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Abstract. Various results are given concerning X-rays of polygons in R 2. It is shown 
that no finite set of X-rays determines every star-shaped polygon, partially answering 
a question of S. Skiena. For any n, there are simple polygons which cannot be verified 
by any set of n X-rays. Convex polygons are uniquely determined by X-rays at any 
two points. Finally, it is proved that given a convex polygon, certain sets of three 
X-rays will distinguish it from other Lebesgue measurable sets. 

1. Introduction 

The determination of sets (or, more generally, of density distributions) in R a by 
X-rays is of interest in various fields. There is the obvious geometrical aspect, since 
in this context X-rays are essentially symmetrals, and there are the rapidly growing 
areas of computerized tomography  in medicine and of tactile sensing in robotics. 
The present paper, which concerns only polygons, was in part  stimulated by work 
done on "geometric probing," which has connections with computer  science. In 
particular, one of our results (Theorem 1) is a partial answer to a question of 
Skiena in his Ph.D thesis with this title (Question 4.3 of [12], see also Question 
12 of [13]). The paper  also continues work done on X-rays of convex bodies over 
the last 25 years or so. 

In order to put our results in context, we need to clarify several different 
concepts. If 8 is a class of sets, we say that g is determined by n directions if there 
is a set of n directions such that whenever E, E'  e 8 have the same X-rays in these 
directions, then E' = E. (We neglect sets of measure zero, although in fact this is 
not necessary in this paper  except in Section 6.) To  illustrate, we mention the 

* This work was done at the Istituto Analisi Globale e Applicazioni, Florence, Italy. 
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results of [7], which imply that convex bodies in R d are determined by four 
directions, but not by three directions. To put it another way, there are four 
directions such that X-rays in these directions determine the shape of a convex 
hole in a uniform solid, among all convex shapes. 

A different idea is that of verification. A class of sets ~ can be verified by n 
directions if, given E ~ 8, a set of n directions can be chosen (depending on E) so 
that if E' e g and E' has the same X-rays as E in these directions, then E' = E. 
(We might imagine being asked to check if a hole in a uniform solid has a certain 
shape.) In this language a theorem of Giering [8] (or see [5] and [14] for shorter 
proofs) says that convex bodies in R 2 can be verified by three directions. 

An intermediate notion worth mentioning, though we will not need it here, has 
been considered in [3] and [13]. We say that E e 8 can be successively determined 
by n directions if we can inductively choose directions Ok, 1 < k < n, the choice 
of Ok depending on the X-rays of E in the directions 0i for 1 < i _< k - 1, such that 
if E ' e  8 and E' has the same X-rays as E in the directions O k, 1 < k < n, then 
E' = E. The literature presently contains only Theorem 7 of [3] as an example of 
this very natural scheme; this says that convex polygons can be successively 
determined by three directions. (Further results of this type appear in [6].) Note 
that an example in [5] shows that two directions are not sufficient to verify, and 
therefore are also not sufficient to successively determine, convex polygons. 

We can now state our results. In contrast to the theorem of [7], Theorem 1 
says that polygons star-shaped at the origin cannot be determined by n directions 
for any n. (Note that only finite sets of directions need be considered, since it is 
known [I1, Theorem 3.5] that bounded density distributions are determined by 
any infinite set of directions.) Theorem 2 is a contribution to a suggestion on 
p. 881 of [3] to try to extend known results for convex polygons to the case of 
simple polygons. However, the situation here is even worse, since we prove that 
there is no n such that simple polygons can be verified by n directions (so that a 
Giering-type theorem cannot be proved for this class of sets). 

X-rays issuing from points rather than from directions (i.e., from infinity) have 
also been widely studied, and though they are much more difficult to work with, 
they are recognized as being generally more efficient, even in the practical context 
of computerized tomography (see [11]). We use the same terms as above when 
directions are replaced by points. Then Vol~i~'s theorem [15] shows that convex 
bodies in R z are determined by four points in general position (with our  definition 
of point X-ray, see Section 2). It is unknown if fewer points suffice for convex 
bodies, but we show here (Theorem 4) that two suffice for convex polygons. In 
the course of proving this we obtain (Theorem 3) a necessary and sufficient 
condition for two general polygons to have equal X-rays at a given point. 

