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Abstract. We prove the following quantitative form of a classical theorem of 
Steintiz: Let m be sufficiently large. If the convex hull of a subset S of Euclidean 
d-space contains a unit ball centered on the origin, then there is a subset of S with 
at most m points whose convex hull contains a solid ball also centered on the origin 
and having residual radius 

1 - 3d(2dZ)  . 

The case m = 2d was first considered by Bfir/my et al. [1]. We also show an upper 
bound on the achievable radius: the residual radius must be less than 

1 17 

These results have applications in the problem of computing the so-called closure 
grasps by an m-fingered robot hand. The above quantitative form of Steinitz's theorem 
gives a notion of efficiency for closure grasps. The theorem also gives rise to some 
new problems in computational geometry. We present some efficient algorithms for 
these problems, especially in the two-dimensional case. 
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1. Introduction 

Carath6odory's theorem [2] states that given a subset S of Euclidean d-space E d, 
any point inside its convex hull is also inside the convex hull of some subset of S 
with at most d + 1 points. Steinitz's theorem [13]-[15] states that given a subset 
S c E d, any point in the interior of its convex hull is also in the interior of the 
convex hull of some subset of S with at most 2d points. Bfir~ny et al. [1] showed 
that the following quantitative version of Steinitz's theorem holds. 

Theorem 1.1 (Quantitative Steinitz's Theorem). For any positive d there is a 
constant r = r(d) > d-2a such that, given any set S ~_ ~_a of points in d-space whose 
convex hull contains the unit ball centered at the origin o, there is a subset X ~_ S 
with at most 2d points whose convex hull contains a ball centered at o with radius r(d). 

In fact, Bfirhny et al. [1] note that r(d) > c(2ed)-Ld/ZJd -2 for some constant c. 
In this paper we generalize this quantitative Steinitz's theorem, and study various 
algorithmic questions related to it. 

We introduce the following terminology: For any set S _~ E a, let the residual 
ball of S refer to the !argest (closed) ball B(S) centered at the origin o such that 
the interior of B(S) is either fully outside or fully contained inside the convex hull 
of S. The residual radius of S, denoted r(S), is the signed radius of this residual 
ball, where the sign is zero if B(S) is a point, otherwise the sign is positive or 
negative depending respectively on whether B(S) lies inside or outside the convex 
hull. Let r~(m, S) (or r(m, S) if d is clear from the context) denote the largest residual 
radius of a subset X of S with at most m points. Let rd(m) denote the minimum 
value of rd(m, S), as S ranges over all subsets S ___ ~d with r(S) _> 1. Hence, for 
m > 2d, the result of Bfir~tny et al. shows that d-2a < ra(m ) < 1. Here we derive 
tighter upper and lower bounds for ra(m). Note that the notation r(d) in the 
quantitative Steinitz's theorem above is simply the case of ra(2d). 

Application in Robotics. Our interest in these theorems comes from the study of 
robot hand grasps. We are interested in hands with m frictionless (point-)fingers. 
A grasp in this model consists of m points on the boundary of the body that we 
want to grasp. To grasp the body, we must then specify forces to be applied at 
these m (grasp) points. A desirable notion of grasping is that of a closure grasp 
(see, for example, [9]-I11]). Intuitively, a closure grasp has the ability to respond 
to any external force or torque by applying appropriate forces at the grasp points. 
The quantitative Steinitz theorem gives us a measure of the efficiency of such 
closure grasps. Roughly speaking, the efficiency of the grasp is given by the ratio 
of largest external force-torque that can be resisted by applying at most unit forces 
at each of the grasp points; so a ratio of one corresponds to the most efficient 
grasp. The quantity rd(m) in the quantitative Steinitz's theorems gives this efficiency 
directly. 

Computational Problems. These theorems naturally lead to new problems in 
computational geometry. For instance, given a finite set S of points, and a number 
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m, we want to find an m-subset of S that achieves the residual radius r(m, S). We 
will present algorithms for such problems. Here our strongest results are in two 
dimensions. 

The rest of this paper is organized as follows. In Section 2 we explain more 
precisely the connection between quantitative Steinitz's theorem and grasping. 
Sections 3 and 4 prove the generalized Steinitz's theorems. Sections 5 and 6 present 
algorithms for computational versions of the generalized Steinitz's theorems. We 
conclude in Section 7. 

2. Application to Muitifingered Positive Grasps 

We refer to [12] for a general survey of the field and to [8]-[11] for the theory 
of robot grasping as used in this work. Consider an idealized dextrous hand, 
consisting of m > 2 independently movable force-sensing fingers. These fingers can 
only contact objects at their tips, and can thus be represented as points in 
three-dimensional space. The goal is to grasp a (closed, bounded, and connected) 
rigid object K. A finger can only apply a force on the object K at the point of 
contact with K. We assume that the points of contact are nonsinoular (i.e., the 
surface Y~ of K has a unique surface normal at each such point) and frictionless, 
and hence the force can only be applied along the surface-normal at the point of 
contact, directed inward into the object K. An interesting task for such a hand is 
that of grasp selection for a given object K; by a grasp we mean a set of m points 
on the boundary of K. We also describe such grasps in our model as positive 
because the fingers can only push into the body, but not pull at the body--as  
might happen if we postulate "sticky" fingers. 

The object K to be grasped is assumed to have a piecewise smooth boundary 
E. Assume that the grasp points are to be chosen from a given subset S of the 
nonsingular points of Z. For  example, S may consist of all nonsingular points of 
E (by definition, the surface normals at nonsingular points are uniquely defined). 
Or again, S may be a set of finitely many preselected points. For  any point r in 
S, let n(r) denote the unit surface normal (directed inward) at r. Define the function 
F mapping S into the six-dimensional force/torque space as follows: 

F:S--~ R 6 

r ~-~ [n(r), r x n(r)], 

where x denotes the vector cross-product of three-dimensional vectors. Essenti- 
ally, F maps r to the point F(r) in the force/torque space that represents the effects 
of applying a unit force at r in the direction n(r). 

