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Abstract. This paper is concerned with the various inner and outer radii of a convex 
body C in a d-dimensional normed space. The inner j-radius rj(C) is the radius of a 
largest j-ball contained in C, and the outer j-radius Rj(C) measures how well C can 
be approximated, in a minimax sense, by a (d - j)-flat. In particular, rd(C) and Rd(C) 
are the usual inradius and circumradius of C, while 2r1(C) and 2R1(C) are C's diameter 
and width. 

Motivation for the computation of polytope radii has arisen from problems in 
computer science and mathematical programming. The radii of polytopes are studied 
in [GK1] and [GK2] from the viewpoint of the theory of computational complexity. 
This present paper establishes the basic geometric and algebraic properties of radii 
that are needed in that study. 

Introduction 

T h r o u g h o u t  this  paper ,  M denotes  a Minkowski space--a n o r m e d  f ini te-dimen-  
s ional  vec tor  space over  the real  field R. The  d imens ion  of  M is deno ted  by  d and  
the n o r m  by 11 LI. The  unit ball and  unit sphere of  M are  the  sets B = {x: tlxH -< 1) 
and  5 = {x: IIxll = 1}, respcc t ivdy .  As the te rms are  used here, a body in • is a 
d -d imens iona l  compac t  convex set, and  a polytope is a body  tha t  is the convex 
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tion. 
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hull of a finite set of points or, equivalently, is the intersection of a finite collection 
of dosed half-spaces. 

Prefixes often indicate dimension. For  example, the j-dimensional linear (resp. 
affine) subspaces of M are called j-subspaces (resp. j-flats), and a j-ball of radius p 
in M is a set of the form 

(q + pB) n F = { x e F :  llx-- qll < P} 

for some j-flat F in ~ and point q e F. 
For 1 <_ j <_ d, the inner j-radius of a body C c M is the supremum rj(C) of the 

radii of the j-balls contained in C. By a routine compactness argument, this 
supremum is attained as a maximum. Hence there exist a j-flat F o ~ M and a 
point qo ~ F0 such that 

(qo + rj(C)~) n g:o ~ C; 

and r~(C) is the largest number that has this property. The number rj(X) can of 
course be defined in the same way for an arbitrary compact X c ~ ,  but our interest 
here is confined to the case in which X is a body. 

For  1 _< j _< d, the outer j-radius of a body C c ~ is a number Rj(C) that 
measures how well C can be approximated, in a minimax sense, by a (d - j ) - f la t .  
Specifically, Rj(C) is the infimum of the positive numbers p such that • contains 
a (d - j ) - f l a t  F for which C c F + pB. By a routine compactness argument, this 
infimum is attained as a minimum. Hence M contains a (d - j ) - f l a t  Fo such that, 
for each c ~ C, there exists x ~ Fo with [[c - x[] _< Rj(C); and Rj(C) is the smallest 
number that has this property. The number Rj(X) is defined in the same way for 
an arbitrary compact X c ~ ,  and it is clear that R j ( X ) =  Rj(conv X).) (For 
definitions of some other notions of inner and outer radii, equivalent to these 
when M is Euclidean but not in general, see Section 2.) 

The numbers rd(C) and Rd(C) are respectively the radius of a largest d-ball 
contained in C and of a smallest d-ball containing C. They are called, respectively, 
the inradius and the circumradius of C, and the center of each such ball is called 
an incenter (resp. a cireumcenter) of C. (When the unit ball B is rotund, each body 
has a unique circumcenter but may have many incenters. When there are segments 
in the unit sphere 5,  circumcenters are also in general not unique.) The number 
2rl(C) is the diameter of C- - the  maximum distance that is realized between two 
points of C, and 2RI(C) is the width of C-- the  smallest of the distances between 
pairs of parallel supporting hyperplanes of C. For  each body C in a d-dimensional 
Minkowski space M, it is true that 

r 1 > r 2 : > " ' >  ra, R1 <_R 2 < " ' < R d ,  

rl > Rl, rd <-- Rd. 

For  bodies C that are symmetric (meaning here that C is a translate of a body K 
for which K = - K), it is also true that rl(C ) = R~(C) and rd(C) = RI(C) (see (1.3)). 
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Theorems involving inradius, circumradius, diameter, and width have long been 
standard fare among workers in the geometry of convex bodies [BI], [BF], [Egl], 
I-DGK], and approximation problems involving all the outer j-radii have been 
studied in [Ec] in connection with problems of Gallai type about common 
transversals for collections of convex bodies. Workers in approximation theory 
have studied the outer j-radii in various function spaces [T1], [Br], but have 
usually focused instead on the closely related numbers involving approximation 
by ( d -  j)-subspaces rather than ( d -  j)-flats [Ko], [T2], [Lo], [Si], [Pi]. (The 
numbers are the same for bodies that are symmetric about the origin, but for our 
purposes asymmetric bodies are also of great interest.) Approximation theorists 
have used the terms "diameter" and "width," but we prefer "radius" because this 
is consistent with standard usage in the geometry of convex bodies and also seems 
to be a more accurate description of the numbers that interest us. 

Certain pairs of inner and outer radii--particularly the pairs (rl, R1) and 
(r a, Rd)---work together in some applications. It is in any case natural to consider 
the inner and outer radii together, because they are dual to each other in the sense 
that if C = - C  and C O is the polar of C (situated in ~ ' s  conjugate space M*), 
then r~(C)Rj(C °) = 1 (see (1.2)). 

Approximation theorists have computed the radii of particular symmetric 
bodies of special interest, and have estimated the radii when precise computation 
proved to be too difficult (see [Pi] and references therein). This paper is part of 
the preparation for a study [GK1], [GK2-1 that has a different focus, related to 
the fact that motivation for the computation of certain polytope radii has arisen 
recently from problems in computer graphics, pattern recognition, robotics, the 
sensitivity analysis of linear programming, and nonlinear global optimization. 
That study is concerned with the intrinsic complexity of computing (or approxima- 
ting or bounding) the various inner and outer radii of polytopes in finite- 
dimensional spaces with t'p norms or polytopal norms. These fundamental pro- 
blems in computational convexity are approached in [GK1] and [GK2] from 
the viewpoint of the theory of computational complexity. However, the analysis 
there depends on a large number of basic geometric properties of radii along with 
a few algebraic properties, and these are of interest that extends beyond questions 
of computational complexity. The purpose of this paper is to present those 
geometric and algebraic properties. 

Our section headings are as follows: 1. Basic geometric properties of radii; 2. 
Additional geometric properties; 3. Rationality of certain polytope radii; 4. 
Difficulties in computing radii. 

In [GK1], essential use is made of all of the results in Sections 1 and 3 and of 
a key result in Section 4. The material in Section 2 is not used in [GK1], but is 
included in order to complete the picture of basic geometric properties of radii. 