Perhaps it should be stressed that all the above results concern distinguishing 
a set belonging to some class of sets from others in the same class. Our last result, 
however, is of a new type. Theorem 5 states that given a convex polygon P, three 
directions may be chosen so that the X-rays in these directions verify P not only 
among convex polygons,_but among measurable sets (indeed, as Vol~i~ has pointed 
out, among density distributions bounded by 0 and 1). 
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2. Definitions and Notation 

If A is a set, we denote by IAI, cl A, int A, dA, and cA the cardinality, closure, 
interior, boundary, and complement of A, respectively. Further, if r e R, rA = 
{rx :x~A}.  If A and B are sets, A + B  denotes the vector sum 
A + B = {x + y: x e A, y ~ B}. The convex hull of a family of sets A i is denoted by 
conv{Ai}. 

By a polyoon (polytope) we mean a finite union of triangles (simplices) (with 
their interiors). A simple polygon is a polygon whose boundary is simple and closed. 

By measure we always mean planar Lebesgue measure, denoted by 2z. 
Let 0 be a direction in R n (which we identify with a unit vector in S n- 1), and 

let 0 ± be the hyperplane containing the origin o and orthogonal to O. If f is a 
bounded integrable function defined on a bounded set in R a, the X-ray of f in  the 
direction 0 is the function 

P o f ( x ) = f ?  f(x+tO) dt 

for x e 0  ±. The X-ray of a set E in the direction 0 is P01e, where 1E is the 
characteristic function of E. We find it convenient to identify Pof with the set of 
points between its graph and 0 k, so that if K is convex, so is Po l r  (an alternative 
approach is to work with the Steiner symmetral in the direction 0; indeed, in the 
formulation of our theorems the terms X-ray and Steiner symmetral are inter- 
changeable). 

Suppose p ~ ~a and f is a bounded integrable function on a bounded set in R d. 
The X-ray of f a t  p is the function 

L p f ( O ) = f ;  f(p+tO) dt 

for OeS a-x, and the X-ray of a set E at p is Lpl e. 
The functions Pof and Lpf are also called the X-ray transform and line 

transform, respectively, of f .  All we need here is that the X-ray of a polygon P in 
the direction 0 gives the total length of the intersection of P with each line parallel 
to 0, and the X-ray of P at a point p gives the total length of the intersection of 
P with each straight line through p. 

3. Switching Components 

The concept of a switching component is essential for some of our results. Let 
® = {0: . . . . .  Or,} be a finite set of directions, not necessarily distinct, in R 2. Suppose 
A and B are two disjoint nonempty finite sets of points such that if l is any line 
parallel to 0 i, 1 _< i < m, then 

] l n A l = l l n B i .  
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Then we call A u B a O-switching component. If E is any set, A u B is called a 
O-switching component for E if in addition A ~ int E and B c int(cE). 

The following proposition, due to Lorentz [10] (see also [1]), guarantees the 
existence of switching components. We give the proof for completeness. 

Proposition 1. I f  O = {01 . . . . .  Ore} is any set of directions in R 2, there is a 
O-switching component. 

Proof. If m = 1, let A 1 = {o}, let v I be any vector parallel to 01, and B1 = 
(A1 + v0. Then A 1 u B1 is a {01}-switching component. 

If the proposition is true for m = k, let A k u Bk be the corresponding switching 
component. Choose a vector Vk+ 1 parallel to Ok+~, such that the sets Ak, Bk, 
(Ak + Vk+l), and (B k + Vk+l) are all disjoint. Let Ak+ 1 = A k w(B k + Vk+l) and 
Bk+ ~ = Bk w ( A  k + vk+l). Then Ak+l U Bk+I is a O-switching component for 
m = k + l .  [ ]  

Note that the switching component constructed by the method of Proposition 
1 is simply a projection of the vertices of an m-dimensional parallelepiped onto R 2. 

4. Parallel X-Rays of Polygons 

Theorem 1. I f  O is any finite set of directions in R z, there exist two distinct simple 
polygons P and Q, star-shaped at a common point, with equal X-rays in the directions 
in O. 