If X ~_ S is a set of m-points, we call X an m-finger closure #rasp if the interior 
of the convex hull ofF(X) = {F(r): r ~ X }  contains the origin o. It is shown in [11] 
that, for some m < 12, an m-finger closure grasp of K exists if and only if 

o ~ interior(convexhull(F(S))). 
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Moreover, if Z is not a surface of revolution, the above condition is always satisfied 
with S equal to the set of nonsingular points of E. For  polyhedral objects, Mishra 
et al. [11] also gave an algorithm to find a 12-finger closure grasp in linear time. 
However, in the absence of any measure of "goodness" for closures grasps, the 
synthesized grasp may not be very robust. The motivation for our work is to 
quantify the goodness of closure grasps and to synthesize provably good closure 
grasps. 

One criterion for goodness is the "efficiency" of a grasp, which measures the 
amount  of external force and torque that can be resisted by applying at most a 
unit of force at each grasp point. This is precisely the value r6(m, U(S)). To see this, 
note that if we choose m points in F(S) with residual radius r, then any force/torque 
vector v whose Euclidean norm is at most r can be written as a convex combination 
of the m chosen points. So if v is any external force/torque that is applied to the 
body K, and v lies in the residual ball of radius r, we can counter this external 
force/torque by applying suitable forces (of magnitude at most 1) at the grasp 
points such that these forces sum to - v ;  hence, we maintain the body in 
equilibrium. 

These concepts can be specialized to the case where K is a planar body in which 
case the force/torque space is three-dimensional. The number of fingers (12) for 
closure grasps can be reduced to six in this case [11]. 

3. Quantitative Steinitz's Theorem in Two Dimensions 

Let S ~ 6 2 be a subset of the Euclidean plane and let P be its convex hull. Without 
loss of generality, we may assume that P has at least four vertices. Also, it is 
assumed that a unit disk B~ centered about the origin o is contained inside P. In 
general, let B e denote the closed disk of radius e > 0 centered at the origin. Our 
goal is to develop techniques, given S and m, for choosing a set X of at most m 
points from S so that the residual radius of X is maximized. 

I .emma 3.1. Given S as above, for  any integer k >_ 3, we can f ind a subset X o f  at 
most 2k - 1 points orS such that the convex hull o f  X contains B~ with 6 = cos(n/k). 

Proof. Take k equally spaced rays from o, making sure that one of them passes 
through a vertex of P (the convex hull of S). Let these rays intersect the unit circle 
centered at o at the points v 1 . . . . .  v k. For  each ray, if it intersects a vertex of P, 
then we choose that vertex and if it intersects an edge, we choose the two vertices 
of that edge. Thus we choose at most 2k - 1 points of S, forming the subset X ~_ S. 
Clearly, the convex hull of X contains the points vl . . . . .  v k and, hence, it contains 
the B~ with 6 = cos(re/k). [ ]  

We now show that this hound is asymptotically tight. It is important to note 
that this bound is achieved by choosing vertices of the convex hull of S. 
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T h e o r e m  3.2. For all m > 4, we have 

37~ 2 27t 2 

2(m + 1) 2 < 1 - r2(m ) < m2 . 

Proof. The upper bound on 1 - - r 2 ( m  ) comes from the previous lemma which 
shows that r2(m) > cos(2zc/m), and from the fact that cos x > 1 - x2/2. 

For  the lower bound, we let S be the vertices of a regular (m + 1)-gon that just 
contains the unit disc B 1. Then the omission of any point of S gives a residual 
disk of radius 

cos(2n/(m + 1)) 

cos(n/(m + 1)) " 

Thus r2(m ) is upper bounded by this radius, 

r2(m) < 
1 - -  2 n Z / ( m  + 1) 2 + 27t4/3(m + 1) 4. 

1 -- rr2/2(m + 1) 2 

37r 2 47t 4 
= 1 - -  + 

2(m + 1) 2 -- 7~ 2 3(m + 1)2(2(m + 1) 2 -- n2) 

37~ 2 
< 1  

2(m + 1) 2. 
[ ]  

The special case where m = 4 is of particular interest. We now give some special 
arguments for this. Starting with S as above, the preceding lemma shows how to 
choose at most five points of S whose convex hull contains the disk Boosts/3) = B1/2. 
It is not hard to argue that one of these five points has the property that its two 
neighboring points span an angle of at most 144 ° about  the origin o and hence if 
we delete this point, the remaining four points have a residual radius of at least 
(cos 72°)/2 > 0.15. We can do better with the following argument. 

T h e o r e m  3 .3 .  

0.30 < sin 18 ° < r2(4 ) _< - -  
cos72 ° 

cos 36 ° 
< 0.38. 

Proof. This upper bound is achieved by the regular pentagon (which is the special 
case m = 4 of the proof  in the previous theorem showing that, for S, given by the 
vertices of a regular (m + 1)-gon, r(m, S) = cos(2n/(m + 1))/cos(rr/(m + 1))). 

As before, let P denote the convex hull of S. For  the lower bound, fix 13 to be 
any angle between 0 ° and 60 °. For  any vertex Vo of P, we define its forbidden zone 
which consists of two disjoint cones, each spanning an angle of 213 at the origin 
o, and such that  the two bisectors of these cones together with the ray OVo are 
equally spaced at 120 ° apart. See Fig. 1. 



300 D. Kirkpatrick, B. Mishra, and Chee-Keng Yap 

vo 

Fig. L Forbidden zone of vo is shaded. 

A vertex v 0 of P is bad if there is another  vertex v 1 of P that lies in its forbidden 
zone. First, if Vo is bad, then we can choose three other vertices vl, v 2, v 3 as follows. 
Let va be a vertex of P that lies in the forbidden zone of v o. Let R be the ray 
originating from 0 and bisecting the larger of the two angles defined by the two 
rays from 0 through Vo and Va, respectively. Let v2, v3 be the endpoints of the 
edge of P that R intersects. It is not hard to see that the quadrilateral voVlvzV3 
contains a circle of radius at least 

sin(30 ° - - f l ) .  

