

Separating Convex Sets in the Plane

Jurek Czyzowicz, ¹ Eduardo Rivera-Campo, ² Jorge Urrutia, ³ and Josepth Zaks⁴

- ¹ Département d'Informatique, Université du Québec à Hull, Hull, Québec, Canada
- ² Departamento de Matemáticas, Universidad Autónoma Metropolitana-I, México D.F., México
- ³ Department of Computer Science, University of Ottawa, Ottawa, Ontario, Canada
- ⁴ Department of Mathematics, University of Haifa, Haifa, Israel

Abstract. Given a set A in R^2 and a collection S of plane sets, we say that a line L separates A from S if A is contained in one of the closed half-planes defined by L, while every set in S is contained in the complementary closed half-plane.

We prove that, for any collection F of n disjoint disks in R^2 , there is a line L that separates a disk in F from a subcollection of F with at least $\lceil (n-7)/4 \rceil$ disks. We produce configurations H_n and G_n , with n and 2n disks, respectively, such that no pair of disks in H_n can be simultaneously separated from any set with more than one disk of H_n , and no disk in G_n can be separated from any subset of G_n with more than n disks.

We also present a set J_m with 3m line segments in R^2 , such that no segment in J_m can be separated from a subset of J_m with more than m+1 elements. This disproves a conjecture by N. Alon *et al.* Finally we show that if F is a set of n disjoint line segments in the plane such that they can be extended to be disjoint semilines, then there is a line L that separates one of the segments from at least $\lceil n/3 \rceil + 1$ elements of F.

1. Introduction

Given a collection F of disjoint compact convex sets in the plane, an element $A \in F$, and a subcollection S of F, we say that a line L separates A from S if A is contained in one of the closed half-planes defined by L, while every set in S is contained in the complementary closed half-plane.

In [3] Tverberg proves that, for any positive integer k, there is a minimum integer N(k) such that in any family F of N(k) or more disjoint compact convex sets in the plane there is one that can be separated from a subfamily with at least k sets. In [2] Hope and Katchalski prove that $3k - 1 \le N(k) \le 12(k - 1)$.

In this article we show that, for any collection F of n disjoint disks in R^2 , there is a line L that separates a disk in F from a subcollection of F with at least $\lceil (n-7)/4 \rceil$ disks. We produce configurations H_n and G_n with n and 2n disks, respectively, such that no pair of disks in H_n can be simultaneously separated from any set with more than one disk of H_n ; and no disk in G_n can be separated from any subset of G_n with more than n disks.

In Section 3 we present a configuration J_m with 3m line segments in R^2 , such that no segment in J_m can be separated from a subset of J_m with more than m+1 elements. This disproves a conjecture by Alon *et al.* presented in [1]. Finally, we show that if F is a collection of n line segments such that they can be extended to be disjoint semilines, then there is a line L that separates one of the segments from a subcollection of F with at least $\lceil (n+3)/3 \rceil$ elements.

The results in this article remain valid for corresponding collections of convex sets with pairwise disjoint relative interiors. This allows us to present, as examples, the configurations H_n , G_n , and J_m that contain sets with common boundaries but pairwise disjoint relative interiors.

2. Separating Disks

In [1], Alon et al. proved that there is a constant c>0 such that, for any family F with n disjoint congruent disks, there is a line L that leaves at least $k/2-c\sqrt{k}\sqrt{\log k}$ disks on each closed half-plane defined by L. When the disks are allowed to have arbitrary radii the situation is entirely different as the following example illustrates.

We describe a configuration H_n of n disks in which no pair C_i , C_j of disks in H_n can be simultaneously separated by one line L from any other pair C_k , C_l in H_n .

Let $S_1 > S_2 > \cdots > S_n$ be *n* different slopes such that $0 \le S_i \le \varepsilon$, with ε small enough. Let H_n consist of *n* disks defined recursively as follows:

- (a) C_1 is any disk in R^2 .
- (b) C_{i+1} is a disk tangent to C_i such that the slope of the line that separates them is S_i .
- (c) C_{i+1} is large enough such that any line L separating C_j from C_{i+1} , $1 \le j < i+1$, has slope s(L) contained in the interval $(S_i \delta, S_i + \delta), \delta > 0$, δ much smaller than ε . Observe that s(L) is contained in the interval $(-\delta, \varepsilon + \delta)$ since $0 \le S_i \le \varepsilon$.