Proof. Let A u B be any O-switching component (see Proposition 1), and let p 
be a point not on any line containing two points of A u B (in particular, p $ A u B). 
Let T be a triangle containing the origin, such, that no side of T is parallel to a 
line joining p to some x ~ A u B. Next we choose e > 0 small enough so that the 
set eT + (A u B) has the following properties: 

(I) If x e A u B and I is a straight line meeting both the triangles eT + {p} and 
~T + {x}, then I does not meet eT + {y} for any y e A  u B with y ~ x. 

(2) If e is an edge of a triangle eT + {x}, x e A u B, visible from a vertex of the 
triangle eT + {p}, then e is also visible from p. 

and 

Let 

C = U { c o n v { e T +  {p}, e T +  {x}}: x e A  u B} 

P = c I ( C -  w{eT + {x}: x e A } ) ,  

Q = c l ( C -  u{~T + {x}: xeB} ) .  

Then P and Q are the required simple polygons; both are star-shaped at the point 
p (see Fig,. 1). [ ]  
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Theorem 2. For each n ~ ~,  there is a simple polygon Pn such that if19 is any set 
of  n directions in R 2, there is a different simple polygon Q(19) with the same X-rays 
as Pn in the directions in 19. 

Proof. If S ~ is the unit circle, we identify ordered sets ® of n (not necessarily 
distinct) directions with points in the compact  metric space ($1) n with the product 
topology. By a neighborhood of 19 we mean a neighborhood in this space. 

Let 19 = {01 . . . . .  On} be an ordered set of n (not necessarily distinct) directions. 
Following the proof  of Proposit ion 1, we inductively construct {01 . . . . .  0k}" 
switching components A k u Bk, using vectors v~ parallel to 0 i, 1 < i < k, and with 
A k U B k C A k + l U B k + l  for k =  1 , . . . , n - 1 .  Let s be a closed line segment, 
containing o in its interior, not parallel to any 0 e 19 and short enough so that the 
copies {s + x: x e An u Bn} of s are all disjoint. Put 

s = U ( s  + x: x ~ A n  w B.}. 

We claim that there is a neighborhood U of O such that if O'  e U, then S also 
contains a ®'-switching component.  

The claim can be proved by induction on n. Specifically, we prove the following. 
Suppose t is a closed line segment with o in its interior and such that t is strictly 
contained in s. Then we can find another  such segment un ~ t and a neighborhood 
Un of ®, such that, if ®'  ~ Un and z ~ un, there is a O'-switching component  A'n w B~, 
constructed as in Proposit ion 1 starting with the point z instead of o, such that 

Let n = 1. Given a segment t as above, there is a segment u 1 c t and a 
neighborhood U t of 01, such that if 0~ e U1 and z e u 1, there is a vector v~ parallel 
to 0'1 with z + v~ e (t + v0. Then {z} u {z + v'l} is the required {0'~}-switching 
component.  

Suppose we have proved the above for n _< k. Apply the argument  for n = 1 to 
the case where ® = {0k+l}. We obtain a segment u' c t and a neighborhood U' 
of Ok ÷ 1 such that if 0~ ÷ t e U' and z ~ u', there is a vector v~, + 1 parallel to 0~ + ~ with 
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z +  V'k+le( t+Vk+l) .  NOW applying the case n = k  with O =  {01 . . . . .  06} and 
t = u ' ,  we get a segment Uk+ICU'  and a neighborhood U" of {01 . . . . .  Ok}, 
such that if {0~ . . . . .  0~} e U" and Z eUk+ 1, there is a O'-switching component 
A~, u B[, constructed as in Proposition 1 starting with z, such that A~ u B~ c 
U {u'+ x: xEAk u 

Now let Uk+ 1 = U" x U'; then Uk+l is a neighborhood of {01 . . . . .  0k+1}. If 
Z~Uk+I and {0'1 . . . . .  0~+1} ~ Uk+l, then for each y~A~ u B~ we have y¢ (u '  + x) 
for some x ~ A  u B, so (y - x ) ~ u '  and (y + v'k+l)~(t + vk+l + x). Therefore if we 
define . . . . . . .  Ak+ 1 = Ak w (B'k + ok+ 1) and Bk+ 1 = B'k w (A'k + Vk+ 1), then Ak+ 1 L) Bk+ 1 
is a {0~, . . . ,  0~÷ 1}-switching component contained in U { t  + x: x E Ak ÷ 1 u Bk ÷ 1}. 
This completes the proof of the claim. 