Now suppose that P has no bad vertices. Assume that v 0 is vertically above 0 
and the two forbidden cones C1, C2 of Vo are bounded by the rays 0/~1, 0/~2 and 
0/~ 3, 0/~ 4, respectively, where the R{s are points on the unit circle. Since Vo is not 
bad, each ray in C1 intersects a common edge of P, say, vtv 2 and, similarly, each 
ray in C2 intersects a common edge of P, say, v 3 v 4. See Fig. 2. 

First suppose that the angle /_(VxOV,) (we always measure angles clockwise 
from Vl to v 4 in this notation) is at most (120 ° + fl). Then it is easy to see that the 
residual radius of v iv 2 v 3 v 4 is at least sin(30 ° - fl/2). 

Hence assume that the angle L(vlov,) > (120 ° + fl). Without loss of generality, 
assume that L(Rlovt) < L(v4oR,). Then we have 

L(Rtovl) <_ (60° - 3--fffl2 ), /_(Raovl) < (180° - 3-~fl2 ). 

Thus the distance from o to the line through vt, Ra is at least sin(3fl/4). I t  is easy 
to see that the distance from o to the line through v o, vl (resp. Vo, R,)  is at least 
sin(30 ° + ill2). The distance from o to the line through R3, R ,  is at least 1. We 
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v0 

v~ 

Fig. 2. Case of no bad vertices. 

conclude that the residual radius of vovlvav 4, which is at least the residual radius 
of VoViR3R 4, is at least 

min{sin(30° - ~),  sin ~ } ,  

where 0 < fl < 60 °. We choose fl = 24 ° (i.e., 30 ° - fl/2 = 3fl/4) to maximize this 
expression. This proves our lower bound. []  

4. Quantitative Steinitz's Theorems in Higher Dimensions 

We now consider the d-dimensional case for d > 2. The techniques are slightly 
weaker than the two-dimensional case. 

4.1. Lower  Bound 

We first give a lower bound for ra(m) for sufficiently large m (in particular, for all 
m >_ 13~d(d + 3)/2). Thus, m is chosen to be large enough to guarantee that 

[(m Y'-"l 
k = L ~,-2-d~ j J 

takes integral values greater than F11x//d]. 

Lemma 4.1. For any set S ~_ Ffl whose convex hull contains the unit ball B ~ centered 
at the origin o, we can f ind a set X ~_ S o f  at most m points with residual radius 

r(X) > 1 -- 3d for  all m >_ 13dd ta+a)/2. 
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Proof. Let k be defined as a function ofd  and m, as before. It suffices to show that 

97 d 3d 
r(X) >_ 1 > 1 

48 ( k -  1) 2 (k + I) 2'  

in the given range for k. 
Henceforth, P stands for the convex hull of S. Let C be the d-dimensional cube 

whose faces are normal to the appropriate  coordinate axes, of side-lingth 2 and 
containing the unit ball B d. On each face of C we place a k x k x .-- x k (d - 1 
times) grid (so the grid points have coordinates that  are integer multiples of 
1 / ( k -  1) and two adjacent grid points are 2 / ( k -  1) apart). Note that there are 
fewer than 2dk a- 1 < m/d "grid cubes" on the union of the 2d faces of C. Through 
each grid point p, we pass a ray R from the origin. Let R intersect the unit sphere 
S d- 1 at x(R). For  each such ray R, we choose at most d vertices of P (the convex 
hull of S) as follows. If the ray passes through an /-face of P, we choose i + 1 
vertices of P whose convex span intersects that ray and is contained in that/-face. 
Thus the set X of chosen vertices has at most m points. The convex hull of X 
contains the set X' of all points of the form x(R) where R is a ray passing through 
the grid point. 

Let R be any ray originating from o and suppose it intersects some face of C 
at a point a where a lies inside a grid cube S. Consider the triangle oab where b 
is any other point on the boundary of S: 

sin L(aob) = labl" 
sin/_(oab) 

Iobl 

< . - < - .  
- k - 1  1 - 5  

Choose ~ to be 

= arcsin - -  
k - l "  

Let qo be any point at distance cos ~ from the origin. We show that qo lies in 
the convex hull of X'. Let R o be the ray from o through qo and suppose R o 
intersects the grid cube So. Let Ko be the cone bounded by the set of rays 
originating from o that makes an angle of ct with R o. Hence each ray that passes 
through a vertex of S O is contained in K o. There is a unique hyperplane H o 
containing a(Ko) c~ S d- t. Note that q0 = Ro c~ H o. Let 

To = {x(R): R passes through a vertex of So} 

and 

Tl = {R n Ho: R passes through a vertex of So}. 
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By definition, T O __q X'. Note that each point in T O lies on the side of H o not 
containing the origin. This means that the convex hull of X' contains the set T 1, 
but the convex span of the set T1 contains the point qo = Ro n H o. This proves 
r(X) _> r(X') _> cos ~: 

cos 0~ = (1 - sin 2 ~)l/Z 

> 1  

- 1  

sin 2 o~ sin* ~ 
sin 2i / ,  cx 

2 8 i=o 

sin 2~x sin E~z[" sin 2~ | 

L J 2 8 1 - sin 2 

97 sin 2 
_> 1 (since sin E a < ~ )  

192 

97d 
_> 1 - 4 8 ( k _ 1  ~') 

This proves the lower bound lemma. [] 

4.2. Upper Bound 

In this subsection we derive an upper bound for ram). For this purpose, we let S 
be all the points on the unit sphere and then bound the largest radius of a ball 
contained in the convex hull of m points on the unit sphere. The convex hull of 
any such m points forms a polytope. The proof relies on the facts that 

(1) any " long" edges of this polytope bound the radius of the contained ball and 
(2) since the polytope has only m vertices it must have some "long" edges. 