Moreover, if δ is small enough, C_{i+1} can be chosen such that:

(d) Any line separating C_i from C_i , $1 \le j < i$, intersects C_{i+1} .

It follows that there are no different pairs of disks $\{C_i, C_j\}$ and $\{C_k, C_l\}$ in H_n , such that there is a line separating $\{C_i, C_j\}$ from $\{C_k, C_l\}$. For let us assume that

i is the smallest of i, j, k, and l, and that k < l. It now follows from (d) that any line separating C_i from C_k must intersect C_l .

Notice that in H_n , C_i can be separated from C_1, \ldots, C_{i-1} , $i = 1, \ldots, k$, and that C_i cannot be separated from any pair C_k , C_l , i < k < l.

For any family of disjoint disks we have the following theorem:

Theorem 1. In any family F of n disjoint disks, there is one disk that can be separated from a subfamily of F with at least $\lceil (n-7)/4 \rceil$ disks.

The following lemma will be used in the proof; the reader may wish to verify it.

Lemma 2. Let H be a family of m disjoint disks, all of which are intersected by two orthogonal lines. There is a disk in H that can be separated from a subfamily of H with at least $\lceil (m-5)/2 \rceil$ disks.

Proof of Theorem 1. Sweep a vertical line L_1 , from left to right, until one disk is left to the left of L_1 . Then sweep a horizontal line L_2 , from bottom to top, until a disk is left below L_2 . Let n_1 and n_2 denote the number of disks to the right of L_1 and above L_2 , respectively. Also let H be the set of disks in F, intersected by both L_1 and L_2 and denote by n_3 the number of disks in H. Clearly, $n_3 \ge n - n_1 - n_2 - 2$.

By Lemma 2, there is a disk in H that can be separated from a subfamily with at least $\lceil (n_3 - 5)/2 \rceil$. If $n_1 < \lceil (n - 7)/4 \rceil$ and $n_2 < \lceil (n - 7)/4 \rceil$, then $\lceil (n_3 - 5)/2 \rceil \ge \lceil (n - 7)/4 \rceil$ and the result follows.

The following example shows that, occasionally, we cannot separate any disk of a family of m disks from any subfamily with more than m/2 disks.

To construct the family G_n let us take a copy $H'_n = \{C'_1, C'_2, \ldots, C'_n\}$ of the configuration H_n as follows: reflect H_n along the x-axis and translate it in the northwest direction until all the lines separating C_i from C_j intersect only C'_n in H'_n and all lines separating C'_i from C'_j intersect only C_n in H_n (see Fig. 1).

Any line separating two elements C_i , C_j in H_n leaves at most C_1, \ldots, C_i on one side and C'_1, \ldots, C'_{n-1} on the other; similarly, for any line separating two elements in H'_n . Then G_n is a configuration with 2n disks and none of them can be separated from any set of disks in G_n with more than n disks.

Fig. 1. $C_1, C_2, \ldots, C_{n-1}$ are contained in a small circle above C_n .

Separating Line Segments and Semilines

In [1] the following conjecture is presented: for any collection F of n disjoint line segments on the plane, there is an element S of F that can be separated from close to n/2 elements of F. In this section we disprove the conjecture by producing a family J_m of 3m line segments such that no element of J_m can be separated from more than m+1 elements of J_m .

To describe J_m we use a configuration due to K. P. Villanger, see [3]. He constructs a family T of m line segments L_1, L_2, \ldots, L_m with the property that, for each $k = 3, \ldots, m$, L_k intersects the convex closure of $L_i \cup L_j$, $1 \le i < j < k$, and therefore L_k cannot be separated by a line from $\{L_i, L_j\}$ (see Fig. 2).

His construction may be reproduced in such a way that L_1, L_2, \ldots, L_m have slopes $0 = S(L_1) < S(L_2) < \cdots < S(L_m) = \delta < \pi/2$, respectively; and such that, for $i = 1, 2, \ldots, m$, the left endpoint of L_{i+1} lies in an interior point of L_i within distance ε of the left endpoint of L_1 (see Fig. 3).