With n still fixed we choose, for each O e ($1) ", a neighborhood U(O) as above. 
By compactness there is a finite set O1 . . . . .  Ore, such that the associated neighbor- 
hoods cover (Sl) ". For  each i, 1 < i _< m, let S~ be the finite set of parallel line 
segments corresponding to Oi as above, where we assume that these sets S~ are 
translated so that they are all disjoint. 

By the construction above, we may partition each Si into two disjoint unions 
C~, D i of parallel line segments, so that if O ~ U(O~), there is a O-switching 
component A u B with A c Ci and B c D~. Let S(n) = ~ :  1 Si, C(n) = [,J?: 1 Ci, 
and D(n) = ~m= 1 Di. Then S(n) is a finite disjoint union of line segments such that, 
for each O e (S~) ", there is a O-switching component A u B ~ S(n), with A ~ C(n) 
and B ~ D(n). We note that each of the switching components we are considering 
meets each line segment in S(n) in at most one point, and that we may assume 
that all the line segments in S(n) are parallel. 

Let S~ be the closed square with center 0 and one side of length e and parallel 
to a line segment in S(n). It is easy to see that we can find an e > 0 and a simple 
polygon P.  with the following property: If I is one of the line segments which form 
C(n) (or D(n)) and x e l, then S~ + x = P,  and cl(P,\S~) is a simple polygon (or 
int(S, + x) c~ int P,  = ~ and P ,  w S, is a simple polygon, respectively). 

Suppose that O is any set of n directions, and let A ~) B be the corresponding 
O-switching component with A ~ C(n) and B c D(n). If x ~ A, x belongs to one 
of the line segments which form C(n). We delete from P.  the square S, + x. If 
x e B, we adjoin S~ + x to P, .  In this way we construct a different simple polygon 
Q with the same X-rays as P,  in the directions in O. [ 7  

Corollary. There is a compact set E (a countable union o f  simple polygons) which 
cannot be verified by any finite set o f  X-rays.  

Proof. Any translation or dilation of the simple polygon P.  from Theorem 2 has 
the same property. For  each n, there is a disk C. containing P,  such that, 
for each set O of n directions, the polygon Q(O) of Theorem 2 is contained in C.. 
Choose constants ~n and vectors w, so that the sets (~.C. + w.) are disjoint and 
converge to a single point. Then E = cI(U,(~.P . + w.)) is the required compact 
set. []  



X-Rays of Polygons 287 

In Question 12 of [13] Skiena asks if star-shaped polygons can be determined 
(by which he means successively determined) by finitely many directions. If 
Theorem 2 remains true for star-shaped polygons, this would provide a strong 
negative answer to Skiena's question. However, we do not know if this is the case. 

Higher-dimensional analogues of Theorem 2 can be proved in the same way. 
In particular, there are (nonconvex) polyhedra in •a which cannot be verified by 
any pair of directions. At first sight this seems to contradict the result of 
Golubjatnikov [9], that, given any polyhedron P in ~3, tWO directions can be 
found so that P can be reconstructed from its X-rays in these directions. However, 
this reconstruction can only be made using information about  how the directions 
were chosen, and this involves additional knowledge about  the relative position 
of vertices and of edges. In short, the theorem of [9-1 is not of the type considered 
in this paper (but see [6] for results on the successive determination of convex 
polytopes). 

5. X-Rays from Points 

In our next theorem we state a necessary and sufficient condition for X-rays of 
two polygons to be equal at o. If P and Q are polygons, we can partition R 2 into 
a finite set of double cones with vertex at o, such that neither P nor Q has any of 
its vertices in the interiors of these cones. By subdividing the cones if necessary, 
we may assume that for each one we can choose an axis for polar coordinates at 
o so that it can be represented as 

C(~, fl) = {(r, 0): r e R ,  0 < ~ < 0 < fl < re}. 