The detailed calculations provide an appropriate numerical bound. 

L e m m a  4.2. Let S ~_ F~ be the set of  all points on the surface of  the d-dimensional 
unit ball centered at the origin o. Thus, the convex hull of  S contains the unit ball 
B a centered at the origin o. Then any set X ~_ S of  at most m points has a residual 
radius 

r X) _< 1 - - -  for all m >_ 3dd 2. 

Proof. The proof proceeds in two steps: We first show that, for all m > 0 and 
for all 0 < ® < n/4, 

r(X) < max(cos 1 1 - tan2 0 ( ~ )  2/~d- 1) ) 
- ' 1 6  " 
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Then by an appropriate  choice of the parameter  ® (® = 4n/53), we obtain the 
claimed bound. 

(1) Let X be a set of m points in ! :d all lying on the surface of a unit ball and 
P = ConvexHull(X). Let P '  be the polyhedron obtained from P by triangulating 
the nonsimplicial facets of P. Let pq be an edge of the polyhedron P'. Then 

Thus, if 

L (poq) 
r(X) < cos - -  

2 

= max /__(poq) 
p q  = edge of P' 

is the maximum of all such angles, then 

If ~ > ®, then 

Ct 
r(X) <_ c o s  - .  

2 

® 
r(X) <_ c o s  - .  

2 

Henceforth, we assume that ct < ®. Let t stand for tan O; thus 0 < t < 1. 
(2) Let p e X be any point, and define its truncated cone Kp as follows: 

Kp = {x: /__(xop) < at and x ' p  < 1}. 

Now, if q is an arbitrary point on the surface of the unit ball, then the line segment 
oq belongs to Kp, for each vertex p of some (simplicial) facet of P'. As each such 
simplex facet has d vertices, the collection of truncated cones cover each point in 
the unit ball at least d times. Thus, we see that 

m-Volume(Kp) > d.Volume(unit  ball). 

Let Vd(r) stand for the volume of a d-dimensional ball of radius r: 

Vd(r) = V , ~ l ) r  ~. 

Thus, the volume of the d-dimensional unit ball is given by 

V..(1) = 2 lid- 1(sin O) sin 0 dO 

= 2Vd_l(1 ) sin d 0 dO 

= g ( ~ _  dl) ,  
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where K(d) is defined by the last equat ion.  The  volume of each Kv is given by 

t ' l  
Volume(Kp) = J o  lid-l(r tan ~) dr 

= lid-1(tan ~) f ~  t d -  l dr 

Vd_ d t a n  6) 

d 

Subst i tut ing the volumes into the preceding inequality, we get 

tan d- 1 aVd_ 1(1) 
m > dK(d)V  d_ 1(1). 

d 

Hence, 

( d ~ l  l/(d- 1) 
1 > t = tan t9 > tan ct _> = c(d, m), 

where c(d, m) is defined in the last equation.  Using the inequali ty c(d, m) 2 < t 2, we 
get 

c o s  2 ~ _< 
1 + c(d, m) z 

< 1 -- c(d, m) 2 + c(d, m) 4 _< 1 - (1 - t2)c(d, m) 2. 

Hence,  

1 - t 2 ct 
cos ct = 2 cos 2 ~ - 1 < (1 - (1 - t2)c(d, m)2) 1/2 < 1 2 c(d, m) 2 

and 

ct 1 - -  t 2 
cos 2 ~ < 1 -- - - ~  c(d, m) 2. 

Finally, we get 

O: ( 1 - -  t2 ) l / 2 1 - -  t 2 
cos ~ _< 1 -- - ~ -  c(d, m) 2 < 1 -- - - ~  c(d, m) 2. 

Hence,  

r(X) <_ 1 8 - -  " 
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(3) Note that (e.g., p. 369 of 16]) 

f~ 
/2 

K(d) = 2 sin d 0 dO 

l '(2k - 1)!! n 
= ( 2 k ) ! !  

| 2 
~(2k + 1)!! 

>_ 2(½)~-./2. 

if d = 2k = even, 

if d = 2 k +  l = o d d ,  

Here k!! stands for k(k - 2Xk - 4). . . (I  + 4Xl + 2)l (terminating in l = 1 or 2, 
depending on whether k is odd or even). Thus 

1 - -  tan2 0 ( ~ _ )  2Ire-l) 
r(X) < 1 16 

(4) The stated bound follows with the appropriate choice of the parameter 19, 
as shown below: Let m > 3ad2; then 

(~) 2/(e- 1) 1 

9 

Choose the parameter O = 4n/53, and observe that 

2n 1 
cos - -  < 1 

53 17 x 9 
< 1 -~-~ 

Since 1 - tan2(4rr/53) > 16/!7, 

1 -  1 -  tan2(4n/53)16 ( ~ ) 2 / ( d -  I) < 1 - ~-~ 1 ( ~ )  2/(d- 1) []  

Ifwe choose ® = n/5 in the preceding proof, we can show that, for all m > 0, 

r(X) _< 1 - 5-~ 

If m < d, then 

512 
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On the other hand, if m > d, we get the result since cos n/10 < 1 - 15/512 and 
1 - tan2(rc/5) > 15/32. 

Summarizing Lemmas 4.1 and 4.2, 

Theorem 4.3. For all m >_ 13ad ~a+3)/2, 

1 ( ~ 2 ) 2 / ( d - 1 )  ( ~ ) 2 / ( d - l )  
- -  - -  < l -- rd(m) < 3d 
17 

5. Computational Problems in the Plane 

5.1. Finding m Vertices o f  a Convex Hul l  

The quantitative Steinitz's theorem poses several interesting and new problems in 
computational  geometry. We begin with the simplest version of such problems: 
given a convex n-gon P whose interior contains the origin, find four vertices of P 
whose residual radius is maximum. In this case we are able to give an elegant and 
simple linear-time method. Without loss of generality, we assume that n > 5 and 
the interior angles at each vertex of P is less than n. 