1. Basic Geometric Properties of Radii 

With each Minkowski space M there is an associated conjugate space t~*. The 
points of ~ *  are the linear functionals on M, and the norm of a functional is the 
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maximum of its values on the unit ball B of M. The norm, unit ball, and unit 
sphere of M* are denoted by I[ I1", B*, and 5",  respectively. As is customary, the 
norms in both M and M* are denoted by II II when there is no danger ofconfusion. 
The usual bilinear form on M x ~ *  is denoted by ( , ) ,  so that, for x e M and 
y e M*, (x,  y)  denotes the value of the functional y at the point x. 

For  X c ~d, the polar of X is the set X ° c M* given by 

X ° = {y~ M*: (x, y)  < 1 for all x e X } .  

Polars are defined in the same way for subsets of M*, and by identifying (M*)* 
with M in the usual way, these polars are regarded as subsets of M. We use the 
well-known fact that if the origin is interior to a body C c ~ ,  then the polar C O 
is a body in M*, with (C°) ° = C; if, in addition, C is a polytope, then so is C °. 

Some of the results collected in this section are old and some are new. However, 
the proofs are all easy so it seems simpler and more useful to include them all 
here rather than attempt to sort out the details in the literature. These results are 
all used in [GK1].  

(1.1) A Property of Symmetric Bodies. I f  the body C c ~ is symmetric about the 
origin (so that - C  = C), and 1 < j < d, then: 

(a) C contains a j-ball of radius r~(C) centered at the origin; 
(b) there is a (d -j)-subspace F of ~ such that C c F + Rj(C)B. 

Proof. By the definition of rj~C), there exist a point q ~ C and a j-subspace E of 
M such that C contains the j-ball G = q + rj(CXB c~ ~. By symmetry, C also 
contains the j-ball - G ,  and then by convexity C contains the j-ball 
K = rj~C)(a c~ E) 

By the definition of R~(C), there exist a (d - j)-subspacc F and a point q such that 

C c (F + q) + R~(C)B, 

whence, by symmetry, 

C 'c - ( F  + q) - R~(C)a = (F - q) + R~(C)a, 

and, by convexity, 

C c ~((F + q) + Rj(C)a) + ~((F - q) + Rj(C)a) = F + Rj(C)a. []  

With respect to radii, the most widely useful property of symmetric bodies is 
the one stated next. 

(1.2) Duality between Inner and Outer Radii of Symmetric Bodies. I f  the body 
C c M is symmetric about the origin, and 1 < j < d, then 

rI(C)R~(C °) = 1 and Rj(C)rj(C °) = 1. 
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Proof. By (1.1) there is a j-dimensional linear subspace E of ~ such that 

r~(C)(B c~ E) = K ~ C. 

Using well-known properties of polarity and convexity, it then follows that 
C o ~ K ° and, since K = (rj(C)B) c~ E, that 

K ° = cl conv((rj(C)lB) ° w E °) = (rj(C)B) ° + E °. 

However, 

(r tC)a) ° = l a °  = (r,tC))- ' a *  

and E ° is a (d - j ) - subspace  of M*, so it follows that Rj(C °) <_ (rj(C)) -1. The 
construction can be reversed to show that rj(C) _> (Rj{C°))- 1, thus establishing the 
first statement of (1.2). The second statement is merely the dual equivalent of the 
first. [ ]  

(1.3) Equality of Certain Radii of Symmetric Bodies. For each body C~ 

rl(C) <_ Rd(C) and ra(C) <_ RI(C), 

with equality in each case when C is symmetric. 

Proof. It follows immediately from the triangle inequality that rl(C ) <_ Rd(C). To 
see that rd(C) <_ RI(C), use the fact that a d-ball of radius p is of width 2p. 

Now let us assume that C = - C .  By (1.1) there exists a segment T centered at 
0 such that T c C and Tis of length 2r1(C). Of course, T c Ra(C)B, and it follows 
that rl(C ) _< Ra(C). Since the sphere Rd(C)S must include a point c of C, and since 
- c ~ C  by symmetry, it is clear that rl(C ) >__ Rd(C). Hence rl(C ) = Rd(C). The 
second equality in (1.3) follows from this, with the aid of (1.2). []  

For  a body C c ~ ,  and for unit vectors s e 5 and s* e 5*, the s-length l~(C) 
and the s*-breadth bs,(C ) are defined as follows: 

l~(C) is the length of the longest segment in C that is parallel to the line Rs; 

b~(C) = max(c,  s*) - min(c,  s*). 
ceC c~C 

(1.4) Lengths and Breadths under Symmetrization. If C is a body in ~ ,  and 
K = ~(C - C), then, for each s ~ S and s* ~ 5*, it is true that 

lAC) -- l (K) and = b K). 

Proof. The length Is(C) is merely the maximum of trxll for points x e Rs of the 
form c -  c' with c, c 'e  C. Hence the fact that l~(C)= l~(K) follows from the 
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observation that 

c - c = (½c + ½ 0  - (½c + ½c) 

= ( ½ c  - ½ c )  - ( ½ c  - ½ c )  = K - K .  

To establish the equality for breadths, note that 

bAC) = m a x ( c  - c', s*) = max (q, s*) = 2 max (r,  s*) 
c,c" eC qeC-C  r¢(C-C)/2 

= max (r,  s * ) - -  min ( r , s * )  = b~.(K). 
re(c-e l~2 rE(C-C)~2 

[ ]  

The body C - C is generally called the difference body of C. 
For  each body C, determining any specific radius of C requires solving an 

optimization problem of special structure. The following description leads to 
polynomial-time algorithms under some circumstances (see [GK1]  and [GK2]). 

(1.5) Width and Diameter as Length and Breadth. The following equalities hold 
for each body C ~ ~ :  

2r1(C) = max I~(C) = max b~,(C); 
sES S*~S* 

2R1(C ) = min l~(C) = min b~.(C), 
sES s*ES* 

Proof. Let us denote the minimum and maximum of the above lengths (resp. 
breadths) by 2mi n and 2ma x (resp. flmin and flma~)" It follows almost immediately 
from the relevant definitions that 2r1(C) = 2max and 2RI(C) = flmin" The proof  will 
be completed by showing that 2m,x = flma~ and 2rain = flmin" In proving these 
equalities we may assume, in view of (1.4), that C = - C. 

In showing that 2~x = flma~, we assume further (for notational simplicity, and 
without loss of generality) that 2~,~ = 2, from which it follows that C ~ B and 
that the boundary bd(C) includes two points q and - q of 5. By the usual support 
theorem, there exists s* e S* such that (q, s * ) =  1. It is then apparent that 
flm.~ = (width of B) = 2. 