Each edge of P or Q meeting int C(~, fl) also meets its bounding lines {0 = ~} and 
{ 0  = 

We need the following lemma, whose simple proof  we omit. 

Lemma. Let T be the triangle with vertices at o, (s, ~t), and (t, fl), s > O, t > O, 
0 <_ • < fl < ~, in polar coordinates centered at o. The X - ray  o f  T at o is given by 

p(o) = 
s t  sin(/  - 

t sin(fl - 0) + s sin(O - ~) 

for  ~ < O <_ fl. 

Suppose C(~, fl) is a cone as above, and let {ei} be the set of edges of P or Q 
which meet int C(~t, fl). If  ~o is a direction, 0 < q~ < n, let {ei, i ~ l(q~)} be the set of 
those el which are parallel to q~. Suppose el intersects {0 = ~} at (st, ~). If  el c P, 
define ei = + 1 or - 1 according as a line {0 = ?, ~ < ? < fl} leaves P as r increases 
across e~, or enters P as r increases across e~; and vice versa for edges e~ c Q. 
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Theorem 3. The following is a necessary and sufficient condition for two polygons 
P, Q to have equal X-rays at o: in the above notation, for each appropriate cone 
C(~t, fl) and direction tp, the family {e~,i~l(q~)} of  edges must satisfy 

i t (q, )}  = o.  

Proof. Using the lemma and the notat ion above, we see that  P and Q have the 
same X-rays for a < 0 < fl if and only if 

~i 8isit i sin(fl - ct) 
t, s i n ( / ~ = ~ + s , ~ - 0  - a ) =  0 (1) 

for 0t < 0 < fl, where the sum runs over all edges el of P or Q, containing (si, ~t) 
and (q, fl), and with appropriate weights ei = _+ 1. 

If  q~ is a direction, and e~ is an edge of P or Q parallel to ~p and containing 
(sl, a) and (ti, fl), then 

ti sin(fl - q~) + si sin(~o - a) = O. (2) 

Solving for q, and substituting into the corresponding term in (1), or by direct 
calculation, we get 

e~sltl sin(fl - 00 sin(a - ~p) 

ti sin(fl - O) + sl s in (O-  cO 
= ~isi (3) 

sin(0 - q~)" 

If el, i e l(tp), are all the relevant edges of P and Q parallel to q~, then by (3) we 
may  replace the corresponding terms in (1) by 

sin(a - q~) 
E ~iSi" 

i~r(~) s in (O-  ~p) 
- (  ~ e~s~) . s i n ( a - ~ ° )  

,,i~l(,) / sin(0 q~)" 

This implies that  polygons satisfying the condit ion of the theorem will have 
equal X-rays. 

A similar calculation can be made with ti instead of si. This means that  the 
left-hand side of (1) is unchanged if we replace the set of edges {ei: i e I(tp)} by a 
single segment e'(tp) joining the points (~{e,s,: i ~ l(tp)}, ~) and (~{e,t,: i ~ l(tp)}, fl). 

Let  us make this replacement for each direction q~j parallel to an edge of P or 
Q. Cancelling the constant  sin(fl - ~), we obtain 

Pjqj 
- 0 ( 4 )  

j qj sin(fl -- O) + pj sin(O -- o 0 

for a < 0 < fl, where the j th  term now corresponds to a segment e) joining (p~, ~) 
and (~ ,  fl), no two of the segments e) are parallel, and each pj is a sum of the form 
pj = E{e,s,: i e l(~pj)}. 
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Simplifying (4) gives 

~[PJq~ l----~(qk sin(fl -- O) + pk sin(O -- ct))l = (5) 

for ~ < 0 _< ft, Dividing by cos 0 we see that the left-hand side of (5) is a polynomial 
in tan 0, so it must vanish for all 0. 

For each j we choose 0 = 0~, where 

qj sin(fl -- 0~) + p~ sin(0j -- a) = 0. 