Theorem 5.1. There is a linear-time aloorithm for  f indin 9 a set Q o f  four  vertices 
o f  a convex n-oon, P, such that Q has the maximum residual radius, r(Q) = r2(4, P). 

We use the following general notations. Assume that the ui's (i = 1 . . . . .  m; n > 3) 
are points distinct from the origin. Let 6-~ denote the ray from origin o through 
u~. The notation 

U 1 > U 2 > . . .  > U m 

says that the rays ou~ s are distinct and the ray ou~ is encountered before out+ t 
when sweeping a ray originating from o counterclockwise from out~ to o~m. We 
extend this notation to the case where the u~'s are not necessarily distinct, but we 
still require that the rays ou t and oum be distinct. For  instance, we may write 

u I _>u 2 > _ u  3 o r  u I > u 2 ~ u  3.  

For  any point u on the boundary of the polygon P, let the successor succ(u) of 
u denote the vertex immediately following u when we traverse the boundary of P 
clockwise. If u is a vertex of P, we insist that succ(u) is the next vertex of P. 

Our  algorithm is simple to describe--i ts  correctness is slightly harder to see. 
Suppose that we have four vertices u 0, Ux, u2, u3 of P such that there are at least 
three distinct vertices among them and 

Uo ~ ul ~-- uz ~-- us. 
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(The " > "  notation here makes sense since at most one of the inequalities is 
nonstrict.) Let Q = UoUlU2U 3 denote the polygon formed by these vertices--so Q 
is a triangle or a quadrilateral. Our goal is to choose one of these four points 
repeatedly, say u, for some i = 0 . . . . .  3, to "advance," i.e., set ul to succ(ui), in the 
hope of attaining a larger residual radius. The criteria for choosing the vertex to 
advance depends on the following two cases. Remark: Here, all arithmetic on 
subscripts are modulo 4. 

Q is a triangle. Suppose, for some i = 0 . . . . .  3, u i and u~ ÷ ~ are coincident, that 
is u~ = u i÷r  Then we advance ui (the "forward vertex"). 

Q is a quadrilateral. An edge u~_ ~u i of the quadrilateral is limitin9 if the residual 
circle of Q touches that edge. We then advance u~ (the "backward vertex") 
where ui - lu i  is any such limiting edge. 

We make some observations. 

1. In case Q is a triangle, advancing u i can in turn make u~ and u~_ 1 coincident, 
causing u~_ r to be advanced in the next iteration. However, there cannot be 
more than three consecutive iterations in which Q is a triangle. Note that a 
triangle Q can have a nonpositive residual radius. 

2. In case Q is a quadrilateral and the residual radius r(Q) is nonpositive, the 
limiting edge and hence u~ is uniquely determined. After advancing u~, 
provided ui_lu  ~ remains limiting, the radius r(Q) will increase. This same 
vertex is repeatedly chosen, at least until the first time t the edge ui_ lu~ is 
no longer limiting. Observe that there are two possibilities at time t: (a) r(Q) 
becomes positive and (b) r(Q) remains nonpositive. In the latter case, the 
edge u~u~+ ~ becomes limiting and we next start to advance u~÷ 1. 

To complete the description of this algorithm we must initialize the four points 
and give the termination condition. 

The Algorithm. Initially, we pick any four consecutive vertices of the polygon to 
serve as Q = UoUlU2U 3. We record the initial position of u o. Then we iterate the 
basic step of picking and advancing a u~, updating if necessary the largest value 
of r(Q) encountered so far. The algorithm halts when Uo returns to its initial 
position, and outputs the largest value of r(Q) recorded. 

It is clear that the algorithm makes at most 4n iterations when it halts. 
For  the next lemma we need some notations. Suppose a o, a 1, a 2, a 3 are the 

vertices of P that achieve the maximum residual radius r* = r2(4, P). Without toss 
of generality, we may assume that all four vertices are distinct and 

ao > al > a 2 > a s. 

This partitions the vertices of the convex polygon into four nonempty sections, 
named Wo, W1, W2, 1413, where 

I410 = [ao,  ax), W1 = [a l ,  a2), I4/2 = [a2,  a3), W3 = [aa,  ao). 
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Fig. 3. Q* and four sections of the polygon P. 

See Fig. 3. The nota t ion [ao, a~) refers to the consecutive subsequence of vertices 
from a o counterclockwise to (but not  including) a~. Also, let Q* = aoala2a 3. 

The expression "a t  time t, uj is advanced from a vertex a "  means that  "a t  time 
t, u~ is at vertex a and at time t + 1 it is at succ(a)." 

Lemma 5.2. Suppose, at time to, some uj (j = 0 . . . . .  3) is advanced from ai+l o f  
Q*. (Hence at instant t o + 1, uj is in section W~.) I f  r* is not yet attained by the 
algorithm by time to, then u j_ 1 is not in W~ at time t o. 

Proof  Without  loss of generality, assume that i = 0 = j in the statement of  the 
lemma. That  is, at time to, Uo is advanced from vertex al. By way of  contradiction,  
suppose u 3 is in Wo at time to. 

There are two cases. 

Case 1. Suppose Q is a triangle at time to. Let tt < to be the last instant when Q 
was a quadrilateral. By a previous observation,  to - tl < 3. Note  that  at time tl, 
for some I = 0 . . . . .  3, u~ + t is advanced so that  u~ and u~ ÷ ~ became coincident. Thus  
u~ and u~+~ are adjacent at time tt. I f  r(Q) < 0 at time t~, then the origin o is on 
the side of  the line u~ut+ ~ opposite to the other vertices of P, which is impossible. 
This shows that  r (Q)> 0. Since Q is a quadrilateral,  we only advance utut+ 1 
because u~us+ 1 is limiting, but  u~ut+ ~ determines a radius greater than r*, which 
leads to a contradiction.  