The equality, 2mi n = flmi., can be proved by an argument similar to the 
preceding one, after normalizing by assuming that flmi~ = 2 and hence B ~ C. 
Alternatively, with the aid of polarity and symmetry, the equality, 2m~ = tirol., can 
be shown to be equivalent to the equality, 2m~ = flma~" []  

(1.6) Width and Diameter in Terms of Translates. For each body C c M, the 
diameter 2r1(C) (resp. width 2R1(C)) is the largest number z such that (C + t) c~ C 
~ for some (resp. for each) t ~ k/O with ]ltl[ < z. 

Proof. This is an immediate consequence of (1.5)'s description of width and 
diameter in terms of lengths. []  
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A boundary point q of a body C is extreme if it is not an inner point of any 
segment in C, exposed if C is supported at q by a hyperplane that intersects C 
only at q, and smooth if the hyperplane supporting C at q is unique. A body is 
rotund (resp. smooth) if each of its boundary points is extreme (resp. smooth). A 
pair of points of a set X is diametral in X if the distance between the points is 
equal to the diameter of X. 

(1.7) Diameter Attained at Extreme Points. Suppose that C is a body in the 
Minkowski space ~A. Then there is a diametral pair {v, w} that consists of extreme 
points of C, and if C = - C  it may be chosen so that w = - v .  When the unit ball 
B of ~ is rotund, each diametral pair in C consists of exposed points of C, and if 
C = - C ,  then each point of a diametral pair is the negative of the other. 

Proof. For each point c e C, define the function ~0 c on C as follows: 

~c(x) = IIx - cll ( x ~  C), 

The function ~o c is convex and continuous, and its domain is convex and compact. 
From this it follows that the maximum of q~ on C is attained at an extreme point 
of C [Ba]. If ~ ' s  unit ball B is rotund, then each boundary point of • is an 
exposed point of B, and this implies that each point of C at which (pc attains a 
maximum is an exposed point of C. 

Now let t and u be points of C such that the distance I t t -  ull is equal to the 
diameter 6 = 2r,(C) of C, and let w be an extreme point of C at which the function 
~0 t attains a maximum. Of course, lit - wll = ~. Then let v be an extreme point of 
C at which the function ~ow attains a maximum, so that tlv - wl] = 6. 

Now suppose that C = - C ,  whence - v  and - w  are also extreme points of 
C. Since 

= l l v -  wll <-Ilvll + tlwll, 

it is true that tlvlI >-- 6/2 or IIwII > 6/2. Hence at least one of {v, - v }  and {w, - w }  
is a pair of antipodal extreme points of C whose distance is equal to C's diameter. 
When the ball is rotund, these inequalities can be strengthened to show that the 
diameter of C is attained only by pairs of antipodal exposed points. [ ]  

(1.8) Width of Symmetric Bodies Attained at Smooth Points. Suppose that C is a 

body such that C = - C and such that each extreme point of the polar C o is exposed. 
Then C admits parallel supporting hyperplanes t t_ and H+ such that: 

(a) the distance between H_ and H+ is equal to the width of C; 
(b) there are antipodal smooth points - q  and q of C such that - q  e H_ and 

qeH+. 

If  the ball B is smooth, every pair of hyperplanes that satisfies (a) must satisfy (b) 
as well. 
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Proof. By (1.7) there is an extreme point v of C O such that I lv l l*  = rl(C°), and by 
hypothesis v is in fact an exposed point of C °. Hence there is a boundary point q 
of C such that (q, v) = 1 and (q, y)  < 1 for all y ~ C°\{v}. This implies that q is 
a smooth point of C, and then the desired conclusion follows with the aid of (1.5) 
and (1.2). [] 

In (1.8) the requirement concerning C's polar cannot be abandoned. To see 
this, let the unit ball B and the body C be concentric plane lenses with common 
apices, and let C be fatter than B. Then the nonsmooth apices are the only 
antipodal points of C that belong to parallel supporting lines H± satisfying 
condition (a). (To be more specific, suppose that 0 < y < fl, and let the unit ball 
B and the body C in R 2 be defined as follows: 

B = {(C ,/): f l l~l  ~ 1 - ~2 I ~72}, C = {(C '/): ~1~1 ~ 1 - ~2 _ ,/2}.) 

(1.9) W i d t h  o f  Polytopes. Suppose that P is a polytope, and that H_ and H+ are 
parallel supporting hyperplanes of P whose distance is equal to the width of P. Let 
P_ = P n H_ and P + = P o o H + .  Then 

d i m P _  + d i m P + _ > d - 1 ,  

with dim P_ = dim P+ = d - 1 when P is symmetric. 

Proof. Let Q = ~ ( P -  P). Then Q is a polytope and is equal to P when P is 
symmetric about the origin. Since the polar QO is also a polytope, all of its extreme 
points are exposed, and hence (1.8) yields the existence of smooth points q± of Q 
such that q± ~ H±.  Since Q is a polytope, the smooth points of its boundary are 
precisely the points belonging to the relative interiors of facets. That settles the 
case in which P = Q. To complete the discussion in the general case, use the fact 
that each face of Q is of the form ½F - ½G, where F and G are faces of P. [] 

In order to determine the width of a polytope algorithmically, it seems to be 
essential to relate a direction of minimum breadth (or the position of the associated 
parallel supporting hyperplanes) to the facial structure of the polytope. Foi  
symmetric polytopes, the condition given in (1.9) is adequate (see I-GK1]). The 
following result contains additional information about the relative positions of P_ 
and P+,  but even this does not seem to provide enough information to be able 
to construct an efficient algorithm in the nonsymmetric case. 

(1.10) M o r e  on W i d t h s  o f  Po ly top es .  With notation as in (1.9), let H denote the 
hyperplane that is parallel to and equidistant from H_ and H +. Suppose that q ~ H 
and s e 5  are such that q +_ RI (P)seH+.  Then the sets P+ = P± -T-RI(P)s are 
subsets of H that are not strictly separated in H. When the ball B is smooth, the 
sets P± = P+ q: RI(P)s are not even weakly separated in H, and hence 

d i m P _  + d i m P + _ > d - 1 .  
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Proof. We assume without loss of generality that q = 0, whence the hyperplane 
H is a (d - 1)-subspace of the d-dimensional Minkowski space M. Each (d - 2)-flat 
F in H is the boundary (relative to H) of two closed (d - 1)-half-spaces in H. To 
say that the subsets P± := P± T- RI(P)s of H are weakly separated in H is to say 
that F can be chosen so that one of the closed half-spaces (say F - )  contains P -  
and the other (F +) contains P+. For strict separation, the separating F can be 
chosen disjoint from P -  and P÷. In either case, it may be assumed without loss 
of generality (by suitably translating P and F, while leaving H unchanged) that F 
is actually a (d - 2)-subspace. Finally, we assume without loss of generality that 
Rt(P ) = 1, so that +s~H±.  