Substituting into (5) we get 

(6) 

PJqi I~(qk sin(fl - -  Oj) + Pk sin(Oj - -  c t ) )  = O .  
k * j  

If, for some k # j, 

qk sin(fl -- 0j) + Pk sin(0j -- ~) = 0, (7) 

then (6) and (7) imply (compare (2)) that the segment ej joining (p j, ~) and (q j, fl) 
is parallel to 6 ,  joining (Pk, C0 and (qk, fl), which is not the case. Consequently, 
p~ = 0 (or, equivalently, qj = 0). This means that for the corresponding sum 

= o ,  

completing the proof. [] 

Despite Theorem 3, uniqueness results for general polygons may be difficult to 
obtain. Brehm [2] has found two different sets of ten homothetic triangles whose 
unions have the same X-rays from two points. (The centers of these triangles form 
a special switching component suitable for point X-rays.) It is then easy to 
construct, as in Theorem 1, two different star-shaped polygons with the same 
X-rays at two points. In contrast, our next theorem shows that two points suffice 
for convex polygons. It is very similar to Theorem 6.3 of [12], but the latter is 
stated only for X-rays from points interior to the polygon. 

T h e o r e m  4. X-rays from two points determine a convex polygon uniquely. 

Proof. Suppose P and Q are two convex polygons with equal X-rays at o. Choose 
a polar axis and double cone C(~t, fl) as in Theorem 3, so that both P and Q meet 
int C(,t, fl) but the latter set contains none of their vertices. Then by convexity 
there are exactly two edges e~, i = 1, 2, of P, and two edges e~, i = 3, 4, of Q, with 
ei containing (s, ~t) and (ti, fl), and sl < s2, sa < s,, say. 

If P c~ C(~, fl) ~ Q n C(~t, fl), Theorem 3 implies that there are only two possibil- 
ities. The first is that the edges el and e 4 are parallel and st + s,  = 0, and the edges 
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Fig. 2. Polygons P and Q with equal X-rays at o. 

e 2 and e 3 are parallel and sz + s3 = 0. This means that Q c~ C(~, fl) is the reflection 
of P c~ C(~, fl) in the origin. Now suppose that this is not the case. Then the second 
possibility is that all the edges e~ are parallel and s 4 - s 3 = s2 - sl. The intersec- 
tions of P and Q with C(0~, fl) are then formed by congruent parallel strips 
intersecting C(~, fl). Reducing ~ and increasing fl until we meet a vertex of P or 
Q, we obtain a maximal double cone C(~, fl) for which this holds. Using convexity, 
it is easy to see that P c~ cC(~, fl) = ~ .  

We conclude that if two unequal convex polygons have equal X-rays at o, then 
either one is the reflection of the other in o, or else they must be as in Fig. 2, the 
intersection of congruent parallel strips and a cone with vertex at o. However, 
such polygons must have different X-rays at any point other than o, unless they 
are equal. [ ]  

Corollary. X-rays from two points determine a convex polytope in ~a, d >_ 2, 
uniquely. 

Proof. By Theorem 4, each slice by a two-dimensional plane containing the two 
points is determined uniquely. [ ]  

6. Uniqueness Among Measurable Sets 

Can we determine or verify a convex polygon or body if we do not know a priori 
that it is such a set, but merely a measurable set? Here we present a result of this 
new type. 

A theorem of Falconer [4] says that if the X-ray of a compact  set in R ~ in 
every direction is convex, then the set itself must be convex. Therefore it is pertinent 
to remark here that, for any finite set of directions, there are nonconvex sets whose 
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X-rays in these directions are convex. We now describe a construction which is 
based on an idea of Vol~i~. 

Let 0 i, i = 1 . . . . . .  m, m > 2, be given directions in ~2, and let s be a line segment 
not parallel to any 0i. For  each i, let S~ be the closed infinite strip whose two 
bounding lines are parallel to 0~ and each contain one endpoint of s. Next construct 
a convex polygon P, containing s in its interior and with 4n sides, such that for 
each i there are two sides of P which have the same orthogonal projection onto 
0~ as s, and each of the remaining 2n sides is not contained in any St. Find a 
triangle T contained in St for each i (and therefore in int P), one of whose sides is 
s, and which is sufficiently thin to satisfy the following property: For each i there 
is a triangle Ti contained in St, such that T~ and T have equal X-rays in the direction 
0t, int Ti c~ int P = ~ ,  and P w UT= 1 Ti is a convex polygon. Now 

(P -- int T) u U~"=I T/ 

is a nonconvex set whose X-rays in the directions 0~ are convex polygons. 
In proving our theorem the main tool is a lemma due to Giering [8, Satz 8] 

as generalized by Vo16i6 [16, Theorem 2.3]. To assist the reader we give the simple 
but clever proof. 