Case 2. Suppose Q is a quadrilateral  at time t o. Then uau o is limiting at time t o. 
If  r(Q) were positive, we deduce that  r(Q) is at least r*, which is a contradiction.  
If  r(Q) were nonpositive, then in order  that  u3u o be limiting, the origin must  lie 
to the left of  the line directed from Uo to u 3. This forces the origin to lie outside 
Q.,  again leading to a contradiction.  [ ]  

We are now ready to show: 

Lemma 5.3. The algorithm is correct. 

Proof  Suppose the algori thm halts when u o returns to its original posit ion b o. 
Wi thout  loss of  generality, assume that  bo lies in the section W 3 = [a3, ao). Let to 
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be the instant when u 0 is advanced from a 0 (into 14:3). If r(Q) has already achieved 
the maximum value of r* before time to, then we are done. Otherwise we obtain 
a contradiction as follows. By the previous lemma, u3 does not lie in I4:3 at time to. 

Claim. u 2 does not lie in 14:2 u W 3 at time to: for if u2 lies in I4:3, then u3 would 
be forced to be in W3 as well; this is a contradiction. So it remains to show u2 
does not lie in W 2. If it does, then both u2 and u 3 lie in W2. Let tl < to be the last 
time that u 3 does not lie in W2--such an instant is well-defined. So u 3 was advanced 
from a 3 at time t 1. Now an application of the previous lemma again shows that 
r(Q) would have attained the maximum value r* before time q,  which is a 
contradiction. This proves the claim. 

We can repeat the argument of this claim to show that ut does not tie in 
I4/1 w W 2 w W 3 at time t o. Hence ul lies in Wo. Thus, both Uo and Ul lies in Wo. 
Again, let t 2 < t o be the last time that u~ does not lie in Wo. Then an application 
of the above lemma to Ul at time t 2 yields the contradiction. []  

We easily extend the above method to finding the best m > 4 vertices of the 
polygon P. Now we need O(log m) per iteration (using a priority queue) to find 
the limiting edge of the current m-gon, and the number of iterations is at most 
mn. This yields the following theorem. 

Theorem 5.4. For any m > 4 and n > m, there is an O(nm log m)-time algorithm 
which on any input convex n-gon P computes the value of r2(m, P). 

5.2. Finding m Points in the General Case 

The above section considers algorithms to compute r2(m, S) for the special cases, 
where S is the set of vertices of a convex polygon. In general, S is an arbitrary set 
of points in the plane, and suppose P is the subset of S consisting of all the vertices 
of the convex hull of S. We note that r2(m, S) is in general larger than r2(m, P). As 
an example, let P be the vertices of a regular pentagon and let S contain, in addition 
to P, for each edge of the pentagon, a point in the interior of P but lying very 
close to the mid-point of that edge. Then r2(4, S) > r2(4, P). 

On the other hand, r2(m, P) is a reasonably good lower bound to r2(m, S). This 
follows from our  general constructions in Section 3 where the asymptotically tight 
lower bound for r2(m, S) is obtained by choosing points on the convex hull of S. 
Nevertheless, we may want to find the exact value of r2(m, S). This subsection 
gives such an algorithm. Again, we begin with the case m = 4. 

Theorem 5.5. There is an O(n 2 log n) algorithm to find a set X of four points in a 
set S of  n points such that the residual radius of X is maximized. 

Let S be a set of points with positive residual radius. Let the points of S be 
assumed to be arranged by their (counterclockwise) angular order as in the 
previous subsection. We want to find four points in S with the largest residual 
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A quadrilateral wuvx containing the circle C(u, v). 

radius. For  any pair u, v of distinct points, let C(u, v) denote the circle centered 
at the origin which has the line uv as tangent, and let rad(u, v) be the radius of 
C(u, v). If, for some two points w and x of S (w > u > v and u > v > x), C(u, v) is 
contained in the quadrilateral wuvx, then the residual radius of wuvx is equal to 
rad(u, v). (See Fig. 4.) (Note that it is possible that w -- x.) In the remaining portion 
of this subsection we show how, for a given pair u and v, such a choice of w and 
x (if they exist) can be made in logarithmic time, thus providing an O(n 2 log n)-time 
algorithm for the problem. 

First we need some notations. Let C be a circle and let u and v be points of S 
outside C. For  a given point u, let fi denote the point diametrically opposite to u 
(with respect to the origin o). We say u and v are mutually C-visible if the line 
segment connecting u and v does not intersect the interior of C. Also, we say v is 
covered by u (relative to C) if v is mutually C-visible with u and belongs to the 
smallest cone with its apex at u and containing C. (See Fig. 5.) We say a point is 
relevant for C if it is outside C and not covered by any other points of S. We omit 
references to the circle C, if it is apparent from the context. 

We have the following observations. 
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312 D. Kirkpatrick, B. Mishra, and Chee-Keng Yap 

I~mma 5.6. 

1. Let wuvx be a convex quadrilateral containing C(u, v). Consider two points 
w' and x' such that w' covers w and x' covers x. Then one of  the quadrilaterals, 
w'uvx' or x'uvw', also contains C(u, v). 

2. Let  wuvx be a convex quadrilateral containing C(u, v). Consider two relevant 
points w' and x' satisfying the following conditions: fi >_ w' >_ w >_ u; v >_ 
x >__ x' >_ ~; w' and u are mutually C(u, v)-visible and x' and v are mutually 
C(u, v)-visible. Then either w'uvx' or x'uvw' is a convex quadrilateral and 
contains C(u, v). 

3. Let  C, C' be two concentric circles with C' being the larger of  the two. I f  u is 
not relevant to C, then u is also not relevant to C'. 

Let u be a point outside C and W ~ S be the set of points w~, w 2 . . . .  relevant 
to C such that 

U ~ WI  ~ W2 ~ "'" ~_~ ~l. 