Now suppose, for the moment, that the space M is two-dimensional, whence 
P is a polygon, H_,  H, and H+ are parallel lines, and F = {0}. A simple geometric 
argument shows that if the sets P -  and P÷ are strictly separated by F, and also 
if the ball • is smooth and the sets are weakly separated by F, then a suitable 
small rotation of H about F produces a pair of parallel supporting lines of P such 
that each of the lines intersects the interior of B. Then the distance between the 
lines is less than 2, and the minimizing property of the pair {H_,H+} is 
contradicted. 

To handle the general case, simply proceed as in the two-dimensional case, 
rotating H about F. Alternatively, the proof can be completed by considering the 
images of the sets P, H, B, and F under the natural mapping of the space 
onto its quotient space M/F, and applying the two-dimensional result to these 
images. [] 

Easy examples show that in ruling out the possibility that the sets P -  and P+ 
are weakly separated, the assumption that B is smooth cannot be abandoned. 

(1.11) Helly's Theorem for the Circumradius. l f  X is a bounded subset of M and 
Y = cl cony X, then 

Rd(Y) = sup Ra(conv{xo,...,xa}). 
xo, . . . ,Xd~X 

Proof. Denote the supremum by a. Then obviously Ra(X) > a. The collection 
of balls {y + zB" y e  Y, z > a} is such that each d + 1 members of ~ have a 
common point, hence by Helly's theorem [HI ~¢ has the finite intersection 
property, and then by compactness has nonempty intersection. Each point in the 
intersection is the center of a ball of radius a that contains Y. [] 

(1.12) Helly's Theorem for the Inradius. Suppose that Y is a finite subset of M*, 
and that, for each y ~ Y, lffy is a real number and Hy is the closed half-space in 

oiven by Hy = {x e ~ :  (x, y)</~y}.  Suppose also that the intersection X = 
Ny~r Hy is a body. Then 

ra(X )= min r a Hy, . 
Yo . . . . .  YdcY i 
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Proof. Denote the minimum by # and let 

U'y = {x~ M: (x,  y> ~ ~y - #lly[l*}. 

d ! Then it is true for each choice of Yo . . . . .  Yd ~ Y that ~ i = o  Hr, v ~ f2J, and hence, by 
Helly's theorem, ~y~r  H'y ~ ~:~. Each point in this intersection is the center of a 
ball of radius p that is contained in X. []  

For  some "Helly tests" concerning the widths of bodies, see [GL].  
We turn next to two results that are of a computat ional  rather than geometric 

character. They are placed here because, like most  of the other results in this 
section, they apply to all Minkowski spaces. In contrast, the computat ional  results 
of I-GK1] are restricted to spaces in which the norm is an •p norm or the unit 
ball is a polytope. 

(1.13) Circumradius as Minimum of a Convex Function. Suppose that W is a 

bounded subset of M. For each w ~ Wand x ~ M, let ~Ow(X ) = Ilx - wll and then set 

@(x) = sup ¢Pw(X). 
w ~ W  

The function tD is a convex contraction whose global minimum is the circumradius 
of the set W. 

Proof. It  is obvious that each function ~Pw is real-valued, is convex, and is a 
contraction in the sense that I~pw(xl) - ~pw(x2) l < II xl - x2 II for all x 1, x2 E M. Since 
the set W is bounded, the function • is real-valued and hence (I) is also a convex 
contraction and, in particular, is continuous. Since ~(x) ~ ~ as Ilxll ~ ~ ,  the 
function • does indeed attain a global minimum. It is immediate from the 
definition of circumradius that the minimum value of • is the circumradius of the 
set W. []  

(1.14) Inradius as the Solution of a Linear Program. Suppose that Y is a subset 
of ~ * ,  and that, for each y E Y, b r is a real number and H r is the closed half-space 
in M given by 

= {x E (x, y )  <_ 

Let C = (']y~r Hy, and suppose that C has nonempty interior. Then the inradius of 
C is the solution of the following optimization problem: 

sup 

(x,  y )  + ~llyll* < fly for y e  Y. 

Proof. Let q e C. Then the largest ball that is centered at q and contained in C 
has radius 

Go = inf 1 - -  ( q '  y ) )"  
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This follows from the fact that 

1 
Ilyll* (fly - (q' y)) 

is the distance of q from the hyperplane 

{x: (x, y )  = fly}. 

Thus ra(C) > ~ if and only if the system of inequalities 

(x, y) + ~I[YI[* < fly for y¢ Y 

is feasible. The desired conclusion follows immediately from this. [] 

2. Additional Geometric Properties 

The results in this section complete our survey of basic geometric properties of 
radii. They are stated without proof because they are not used in [GKI].  

By (1.3) it is true for each body C in an arbitrary d-dimensional Minkowski 
space that 

R,,( c) 
1 < -  and 1 < -  

rl(C) 
RdC) 
r,,(c)' 

with equality when C is symmetric. Upper bounds on these quotients are also of 
interest, and are supplied by the following results of [Bo], [Le], and lEg2]. 

(2.1) Ratios of Radii. For each body C in a d-dimensional Minkowski space, 

Ra(C ) 2d 
< - -  

rdC ) - d + 1 

and 

RI(C) d + 1 

r d( C) - 2 

For each d, the stated bounds are attained for some choice of  a d-dimensional 
and a body C c ~ .  

The upper bounds can be considerably reduced in the case of Euclidean spaces, 
as follows from old theorems of [J] and [St]. (See [DGK] for references to later 
proofs of (2.1) and (2.2),) 
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(2.2) Ratios of Radii in Euclidean Spaces. For each body C in the d-dimensional 
Euclidean space Rd2 it is true that 

RdC) < ( 2d ~ln  

r , (C)  - \ d  + 1] ' 

RI(C) < ~ for odd d, 
ra(C) - 

and 

RI(CO d + 1 
< - -  for even d. 

rd(C) - v /d  + 2 

In each case equality is attained when C is a regular d-simplex. 

For j-radii with 1 < j < d, the best results on ratios are those of [Pe]: 

(2.3) Ratios of Radii in Euclidean Spaces. For each body C in the d-dimensional 
Euclidean space Rd2, and for each j with 1 <_ j < d, 

l-,(C) 
< j + l .  

Also, 

R2(c) 
- -  < 2.151 
r (C) 

for each body C in Euclidean 3-space. 

Some important aspects of the behavior of radii in Euclidean spaces do not 
carry over to non-Euclidean Minkowski spaces. The following summarizes results 
of [K1], [Ga], and [KMZ]. 

