the boundary of  B~ as x + z, where 
x and z are collinear, x ~ B0, and tlzll < e'. suppose  q ~ p + ABe. Then we can write 

q - p = A ( x + z ) ,  

where x, z are as above. But then (K /e ' ) z  ~ B and we can write 

where 

A ( x + z ) = A ( l + e ' / K ) x ' .  

x ' = X + ( e ' / K ) ' (  / ~,K,e'.z B. 
1+ e ' /K  

Hence dB (p, q) --< A (1 + e ' / K )  and (a) is thus established. 
(b) First we show that if e.-~ 0 and x.  e F~. converge to some x, then x ~ F. 

We have 

dB. (x.,  s,) = d. . . (x . ,  s:). 

By (a) we then have, for an appropriate corresponding sequence e ' ~  O, 

(1 + e ' / K ) - l d n ( x . ,  sl) <- ds. .(x. ,  sl) = ds. (x.,  s2) <- dB(x., s2) 

so that by continuity of  dB 

dB(x, s~) <-- dB(x, s2) 

and by symmetry we obtain equality, i.e., x ~ F. 
Next let x ~ F, that is da(x, Sl) ~--" dB(x, S2), and let 8 > 0. By properties (4) and 

(9) of  Section 2 it follows that the disc D8 of  radius 8 about  x must contain two 
points y, z such that 

and 

d~(y, sl) > d~(y, s~) 

d,(z ,  s,) < riB(z, s2). 

Hence if e is sufficiently small we will also have 

da. (y, s,) - da. (y, s2) > O> da. ( z, sl) - da. ( z, s2). 

This and the continuity of  da. implies that Ds c~ F~ ¢ 0 and this proves (b). 
[] 
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Lemma 3.2 now implies that the contour C is the limit set of the contours C~, 
defined in a similar manner for Be, as e --} 0. This, however, shows that for every 
sufficiently large disc D about the origin C~ c~ D ~ C c~ D as e--> 0 and thus C 
has the form asserted by the lemma. [] 

Using Lemma 3.1 we can compute the contour in the following way. Following 
Kirkpatrick [6] we divide each cell of Vors(L), VorB(R) into subcells by adding 
line segments which join each vertex v of the diagram to the three points on the 
three corresponding objects in L or in R to which v is B-closest. We further 
refine the subcells by adding new vertices to VorB(L) (resp. Vors(R)) and joining 
these vertices by straight line segments to their B-closest points on L (resp. R) 
so that each subcell will contain points which are B-closest to just one obstacle 
segment or comer. These line segments are called (as in [6]) spokes. The boundary 
of each resulting subcell thus consists of two spokes, an edge on the B-Voronoi 
diagram (or possibly two such edges if the subcell is unbounded), and a (possibly 
empty) subsegment of an obstacle edge. Clearly, the number of subcells and 
spokes is linear in the number of vertices of the B-Voronoi diagram and the 
number of obstacle comers (i.e., O(N+ n))'. 

The contour is now traced, starting at the point cl defined in Lemma 3.1, in 
the following way, which resembles similar contour-tracing techniques as 
described in [6], [12], and [8]. Assume that we are at a point z on the contour 
which is an interior point of a subcell U of Cz(si) in Vora(L) and of a subcell 
V of CB(sj) in Vorz(R), and let w~ (resp. wj) be the side (or comer) on s~ (resp, sj) 
to which z is B-closest (Fig. 3.5(a)). We trace the contour portion containing z, 
which is the locus of ponts which are equally B-close to w~ and wj, until its first 
intersection q with the boundary of either U or V (note that the way in which 
we have partitioned the diagram into subcells and the assumptions that we have 
made on the shape of B enable us to find this intersection point in constant time). 
Suppose that the contour intersects the boundary of V first and enters into a new 
subceU V' of, say, CB($k) in VorB(R) and let wk be the side (or comer) to which 
all points in V' are B-closest among all objects in R. Then after the intersection 
q the contour continues along a new subarc consisting of points equally B-close 
to w~ and Wk. In some cases (but only if the leftmost or rightmost point of B is 
not smooth) both subcells U and V may be unbounded and the contour portion 
being traced may extend to infinity (Fig. 3.5(h)). In such cases we know from 
Lemmas 3.1 and 3.2 that the contour "returns from infinity" from the same. 
direction and we can proceed as follows. Suppose that the contour portion being 
traced extends to infinity to the left (resp. right) of the vertical line separating L 
and R. We then replace the subcell U (resp. V) by the unbounded subcell 
U' (resp. V') which is adjacent and lies clockwise (resp. counterclockwise) to it 
in Vorn(L)(resp. Vora(R)) and proceed as before to obtain the next (also 
unbounded) contour portion. 