Let w~ be a point in W with the largest index such that, 

for all i = 1, 2 . . . . .  j, u and wi are mutually C-visible. 

Then wj is the "rightmost" element in the set W, mutually visible with u. Suppose 
there is another element w k ~ W (k > j) that is mutually visible with u. Then 
k > j  + 2 and wj+ 1 is not mutually visible with u; in this case w~+l would be 
covered by w k thus contradicting the hypothesis that all points of W are relevent. 
We say wj is the riohtmost C-partner of u (denoted RP(u)). Similarly, we may define 
the leftmost C-partner of u (LP(u)). We conclude that RP(u) and LP(v) can be 
computed (whenever they exist) in logarithmic time, if we have a balanced search 
structure that contains only the points relevant to C(u, v) sorted by their angular 
order. 

Now, using the preceding lemma, we observe that if, for some w and x, the 
quadrilateral wuvx contains the circle C(u, v), then so does one of the quadrilaterals 
RP(u)uvLP(v) and LP(v)uvRP(u). Thus it suffices to check that 

(1) C(u, v) is tangent to uv at some point in the segment uv and 
(2) RP(u) and LP(v) are mutually C(u, v)-visible. 

The basic idea is to put all vertices u, and also all unordered pairs {u, v} of 
points in S, into a single priority queue. We use the Euclidean distance between 
u and the origin o as priority of u, and the value of rad(u, v) as priority of (u, v}. 
We may omit all {u, v}'s with rad(u, v) = 0 and begin the processing of the queue 
by successively extracting items with the smallest priority. Note that we could 
assume that the first item extracted is a pair {u, v}. 

For  the first pair {u, v} extracted from the queue, we need to initialize a data 
structure to store the points of S relevant to C(u, v) according to their angular 
order. We may break the circular ordering into a linear ordering at some arbitrary 
breakpoint. We store these points as a linear ordering in the leaves of a balanced 
binary tree T. 
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In the general step, suppose we extract from the priority queue either a pair 
{u, v} or vertex u. There are two cases. 

Case 1. A pair {u, v} is extracted and C(u, v) touches uv at some point z in the 
segment uv. Then assuming u >_ z >_ v, we use the search tree T to determine the 
rightmost C(u, v)-partner w of u and the leftmost C(u, v)-partner x of v and check 
ifw and x are mutually C(u, v)-visible. If so, we have found a larger residual radius. 

Case 2. (a) A pair {u, v} is extracted and C(u, v) touches uv at some point outside 
the segment uv. Assume that of the two points u, v, the point u is the closer to o. 
Then we note that for subsequent (larger radii) circles C, the vertex v covers u 
relative to C. Hence we can delete the element u from the data structure T. 
(b) Similarly if u is extracted, we can delete u from T 

Clearly, each operation takes O(log n) time. Since there are O(n 2) elements in 
the queue, the overall complexity is O(n 2 log n). Note that at any instant when a 
pair {u, v} is being considered, only relevant points of S are left in T. More precisely, 
any point in the interior of C(u, v) or covered by some other point would already 
have been deleted. (A point in the interior of C(u, v) is at a smaller distance from 
o than rad(u, v), and if v' covers u', then rad(u', v') _< rad(u, v); u'v' is touched by 
C(u', v') outside the segment u'v' and u' is closer to 0 than v'.) Thus it is clear that 
the algorithm is correct. 

Again the method generalizes to finding any number m of points that has the 
best residual radius. This yields the following theorem. 

Theorem 5.7. For any m >_ 4 and n >_ m, there is an O(n2m log n)-time algorithm 
which, on any input set S of n points in the plane, computes the value of rE(m, S). 

We note that a faster algorithm is possible if we are willing to settle for a good 
(to within a factor > (1 - e), 0 < e < 1) approximation of r2(m, S), for all m > 4. 
Specifically, we can determine if r2(m, S) is < or _> a fixed value r in time 
O(nm log n). (In O(n log n) time we can determine the set of points that are relevant 
for a circle of radius r. For  each relevant point u, in O(m log n) time, we can 
determine if there exist < ( m -  1) other additional points such that the set 
containing u together with these points has a residual radius of r or larger.) To 
begin, we choose the best set of four vertices on the convex hull of S, and call its 
residual radius r o. Using an O(n log n)-time convex-hull algorithm, and the 
algorithm of the previous subsection, we guarantee that this step takes no more 
than O(n log n) time. Thus 

ro 
0.30 < - -  _< 1. 

r 2(m, S) 

Using k = O(log(1/e)) comparisons, we can perform a binary search to improve 
the approximation to 

/'k 1 - - e < - - < l .  
- -  r 2 ( m ,  S )  - -  
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Thus, the resulting algorithm computes a good approximation (with a relative 
error of e) in time O(nm log n log(l/e)). 

6. Computational Problems in Higher Dimensions 

In this section we study the following algorithmic problem: 

Given a set S of n points in d-dimensional Euclidean space, whose residual 
radius r(S) is positive, find a subset X _ S of at most m points such that the 
following inequality holds: 

r(X)>r(S) - -  rd(m)= 1 -  3 d ( ~ - )  2lid-l)" 

Here m and n are assumed to be sufficiently large, i.e., n > m > 13dd td+3)/2. 

We do not discuss the more general "optimization" problem of finding a subset 
of m points that maximizes the preceding ratio, for two reasons: firstly, for large 
m, the approximate solution provides a reasonably good answer; secondly, any 
hope for finding such a set in time polynomial in both d and n seems rather dim. 
While an investigation of this optimization problem is called for, we simply leave 
it as an open problem. 

Returning to the stated problem, we see that this problem can be solved by 
essentially following the ideas outlined in Lemma 4.1 : We first choose a set X' of 
at most mid points on the surface of the unit ball such that the residual radius of 
X' is no smaller than F~(m). We can then determine a set X _ S of at most m points 
such that, for some 2mi n > r(S), the convex hull of X contains the set of points 

"~'mln x '  = {'~minq: q~X' ) .  