(2.4) Circumspheres, Inspheres, and Inner Products. For each Minkowski space 
l~ o f  dimension d, the following three conditions are equivalent: 

(a) d = 2 or Nfl is Euclidean; 
(b) each polytope P in ~ is contained in a ball of  radius Ra(P) whose center 

belongs to P; 
(c) each polytope P in M contains a ball G of  radius rd(P) such that G's center 

belongs to the convex hull of G c~ bd(P). 

Thoush they are not used in I'GK1], the facts stated in (2.4) do have computa- 
tional consequences. Suppose, for example, that a polytope P c M is given and 
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it is desired to find how well P can be approximated, in a minimax sense, by a 
single point q ~ P. When d < 2 or the space ~A is Euclidean, the constraint q ~ P 
can be ignored and the problem can be treated as an unconstrained minimization 
problem. However, the constraint q ~ P cannot be ignored when d > 3 and M is 
not Euclidean. In this case, there arises a constrained minimization problem in 
which the minimax deviation from P may be greater than would be the case if q 
were required merely to lie in ~ .  

In addition to the inner and outer radii studied here, there are some closely 
related notions that deserve to be mentioned. To define them, let us consider, for 
a given Minkowski space M and an integer j with 1 < j _< d, the various ways of 
expressing M as the direct sum of a j-subspace and a (d - j)-subspace--that is, 

M = E • F  (dim E = j ,  dim F = d - j ) .  (1) 

For each p > 0, the intersection 

E • (F + ~,B) (2) 

is the image of the ball pB under the linear projection that carries • onto E and 
has F as nullspace. Let us call each set of the form (2) a j-proball o f  radius p, and 
for each body C c ~ define sj(C) as the largest radius p such that C contains a 
translate of a j-proball of radius p. Define Sj(C) as the smallest p such that, for 
some expression of the form (1) and for some translate F' of F, 

It is evident that 

C c F' + ((pS) c~ E). 

S 1 > S 2 ~ ' ' '  ~ Sd ,  

S 1 ~_ S 1, 

Sl < $2 < "'" <<. Sa, 

S a <_ S d, 

and for symmetric bodies, sl(C) = Sd(C) and sa(C ) = SI(C). 
Theorem (2.5) below can be proved by using the Blaschke-Kakutani character- 

ization of inner-product spaces [BI], [Ka]. The proof of (2.6) is similar to that of 
(1.3). 

(2.5) Relations Between Two Kinds of Radii. Suppose that M is a d-dimensional 
Minkowsk i  space and 1 < j <_ d. Then, for  each body C ~ ~ ,  

Sj(C) <_ r~(C) and Sj(C) >_ Rj(C), 

with equality when j = 1 or j = d. For 1 < j < d, the following three conditions 
are equivalent: 

(a) ~ is Euclidean: 
(b) sj(C) = r~(C)for each body C c ~ ;  
(c) Sj(C) = Rj(C)for each body C c M. 
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(2.6) Duality Between Inner and Outer Radii of Symmetric Bodies. I f  C is a body 
in a Minkowski space M, and - C  = C, then 

sj(C)Sj(C °) = 1 and S~(C)s~(C °) = 1. 

3. Rationality of Certain Polytope Radii 

Except for some assumptions of smoothness or rotundity, the results of Section 1 
apply to arbitrary Minkowski spaces. In this section vee are getting closer to 
computational questions and thus confine our attention to the spaces R~ for 
1 < p < oo. In Rdv each point x is given by its d-tuple (~1 . . . . .  ~a) of real coordinates, 
with 

when l < p < o o  

and 

Ilxlloo = max{l~ll . . . . .  ICal}. 

The conjugate space of R d is the space R~, where p is defined by the condition 
that 1/p + 1/p = 1. (When there is no danger of confusion, subscripts on the norms 
are suppressed and the norms in both R e and R~ are denoted simply by ]1 II.) 

This section establishes the algebraic tractability of certain radii of rational 
polytopes in certain spaces R~. Attention is confined to the case in which p or p 
is a positive integer or ~ .  Results are necessarily limited, for it is shown in [GHK] 
that if p = 2 and p is the inradius function for rational right triangles in R 2, or p 
is an integer greater than 2 and p is the circumradius function for rational isosceles 
triangles in R~, then there is no rationalizino polynomial for p- - tha t  is, for no 
polynomial ~o with rational coefficients can ~p(T) )  be rational for each triangle 
of the indicated sort. However, it turns out that there are a few (radius, exponent) 
pairs (p, p) for which the powers pP or p0 must be rational, thus providing very 
simple rationalizing polynomials in those cases. (It is convenient to define ¢o~ = 
for each ~ > 0.) The pairs that we know about are described in (3.1) below, where 
they are accompanied by explicit bounds on the magnitudes of the numerators 
and denominators in question. These bounds, expressed in terms of the size L of 
a rational presentation of the polytope P, are used in proofs [GK1] of the 
polynomial-time computability of certain powers of radii. 

Some definitions are required in order to discuss input size for the the two 
principal ways of presenting a polytope. When x is an integer, we define 

<x> = 1 + ['log(Ixl + 1)7, 

where the logarithm is to the base 2 and ['t/q denotes the integer ceiling of the 
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real number  t 7. When ? and 6 are integers and 6 > 0, we define 

A ~-presentation of a polytope P c R d consists of integers m and d with 
m > d > 1, and an m-tuple vl . . . . .  v,. of rational points of R d such that 

P = conv{v,  . . . . .  v.}.  

When 

V i : ~x6i 1 . . . . .  

the size of this input is defined as 

L = ( P > =  ~ ~ ~)ij. 

An ~¢tQ-presentation of a polytope P consists of integers m and d with m > d > 1, 
a rational m x d matrix A, and a rational m-vector b such that 

P = { x z  Rd: Ax < b}. 

When A = [~ij] and b = (ill . . . . .  tim), we define 

i = 1  j = l  i = 1  

and the size of the input is defined as 

L = ( P )  = <A) + (b ) .  

As is well known, a polytope P admits both a 3e'-presentation and an 
g -presen ta t ion ,  However, since P may have many  more vertices than facets (or 
vice versa), it may happen that the minimum size for one sort of presentation is 
much larger than the minimum size for the other sort. That  is why the complexity 
results for ~-presenta t ions  differ from those for ~t~-presentations. 