We continue tracing the contour in this manner until the point c2 defined in 
Lemma 3.1 is reached. In the same manner we trace all the other portions of the 
contour. To complete the construction of the diagram we discard those portions 
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Fig. 3.5. Contour-tracing procedure. 

of the contour which form the boundary of objects which were split by the vertical 
line separating L and R. The complexity of this tracing procedure is plainly linear 
in the number of intersections of the contour with edges and spokes of both 
VorB (L), VorB (R). The following Lemma proves that the number of such intersec- 
tion points is linear in the number of objects in L and R. 

L e m m a  3.3. (a) The contour may either intersect a spoke of  VorB(L) or o f  
Vors(R) once or contain just one subsegment of  such a spoke. 

(b) The contour intersects edges of  Vora(L) or VorB(R) at most O( m ) times 
where m is the number of  objects in L and R. 

Proof. (a) Follows from the fact that each cell of Vor~(S(W)) is star-shaped• 
(b) Follows from the fact that each intersection of the contour with an edge 

of VorB(L) or of Vote(R) is a vertex of Vora(S(W)) and there are only O(m) 
such vertices. [] 

These observations yield the following main theorem. 

Theorem 3.1. The B.Voronoi diagram for a set S o f  N polygonal convex obstacles 
consisting altogether o f  n sides can be computed in time O(n log N). 



28 D. Leven and M. Shafir 

Proof. The algorithm consists of O(log N)  states. At each stage we compute 
B-Voronoi diagrams only for windows which contain at least one point of P and 
hence there are only O(N) such "active" windows at each stage. The number 
of objects in each window W (recall that these objects are either Uw, Dw, or 
intersections of  objects in S with W) is at most two plus the number of points 
of P within W. Summing over all windows for which B-Voronoi diagrams are 
being computed in the current stage, we see that the total number of objects 
appearing in those windows is at most the number of points in P plus twice the 
number of active windows. Since there are only O(N) such active windows we 
conclude that the number of "active" objects at each stage of the algorithm is 
O(N). Therefore the total number of wall segments and comers in the "active" 
windows at each stage is O(N+ n) and hence from Lemma 3.3 and the argument 
preceding it, it follows that the computation clone at each stage is also O (N + n). 

[] 

Note. We have assumed that the object B is of some simple form so that we 
can locate the intersections of  the contour with the boundary of each subcell in 
constant time. If, however, B is a polygonal object with k sides then ~¢e can 
divide each cell into a more redefined set of  subcells in such a way that the 
B-Voronoi edge on the boundary of each subcell is a straight line segment. The 
number of subcells will then be O(kN+ n) and the algorithm will work in 
time O((kN+ n)log N) (see property (6) of Section 2). 

4. Translational-Motion Planning Using B-Voronoi Diagrams 

In this final section we show how the translational-motion planning problem 
described in Section 1 can be solved using B-Voronoi diagrams. Let S =  
{sl, . . . ,  SN} be the set of convex obstacles amidst which a given convex body B 
is allowed to translate, and let Vora(S) be the B-Voronoi diagram of S. In this 
section we will impose the additional requirement that the space V bounded by 
the objects in S is a bounded set. This is no real loss of generality because, given 
S, it is easy to see that there exists a large enough square R (which can be 
efficiently computed from S) such that a free motion between two positions 
p, q e V ca,R of B exists within V if and only if it exists with V ca R. Let us define, 
for each point p in which (the reference point O on) B can be placed, a set r(p) 
of points on VerB(S) as follows. Suppose p e V lies in the interior of some B-cell 
Ca(s~). Let x be the B-closest point to p on st. Then define r(p) to be the 
intersection of  the ray from x which passes through p with the boundary of the 
B-ceU CB(s~). If p e VerB(S) then we put r(p)= {p}. By the boundedness of  V 
and by property (2) of Section 2, r(p) is always nonempty, and is either a single 
point or a straight line segment (see Fig. 4.1(a)). Let Vor~(S) be a subdiagram 
of VerB(S) which is composed of all points of  VerB(S) whose B-closeness to S 
is greater than one. We can easily compute Vor~($) from VerB(S) in linear time 
by considering each subcell of VerB(S) separately. We have the following theorem. 
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Theorem 4.1. Let p, q be two positions of  B with the same fixed orientation. Then 
there exists a continuous obstacle-avoiding purely translational motion of B from p 
to q if and only if r( p ) and r( q ) belong to the same connected component of V or'~( S ). 