Lemma. Let K be a convex body in []~2, and let 19 be a finite set of directions. 
Suppose Q is a convex polygon with its vertices in dK, such that each edge of Q 
is parallel to some 0 E 19. I f  E is any measurable set such that E has the same 
X-rays as K in the directions in 19, then Q c E except for a set of  measure zero. 

Proof If et is an edge of Q and S is any set, let St be the part of S in the open 
half-space bounded by the line containing et, which does not contain Q. Since Q 
is inscribed in OK we have 

,~z(K) = ,~z(O) + Y, ~z(K,). 
t 

If E has the same X-rays as K in the directions in @, then ~2(E) = 22(K) and 
),2(Et) = ),2(Ki) for each i. Now (E -- Ui Ei) c Q and 

This means that Q and (E - Ut  El) differ by at most a set of measure zero, so 
Q c E except for such a set. [ ]  

Theorem 5. I f  P is a convex polygon, we can choose three directions such that if 
E is a measurable set with the same X-rays as P in these directions, then E = P up 
to a set of measure zero. 

Proof The directions we choose are those parallel to three adjacent edges of P. 
Let these edges be e 1, e 2, and e 3, in order around OP, and let 0t be the 
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corresponding directions, 1 < i < 3. We may assume that P lies in the upper 
half-plane with its base, the edge e2, on the x-axis. 

An easy continuity argument (also employed in [16]) shows that there is a 
triangle T 1 with one vertex in e2, the others in (t3P - e2) , and with sides parallel 
to the directions 0i, 1 < i < 3 (so that the uppermost side, e~ say, is parallel to e2, 
i.e., horizontal). Each point x e t3P below e~ is a vertex of a convex quadrilateral 
inscribed in t3P, all of those edges are parallel to one of the directions 0 i, 1 < i < 3. 
Thus, according to the lemma, the polygonal part P' of P which lies between e2 
and e~ is contained (modulo a set of measure zero) in any measurable set E which 
has the same X-rays as P in the directions 0r, 1 < i < 3. 

Note that this argument works when we take one direction parallel to an edge 
of P and the two others parallel to lines through each of the endpoints of this 
edge which do not intersect int P. 

By subtracting the X-rays of P' from those of P we obtain the X-rays of the 
convex polygon P1 = cl(P - P'). Note that PI has its base on the horizontal edge 
e~, and that we can repeat the above argument with P replaced by P~, obtaining 
another triangle T2, and so on. 

The process may not terminate after finitely many steps, but it is easy to see 
that otherwise the similar triangles T~, n = 1, 2 . . . . .  will converge to a unique 
vertex of P with largest y-coordinate. So after ~ steps we have shown that P ~ E, 
except for a set of measure zero; and, since ~ 2 ( P )  = .~.2(E), we are finished. [ ]  

We conclude with some remarks concerning Theorem 5. Firstly, it can be shown 
that the known proofs of Giering's theorem cannot work in the context of Theorem 
5. It is not difficult to construct a convex polygon P such that when the three 
directions are selected according to any of the published proofs of Giering's 
theorem, there may be a switching component A u B for P (see Section 2) in these 
directions. Then, removing small congruent disks centered at points in A c i n t  P 
and adding disks of the same size centered at points in B ~ cP, we obtain a 
measurable set E with the same X-rays as P in the three directions. 

Vol~i~ has noticed that both the lemma and Theorem 5 can be modified to 
apply to density distributions bounded by 0 and 1 instead of measurable sets. 

As mentioned in the Introduction, Example 2.5 of [5] shows that in general 
two directions do not suffice. 

Finally, we note that the proof of Theorem 5 is to some extent constructive; 
in [16] it is proved that the triangle T1 (and hence T~, n > 2) can actually be 
computed from the X-rays. 
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