Thus 

r(X) >_ r(2minX' ) >__. 2mi,~(m) > r(S)fd(m). 

The points of X' are chosen as follows; Let C be the d-dimensional cube 
comprising the points (Xl, . . . ,  xa) with Ix~l -< 1 for i = 1 . . . . .  d. On each face of C, 
we place a k x k × "-" x k ((d - 1) times) grid, with k taking the value 

Et m 

J 

Let 

X' = {op n 5 d- 1: p is a grid point). 
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Thus I X'l ~ 2dk d - l <  mid. For each q~ X', we determine an appropriate set 
S~ ~_ S of at most d points such that 

oq c~ 8(ConvexHull(S)) ~ ConvexHull(Sq); 

thus, for some 2q, 

2qq ~ ConvexHuU(Sq). 

Let X be 

X =  [.9 Sq, 
qEX' 

with "~min taking the value minq~x,/],q. Evidently, 2mi . >__ r(S). 
Note that I XI < m and 

~,mi.X' __ ConvexHull(X). 

This demonstrates the correctness of the algorithm, since we know that the residual 
radius of X' is bounded from below by fn(m) (see the proof of Lemma 4.1). 

In order to complete the algorithm, we show how to compute the set Sq (for 
any point q) efficiently using the following linear-programming formulation. Let 
S = {Pl, P2, -.., P,}. Without loss of generality, we assume that the points of S are 
in general position, i.e., at most d points o f  S may lie on any ( d -  1).dimensional 
hyperplane. If not, the original points of S may be perturbed using generic 
perturbation methods (see, for example, 1-16]); the following discussions still apply 
mutatis mutandis. Define the d x n matrix A whose j th column consists of the 
coordinates of the point pj. Corresponding to the point q, define a column d-vector 
b. The linear programming problem (LP) is given as follows: 

• Given: A d x n matrix A and a column d-vector b. 
• Solve: 

minimize - 2 

subject to Ax = 2b, 

eTx = 1, 

x_~O, 

2 > 0 ,  

where x = (x 1 . . . . .  x,)  x, e = (1 . . . . .  1) r, and 0 = (0 . . . . .  0) T are column n- 
vectors. 
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Let x*, 2" be an optimal solution of (LP). Then 2* > 0 is the maximum value 
of 2 such that 

2*q = ~, x*pt,  
i = 1  

with ~7= 1 x* = 1 and x* > 0. 
Now consider the following dual of the (LP), which will be referred to as (DLP): 

maximize Yd+ 1 

subject to al ,  lYl  + "'" + ad, lYn + Y,t+ 1 < O, 

al,2Y 1 h- "'" -k- ad.zy a + Yd+I <-- 0, 

ax.nYx + "'" + ad.,,Yd + Ya+ 1 < O, 

- - b l Y l  . . . . .  bdyd < -- 1. 

This problem can be solved in O(3a~n) time by using Clarkson-Dyer's improvement 
on Megiddo's multidimensional search technique [4], [5], [7]. Let us now see 
how to recover the solution to the original problem. 

Clearly both (LP) and (DLP) have optimal solutions. Let an optimal solution 
for (DLP) be 

Y* = (Y* . . . . .  Y*, Y*+ 1). 

Let Iq ~ {1---n} be the set of all the indices j such that 

a J y *  = a l , f f *  + "'" + ad, JY* + Y*+I = 0, 

where aj = (al,i . . . . .  adj, 1) T. By the Complementary Slackness Theorem (see [3]), 
this implies that, for all i = 1 . . . . .  n, if x* > 0, then i ~ Iq. By virtue of our 
nondegeneracy hypothesis about the points of S, we see that {Iq] < d. We now 
claim that S~ = {p j : j  E 1~} can serve as a desired solution. Clearly, Sq _ S has at 
most d points and 

oq c~ O(ConvexHull(S)) ~ ConvexHull(Sa)). 

Note that even if the original set had been perturbed (by a sufficiently small 
amount), the set S~ chosen from the unperturbed set S still provides the desired 
solution. 

To summarize: 
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Theorem 6.1. For n >_ m >_ 13ad td+ 3)/2, we can f ind a set X o f  at most m points 
f rom an input set S o f  n points such that 

r(X) 3df2d2~2/ta-l ,  
> ~a(m) = 1 - 

r(S) - \ m ,] ' 

in time 0(3 d2 ran). 

7. Final Remarks 

It is natural to seek improved forms of Steinitz's theorem for certain subsets S ~ F d. 
In other words, if k is any number (between d + 1 and 2d), we want to characterize 
those subsets S _~ I :d whose residual radius is positive and are such that S contains 
a subset X of at most k points, where X has a positive residual radius. For  instance, 
in the plane: 

Lemma 7.1. Let  S ~_ ~_2 be any set with positive residual radius. Then there is a 
subset o f  three points in S with positive residual radius i f  and only i f  S is not contained 
in two lines through the origin. 

We omit the easy proof. It would be interesting to develop an appropriate 
quantitative form of this lemma. We see that an obvious quantitative version for 
this lemma fails. That  is, there does not exist a constant 0 < 0t < 1 with the 
following property: 

Suppose the residual radius of S ~_ [~2 is at least one and S does not lie in two 
lines through the origin. Then there exists three points in S whose residual 
radius is at least ~. 

To see this, consider the set S = {A,B, C , D , E }  where A = (0, 1), B = (1,0), 
C = ( - 1 ,  0), D = (1, --L), and E = ( - 1 ,  --L) for L = L(~)> 0 sufficiently large. 
Then no subset of S with three points has residual radius at least ~. 

Yet another area of research that calls for further investigation arises from the 
observation that the torque and force dimensions are really noncomparable. We 
want a notion of grasp-efficiency that can take this into account. A related issue 
is that the current approach depends on the origin of the reference frame in which 
the torques are measured. Is there an origin-independent approach to efficiency 
and other metrics of a grasp? 
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