Proof. Suppose first that r(p) and r(q) lie in the same connected component 
of Vor~(S). Then the required motion of  B from p to q is obtained by first 
moving (the reference point O on) B along the straight segment from p to a 
point in r(p), then to a point in r(q) along a path in Vor~(S) which connects 
these two sets, and finally along the straight segment from r(q) back to q. (Note 
that the initial and final portions of  that motion are collision free because the 
B-distance to S keeps increasing as we move from p (resp. q) along the straight 
segment to r(p) (resp. r(q)).) Conversely, let v(t), 0 <- t-< 1, be a continuous path 
in V that O traces as B is translated from p = 1,(0) to q = ~,(1) without colliding 
with any obstacle. It is clear that ds(~,(t), S ) >  1 for every t since otherwise B 
would intersect an obstacle during that motion. By definition of the B-Voronoi 
diagram we have for each t, de( r (v( t ) ) ,  S)>-de(~'(t), S). Thus the union K of  
all the sets r (v( t ) ) ,  0 -  < t <- 1, is contained in Vor~(S). We claim that K is locally 
connected at a sufficiently small neighborhood of  each r(v(t)) for v(t)~'VorB(S). 
We can also assume without loss of  generality that v( t )E VerB(S) only finitely 
many times, and we will show how to complete K for each such t to make it 
fully connected while still being contained in Vor~(S). 

To show the above claim it suffices to show that if p , -*p,  with p~'VorB(S),  
then there exists a sequence w, E r (p , )  which converges to some point in r (p)  
(Fig. 4.1(a)). Let p.-->p and for each n_> 1 let w.E r(p.) be an arbitrary point 
such that the sequence w. converges to some point w. By passing to subsequences 
if necessary, we may assume that there exist two objects sl,  s2 in S such that for 
each n - l ,  p,p. EC~(sl), dB(w.,sO=de(w.,s2)<-dB(w.,s) for s#s l , s2 ,  the 
straight segments x.p.w, are all contained in Ce(sl), where xn is the point on st 
which is B-closest to p.  (hence also to wn; see property (2) of  Section 2), and 
x. converge to some x E st. By continuity these properties will also hold for x, 
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p, and w. But then x must be the B-closest point to p and to w on sl, w must 
belong to VerB(S), and the intersection of the ray from x through p with the 
boundary of CB(sl) must contain w. By definition we r(p) and the above claim 
is thus established. I fp  ~ VerB(S) (Fig. 4.1(b)), then the above arguments remain 
the same, except that w may not belong to r(p). However, since both p and w 
belong to C~(sl) and p lies on the segment from x to w, it follows from property 
(2) of Section 2 that the segment pw is contained in VerB(S) (actually in Vor~(S) 
as is easily checked). Hence if we add to K a finite number of such straight 
segments for points at which v(t) intersects Vors(S), we obtain a connected 
subset of Vor~(S) containing both r(p) and r(q). This completes the proof of 
the theorem. [] 

Remarks. (1) Note that Vor~(S) may have vertices with only one incident edge; 
these are points p whose B-distance to S is exactly 1. In the terminology of [5], 
these points are precisely the points of local nonconvexity on the boundary of 
K = [_J~N= 1 (s~- B). Hence the B-Voronoi diagram provides us with an alternative 
(and more efficient) method of calculating these locally nonconvex corners of 
K, and thus leads to a more efficient calculation of K itself (see [5] and [4] for 
more detail). 

(2) Another useful property of VerB(S) is that it can be used for planning 
translational collision-free motion of any scalar multiple AB of B. For each given 
A we only need to perform a linear time preprocessing of Vors(S) to produce a 
truncated subdiagram similar to Vor~(S) and then plan each required motion 
by an appropriate (linear-time) graph searching through that subdiagram (see 
[ 10] for a similar remark concerning motion planning for circles of arbitrary size). 
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