(3.1) Rational i ty  o f  a Few Powers  o f  Radii. Suppose that P is a rational polytope 
in R~, given by means of a ~e'. or ~f-presentation of size L. Under each of the 
additional assumptions listed on the left below, the power of the radius given in the 
middle can be expressed as the quotient of two positive integers neither of which 
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Assumption Radius Bound 

p e N u {oo} rI(PF 2 zpaL 
p~ N u {co} R l ( e :  2 ~ 

p e  • w {co}, P symmetric Ra(P) p 2 2pal 
p e {1, 2, oo} Ra(P) p 216d2L 

/Se ~ w {oo}, P symmetric ra(P) ~ 2 2pa3L 
pE{1, oo} rd(P) ~ 216a4/" 

Proof. The proof uses the following basic facts (see, e.g., [GLS]): 

(i) If the polytope P is given by a ~ -  or an o~¢:-presentation of size L, then 
each component of each vertex of P can be expressed as the quotient of 
an integer ~, and a positive integer 6 with (y),  (6)  < L - 1. This implies 
in particular that l Yl, 6 _< 2 L- 1. 

(ii) If v and w are rational d-vectors such that each of their components can 
be expressed as the quotient of integers of size at most L, then each 
component of v + w can be expressed as the quotient of two integers of 
absolute values at most 2 2L- 1 

(iii) If p e N and v is a rational d-vector whose components can be expressed 
as the quotient of two integers of absolute values at most 22t'- 1, then II vllg 
can be expressed as the quotient of two integers of absolute values at most 
2paL. 

Statement (i) is trivial for ~-presentations; actually, each component of each 
vertex of P is of size at most L - 2md + 2. For an ~e-presentation we apply 
Cramer's rule to express each vertex of P as the quotient of determinants of integer 
matrices that are given by selecting d linearly independent rows of the matrix 
(A, b). The assertion then follows by means of some elementary calculations. 
Statements (ii) and (iii) are trivial. 

Let us now turn to the proof of (3.1). 
With the aid of (i)--(iii) the statement about rl becomes obvious. 
To prove the statement about R1 we might try to proceed as follows. With 

Q = ~(P - P), it follows from (1.4) that RI(P) = RI(Q), and since Q is symmetric 
it follows from (1.2) that RI(Q) = r~(Q°) - ~. A ~-presentation of P of size L yields 
a ~-presentation of Q in Rap of size less than 2m2L, and this in turn yields an 
~-presentat ion for QO in R~ of size less than 2m2dL. (Note that we have to 
transform the rational presentation as an intersection of half-spaces to an integer 
presentation of this kind by multiplying by the appropriate common denomina- 
tors.) Now a sightly different version of the desired conclusion follows from the 
result of the preceding paragraph. 

For an ~e-presented polytope P, the approach of the preceding paragraph does 
not yield a bound of the required type, for in general Q may have exponentially 
many vertices and exponentially many facets (see [RS]). Thus in general we cannot 
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convert the rational presentations obtained into integral ~ -  or .,~¢-presentations 
by multiplying by the common denominators, for this might produce integers that 
are exponential in the size of the input. However, we can deal with the width of 
~'~-presented polytopes in the manner described in the next paragraph, and this 
also yields the desired bound for ~e~-polytopes. 

By (1.9) there exist two sets F~ = conv{w o . . . . .  Wk}, F2 = conv{wk+ 1 . . . . .  Wd} in 
the boundary of P such that the set 

H = lin{w 1 - w o . . . . .  Wk -- WO, Wk- I -- Wd . . . . .  Wd- 1 -- Wa} 

= lin((F1 -- Wo) u (F 2 - Wd)) 

is a (d - 1)-subspace of •d and the distance between the hyperplanes w o + / - / a n d  
Wd + H is precisely 2RI(P ). Suppose (without loss of generality) that w o # 0 and 
let Yo be the solution of the linear system 

(y, w, - Wo) = 0 

(y, wi - Wd) = 0 

(y, WO) = 1. 

(1 <_i<_k),  

(k + l < i < d - 1 ) ,  

Since all vertices of P are rational with absolute values of numerators and 
denominators bounded by 2 L- 1, it follows from Cramer's rule (after multiplying 
the equations by the respective common denominators) that Yo is a rational vector 
with absolute values of numerators and denominators bounded by 2 2d2z. However, 

1 
2RI(P ) = ~ (1 - ( w  d, Yo)),  

~lYotip 

so R I ( P )  ~ is a rational number with bounds as asserted. 
When P is symmetric, it follows from (1.3) that Rd(P) = r l (P)  and rd(P) = RI (P) .  

That completes the discussion of the cases in which P is symmetric. 
For  the asymmetric case, let us first dispose of the polytopal norms I[ II 1 and 

II II~. 
We begin with R a. By (1.11) there are d + 1 vertices w o . . . . .  wa of P such that 

Ra(P) = Rd(T),  where T is the d-simplex conv{wo . . . . .  wa). Now let Y denote the 
set of all d-vectors of the form (0 . . . . .  0, + 1, 0 . . . . .  0), and let Z be the set of all 
vectors of the form ( _  1 . . . . .  + 1). Then Rd(P) is the solution of the linear system 

min p 

p + ( c , y ) > ( w ~ , y )  (1 < j _ < d ; y e r )  

for P c R~ and of the same problem with Y replaced by Z for P c R~. In both 
cases, the vertices of the associated feasible region are rational vectors with 
absolute values of numerators and denominators bounded by 2 2a'. Notice that in 
an optimal solution c is a circumcenter of P. That  takes care of Rd. 
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In the following, we deal with the inradius in R~ and a R~, starting with the 
case of a ~ -po ly tope  P = conv{v~ . . . . .  v=} in RJ. With Y as before, it is easy to 
see that rd(P) is the solution of the following linear program: 

max p 

z~"vj - p y  - c = 0 ( y  ~ Y) 

z~')= 1 ( y e  Y) 
j = l  

z~ y) > 0 ( j  = 1 . . . . .  m; y e Y). 

Thus, by Cramer's rule and some calculations, rAP  ) is of size at most 216#L. Notice 
that in an optimal solution c is the center of an insphere. 

Next, let P be the ~-po ly tope ,  P = (']7': l{x e Re: (x, a,)  < fl,}, in R~ or R~. 
By (1.14) rd(P) is the solution of the linear program 

max p 

<x, a~> + plla~ll* -< P~ (i = 1 . . . . .  m). 

This characterization of r~(P) can be used to obtain the asserted bounds if we can 
show that tlal It* . . . . .  Ilamll* are rational and of suitable size, and that follows easily 
from the facts that It tll is conjugate to 11 II ® and that It 11 ® is conjugate to ti II l- 

For polytopal norms there remains only the case of a ~e--presented polytope 
P c R~. Let 

r 
P =  ~ { x e a L :  ( y i ,  x )  < 1} 

t=1 

be the irredundant rational .,~-representation of P that is naturally associated 

with the given ~-presentation. (This presentation is obtained by solving ( d )  

systems of linear equations and disregarding all half-spaces whose bounding 
hyperplanes are not determined by facets of P.) The yi's are rational vectors with 
absolute values of numerators and denominators bounded by 2 2a2L. By (1.12) there 
are d + 1 of these half-spaces--say with indices 0, . . . .  d--such that rAP)  = rd(T), 
where 

d 

r =  N{x RL: (y,, x) < 1). 
t=O 

This is an ,~-presentation, and our previous results can be applied. 
There remains only the case of the circurnradius Rd(P) of an asymmetric 

presented polytope P c R~. Let V, c, and p denote P's vertex-set, circumcenter, 
and circumradius, and let S denote the unit sphere of the space. Since the sphere 
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c + pS intersects V, p is the distance from c to a point of V. The points of V are 
all rational, and hence the number p2 must be rational if the point c is rational. 
In showing that c is rational, the relevant geometric properties of Euclidean spaces 
are the following: 

the set of points equidistant from two given points is a hyperplane; 
the circumcenter of a polytope belongs to the affine hull of the polytope. 