Our example is a set J_m of 3m line segments consisting of three copies $T_0 = \{L_{0,1}, \ldots, L_{0,k}\}$, $T_1 = \{L_{1,1}, \ldots, L_{1,k}\}$, and $T_2 = \{L_{2,1}, \ldots, L_{2,k}\}$ of T placed around a triangle Q with vertices v_0 , v_1 , v_2 (see Fig. 4). The values of ε and δ are chosen in such a way that the line supporting any element of T_i , intersects all the elements of T_{i+1} ; addition taken mod 2.

Let us consider the case where the segments in F can be extended to semilines so that they remain pairwise disjoint.

Fig. 3

- - 6

Theorem 3. Let $F = \{L_1, \ldots, L_n\}$ be a family of n disjoint line segments, $n \geq 4$. If they can be extended to form a collection of disjoint semilines, then there is a line L that separates an element L_i of F from a subset of F with at least $\lfloor n/3 \rfloor + 1$ elements.

Proof. If there is an element L_i of F that can be extended to a whole line without intersecting any other element of F, then L_i can be separated from a subfamily of F with at least $\lceil (n-1)/2 \rceil$ elements of F. Suppose then that the line supporting each L_i intersects at least another element L_i of F. Extend the elements of F as much as possible until a family $F' = \{L'_1, \ldots, L'_n\}$ of semilines is obtained such that;

- 1. The endpoint of every element of F' lies on an interior point of another element of F'.
- 2. No two elements of F' cross each other (see Fig. 5).

We say that L'_i hits L'_j if the endpoint of L'_i lies on L'_j . For example, in Fig. 5 L'_1 hits L'_4 . It is easy to see that in F' there is a cyclic sequence of elements, say $L'_1, \ldots, L'_j, j \leq n$, such that L'_{i+1} hits $L'_i, i = 1, \ldots, j-1$, and L'_1 hits L'_j .

For the case when j = n we can easily show that there is an element of F separable from a set with at least $\lceil n/2 \rceil$ elements of F; in the remainder of this section we assume that j < n.

Fig. 5

For every i = 2, ..., j let S_i be the subset of F' consisting of L'_i together with all the elements of F' contained in the open region bounded by L'_i and L'_{i-1} and let S_1 be the subset of L' consisting of L'_1 and all elements of F' contained in the open region bounded by L'_1 and L'_j .

Let i be the smallest index such that the line L supporting L'_1 intersects L'_i . Then it is easy to see that the set $A = S_2 \cup \cdots \cup S_{i-1}$ is separable from L_1 . It is also easy to see that $B = S_i$ is separable from L'_{i-1} and that

$$C = S_{i+1} \cup \cdots \cup S_i \cup S_1$$

may be separated from L'_i (see Fig. 6).

However, since $A \cup B \cup C = F'$, at least one of them has $\lfloor n/3 \rfloor$ elements; moreover, if not all their cardinalities are the same, then at least one of them has $\lfloor n/3 \rfloor + 1$ elements and the result is proved. Assume then that A, B, and C have the same cardinality. Since j < n, then at least one of the sets S_i , without loss of generality say S_1 , contains more than one element $L'_a \in S_1$, $L'_a \neq L'_1$. It is now easy to see that L_a is separable from $A \cup \{L'_1\}$.

Conclusions

The segments in the example J_m may be extended to semilines in such a way that they remain pairwise disjoint. This shows that the bound in Theorem 3 is tight. We think that the $\lceil (n-7)/4 \rceil$ lower bound given in Theorem 1 should be improved to something close to n/2. Like Alon et al. some of us believe that in any family F of n disjoint line segments there is one that can be separated from considerably more than $\lceil (n-1)/4 \rceil$; perhaps from close to n/3 segments. Unlike them, some of us think that the $\lceil (n-1)/4 \rceil$ bound cannot be substantially improved.

References

- N. Alon, M. Katchalski, and W. R. Pulleyblank. Cutting disjoint disks by straight lines, Discrete Comput. Geom. 4 (1989), 239-243.
- 2. K. Hope and M. Katchalski, Separating plane convex sets, Math. Scand., 66 (1990), 44-46.
- 3. H. Tverberg, A separation property of plane convex sets, Math. Scand. 45 (1979), 255-260.

Received November 27, 1989, and in revised form June 22, 1990.