Among Minkowski spaces of dimension at least three, each of these properties 
actually characterizes Euclidean spaces (see [D] and [PK] for the first property 
and [K1] and [Ga] for the second). 

Now let Vo . . . . .  v, be the points of the intersection V n (c + pS), and write each 
as a row vector. Then the center c = (71 . . . . .  ?d) is the unique solution of the linear 
system: 

( v j - v j _ l , c )  = ~(llvjll 2 -llvj_lll22) ( j =  1 . . . . .  r), 

TiV  i = C, 
i=0 

z i = l .  
i=0 

This implies that c is a rational vector with the property that, for each component 
?i of c, both the numerator and denominator are of absolute value at most 2 6a2t, 
whence p2 is a rational number whose numerator and denominator are of absolute 
value less than 216a3L. [] 

4. Difficulties in Computing Radii 

Each radius computation requires finding the global optimum of a certain 
nonlinear function. It is standard practice, in seeking to optimize a function, to 
look first for necessary conditions for optimality, and then to attempt to isolate 
the true optimum among the "solutions" that satisfy the necessary condition. 
Difficulty may be expected when there are many such solutions. That is illustrated 
here by several examples involving radii. 

For a symmetric polytope P centered at the origin in M, it is true that 

rt(P) = Rd(P) = max{tlxl[: x ~ P}, 

and it is well known [Ba] that this global maximum is attained at a vertex of P. 
However, it may happen that only two vertices provide the global maximum for 
the norm function while all others provide strict local maxima that are not global 
maxima. When the polytope is ~-presented,  this is a serious obstacle to determin- 
ing the global maximum, for the possible number of vertices is not bounded by 
any polynomial in the size of the presentation. Indeed, it is proved in [BGKV] 
that, for each positive integer p, the problem of determining max{ I]x liP: x ~ P} in 
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a finite-dimensional Ep space is ~P-hard,  even for the restricted situation in which 
P is a parallelotope centered at the origin. 

When a polytope P is "U-presented in R~, the pth power of the diameter 2rl(P) 
can be determined by the obvious O(L 2) procedure: compute the pth powers of 
distances between pairs of vertices, and take the maximum of the numbers thus 
obtained. When p = 2, this obvious algorithm has been significantly improved for 
d _< 3 [PS], [Y] but not for d >_ 4. As is noted in [PSI, that appears to be related 
to the fact t'nat i fa  polytope P c R~ has m vertices and k diametral pairs of vertices, 
then k < m when d = 2 [Erl]  and k _< 2m - 2 when d = 3 [Gr], [He], [Str], while, 
for d > 4, k may be almost as large as m2/2 [Er2]. In the next two paragraphs the 
construction of [Er2] is modified slightly to bring local maxima more clearly into 
the picture. 

Suppose that ~: is a Euclidean space of dimension d > 4, expressed as the direct 
sum of two subspaces El of dimension d~ > 2. Let Vii be a finite subset of E~'s unit 

s p h e r e  S i such that the diameter of Vi is less than v/2 and the set Pi = c o n v  V/is 
of dimension d i. Then the d-polytope P = conv(V t u 1,'2) has vertex-set V t u V 2 

and its diameter x//2 is attained as ]iv1 - v21[ for each vl e V1, v2 e V2. 
Now perturb the set 1/1 w Vz by replacing each v e I,'1 u V2 with a multiple g~v 

for some p, > 1, where the #o's are sufficiently small to preserve (for the perturbed 

V/'s) the conditions that the diameter of V~ is less than x/~ and that S~ is intersected 
by each segment that joins two points of V~. Then on the (perturbed) P~, the norm 
attains a strict local maximum at each point of V~, and for the (perturbed) 
d-polytope P, the distance function 

~(x, y ) =  t l x -  y ll (x, y )e  P x P, 

attains a strict local maximum at each (vl, v2)e VI x V2. The length-function l~(P) 
(defined on Us unit sphere 5) attains a strict local maximum at each point, 

q(vl, v2) = (vt -- v2) e 5. 
l l v ~  - -  vzlt 

Of course the multipliers #~ can be chosen so that the global maximum of the 
length-function is attained only at a single pair of antipodal points of 5. 

The next construction is formulated as a theorem, because it plays an essential 
role in one of the NP-completeness proofs of [GK1]. 

(4.1) The Width of Certain Simplices. For an arbitrary f ixed p e El, oo], let 
{eo . . . . .  ed} and {eo . . . . .  ed} denote the standard dual bases for the respective spaces 
Rd + 1 and •d + t = (Rdp+ 1),. Suppose that rio . . . . .  ~ld are positive real numbers, and let P 

d 
Y =  Z ?heiE~d+l 

i=O 
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Consider the hyperplane 

1o G = X = ~iel: <X, y> = 1 c ..p , 
i=0 

and for each i let 

1 
V i = - -  e i ~  G .  

tli 

For each nonempty subset I of  the index-set N = {0 , . . . ,  d}, let 

F I = conv{vi: i~ I} c G, 

and when p > 1 define 

1 
tr, = E t/~, q ,  = - -  ~ t/,evi ~ relint F t. 

i z l  (7 I  i z l  
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1 1 
bt(I, J) - + ; 

max/z / t/i m a x j z j  r~j 
max"-  

l_ 1 

for 1 < p <  oo, 

1 1 ~l/p 
bp(l, J ) =  ( ~ , z , ~ ) p _ l  + (E j z j t l~ )p_ l j  . 

When p > 1 it is true for all (I, J) that 

bp(I, J) = Hqx - qjIIp. 

Proof. To  see that  b~(I, J) = IIq~ - qzllp when p > 1 just  apply the formula for 
the fp norm, using the fact that  p + p = p/3 and that  since I and J are comple- 
mentary,  

] l q t -  qz]lp = II(llqtllp, Ilq~llp)llp. 

Then FN is a d-simplex in G, and, for 0 < k < d, the k-faces o f  F N are precisely the 
sets F~ with I c N and [II = k + 1. The width o f  F N relative to its affine hull G is 
the minimum, over all pairs (I, J) of  complementary proper subsets of  N, o f  the 
quantities bp(I, J) defined as follows: 
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In particular, for 1 < p < oo we have 

1 1 
IIq, - qal[g -- -~at i~,E ~I? -t)p + ~ j~s" rlY-1)P 

1 1 

For  each (I, J), the d-simplex F N is supported in G by a unique pair of parallel 
( d -  1)-flats H~ and H s that contain F I and F a respectively. The existence and 
uniqueness of the ( d -  1)-flats H~, H s follows from dimensional and linear 
algebraic considerations independent of p, and (1.9) then implies that the width of 
F N in G is equal to the minimum over all (I, J) of the distance 6p(H~, Ha) 
between H I and H a with respect to the Ep norm in R ~+ t. When p > 1 the points 
qj and qa are defined, and since they belong to H~ and H a respectively it follows 
that 6p(H~, Ha) < I[ql - qsl[p- Hence for p > 1 it remains only to show that 

fip(Ht, Ha) >- [Iqi -- qsllp. 

To establish the desired inequality for 1 < p < ~ ,  we shall produce a linear 
functional 

and two numbers 0t and fl such that 

- 1  F x c qg~)(ct), F:  ~ qgi.:(fl), 

and 

>- tl q1 - qs II p. 

This implies that the distance between the parallel d-flats q~ZJ(~) and q~i.J(fl) in 
Rg +1 is at least Ilql - qsllp, and from this it follows that the same is true of the 
intersections of these hyperplanes with G. However, these intersections are pre- 
cisely the (d - 1)-flats//i  and Ha. 

For l < p < o o s e t  

1 1 

q~,s a~- 1 ~I  a~- 1 j~s 

1 1 
ct = q~t,s Fx = tT~- 1, fl = q~t,s Fs - a~- t" 
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Since 

it follows that 

II ,, lI  = ÷ , 

I °~ - f l l  l iar  - I  + 1/tr$ -1 
tlq~mll~ (i/af -I + I/a$-I) I/p 

1 1 y - l /~  
= ~ + o.~_---q] = llq, -- q~rIli,. 

Hence the proof is complete except for p = 1 and p = oo. 
Now note that if r/t denotes a point of R ttt whose coordinates are the rh's for 

i e I, and r/s is similarly defined, then the quantity bt,(I, J) is given for all p by the 
following formula that involves the Yp norm in RIII and [~ I'tl and the d r norm in ~2: 

Ilrhll~ IIr/~ll m" 

For  1 < p < ~ we have shown that 

bp(I, J) = C~p(Hl, H j), 

and hence by a routine continuity argument the latter equality continues to hold 
when p = 1 and when p = oo. (Use the fact that as p ~ 1 or p ~ oo, the convergence 
of II lip to II lit of II I1® is uniform on compact subsets of Rd+t.) A continuity 
argument also shows that bo~(I, J) = Itql -qJ l l  o~. [] 

By (4.1) the numbers of the form tlqx - qjllp are exactly the ones realized as the 
distance between two supporting hyperplanes of the simplex F N which satisfy the 
final necessary condition on dimension-sums provided by (1.9). There may be as 
many as 2 l~q - 2 such numbers, and each is a candidate for being the width of 
the simplex. The list of candidates could in many cases be reduced by applying 
(1.10)'s "no weak-separation" condition. However, finding the width of the simplex 
does require deciding, at least implicitly, which number of the form ]lqx - qjttp is 
smallest, and that does not appear to be easy. Indeed, (4.1) is used in [GK1]  to 
show that the problem of determining the width of a simplex is UPohard. There 
is no need to distinguish here between ~e'-presented and ~¢6-presented simplices, 
because for a simplex either sort of presentation can be derived in polynomial 
time from the other. The essential ditticulty seems to come from the fact that the 
number of complementary pairs (L J) (or, equivalently, the number of facets of 
the difference body) increases exponentially with the dimension. 

The set F N of (4.1) is a d-simplex in R d+t, and its vertices have rational 
coordinates. Nevertheless, F N is not a polytope in our special sense because it is 
not full-dimensional. Of course, it does have nonempty interior relative to its own 
affine hull G, and even though G depends on the choice of the numbers ~/i it is 
true when p = 2 that G is always isometric to the space R~. However, even when 



278 P. Gritzmann and V. Klee 

all the r/i are equal and the simplex F N is therefore regular, F N may fail to be 
similar to any rational (equivalently, to any integral) d-simplex in R~. (See the 
paragraph following (4.2).) For  use in our analysis of computational complexity, 
that difficulty is overcome in [GK1] by a simple technical device. However, the 
following related number-theoretic problem appears to be both difficult and 
interesting. 

(4.2) Two Questions about Integral Presentations of Simplices. For each sequence 
k = (Xo . . . . .  xd) of positive integers, let 

T(k) = conv{xoe0 . . . . .  xae~} ~ R~ + 1. 

Then: 

(a) For which k is the d-simplex T(k) isometric to an integral d-simplex in ~d2? 
(b) For. which k is the d-simplex T(k) similar to an integral d-simplex in Rd? 

A result of [Sc], [P], and I-M] settles the case of (b) in which all the k i are 
equal. They show that R d contains a regular d-simplex with integral vertices if and 
only if one of the following three conditions is satisfied: 

(i) d is even and of the form m 2 - 1; 
(ii) d is of the form 4m - 1; 

(iii) d is of the form 4m + 1 where 2m + 1 is a sum of two squares. 

For a polytope P in Euclidean 3-space R~, R2(P) is the radius of a smallest 
circular cylinder containing P. Difficulties in computing this may be related to the 
remaining examples in this section. 

For R 2 in R2 a, there is no result of Helly type such as (1.11) and (1.12). Consider 
a regular (2m + 1)-gon situated in a plane in R2 a. Since half its width in its affine 
hull is smaller than its circumradius, and since that width is reduced by removing 
any vertex, none of the minimum containing 'cylinders for the (2m + 1)-gon is 
minimum for any proper subset of the vertices. This example can easily be modified 
to show that there is no Hetly-type theorem for R 2 that applies to 3-polytopes 
in R]. 

There is no upper bound on the number of vertices of a 3-polytope P in R2 a 
such that there are at least two cylinders of radius R2(P), each of which contains 
all vertices of P. For example, consider two different cylinders of the same radius 
whose axes intersect and are perpendicular to each other. Let C be the curve 
consisting of all points that belong to the boundaries of both cylinders. Then there 
is a six-pointed subset V of C (the vertex-set of a octahedron) such that, for each 
finite set W with V c W c C, each of the cylinders is a minimum cylinder among 
those containing the polytope conv I4. 
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