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Abstract. Under what conditions can a simple polygon be tiled by parallelograms? 
In this paper we give matching necessary and sufficient conditions on the polygon 
to be tilable and characterize the set of possible tilings. We also provide an etficient 
algorithm for constructing a tiling. 

1. Introduction 

Given a polygon, P, in the Euclidean plane, we are interested in tiling P by 
parallelograms, i.e., partitioning it into parts, each of which is a parallelogram. 
The allowable set of tiles is the entire class of parallelograms. A particular tiling 
may use several noncongruent parallelograms. The polygons we consider are 
simple (no self-intersection) and without holes. 

The current tiling literature deals mostly with tiling of infinite regions (see, e.g., 
1-10]). Most of the papers on tiling finite regions deal with situations where the 
decision problem is trivial (a tiling always exists), and the issue is to find a tiling 
which is optimal in some sense I13] (best running time, least number of tiles, etc.). 
Examples are: tiling rectilinear polygons with rectangles 1,12], tiling polygons with 
trapezoids 1,1], and triangulating polygons [2], [14]. 

Thurston [15] uses combinatorial group theory to handle problems of tiling 
polygonal regions with simple shapes such as dominos and hexominos. Kenyon 
I-11] has independently considered the problem of tiling polygonal regions with 
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parallelograms and shown that conditions similar to ours are necessary for a tiling 
to exist. He has also proved that this problem for polygons with holes is NP-hard. 

Our solution is complete and quite simple. We use several tools from combina- 
torial optimization and computationa~ geometry to obtain necessary and sufficient 
conditions and derive an efficient tiling algorithm. Our algorithm runs in time 
O(n 2) for an n-vertex polygon. This is optimal for certain classes of polygons (such 
as convex polygons), for which the number of tiles required is proportional to n 2. 

In what follows, unless otherwise stated, tiling a polygon will mean tiling it with 
parallelograms. In the next section we describe a structure which underlies any 
tiling, and is central to our intuition about the tiling problem. Then we present a 
simple necessary and sufficient condition for tilability of convex polygons. In 
Section 4 we introduce an additional condition which is required for tilability of 
general polygons. In Section 5 we prove the main theorem, namely, the adequacy 
of these two conditions. In Section 6 we describe our tiling algorithm and give a 
finer characterization of the set of possible tilings. 

2. The Underlying Structure of a Tiling 

In this section we describe a basic structural property of parallelogram tilings. 
For tilings 3" and ~ of a polygon, P, we say that N is a refinement of 3- if g¢ is 
obtained from f by further partitioning some of its tiles. Two tiles are adjacent 
if an edge of one overlaps with an edge of the other. They share an edge if their 
overlapping edges are of equal length. Now, any two adjacent parallelograms can 
be refined (each partitioned into at most three tiles) so that in the result, the two 
tiles that are adjacent share an edge (Fig. l(a)). By iterating this operation (Fig. 
l(b)), we obtain a refinement, whose structure is described in Lemma 1 below. 

A tiling partitions the boundary of the polygon into (edge) segments, where each 
segment is the intersection of the boundary of the polygon with an edge of a tile. 
A path of parallelograms (Fig. 2) is a sequence Pl, P2 . . . . .  Pk for which Pi shares an 
edge with Pi+ t for all i, and all the edges shared along the path are parallel to 
each other. The path connects edges e I and ek, which are the edges of Pl and Pk 
respectively, that are not shared by other tiles and are parallel to the shared edges 
of the path. 

Lemma 1 (Structure Lemma). Any tilable polygon, P, admits a tiling, Jr, which 
has the following properties: 

1. Every two adjacent tiles in ~ share an edge. 
2. ~ partitions the boundary of P into segments such that each segment is 

connected to another segment by a path of parallelograms in ~.  

Proof. By the discussion above, any tiling of P can be refined into a tiling, ~ ,  
with these two properties. Thus ~t is also a tiling of P. [] 

A matching (on a polygon, P) is a partition of the boundary of P into segments 
together with a paring of these segments such that each segment is paired with 
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(a) Refining adjacent tiles. (b) Refining a whole tiling. 
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Fig. 2. A path of parallelograms. 
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an antiparallel segment of equal length. Note that the tiling of Lemma 1 naturally 
induces a matching, where two segments are matched (paired) if they are connected 
by a path of parallelograms. In this paper we concentrate on such tilings. 

3. The Balance Condition and Convex Polygons 

In this section we present the balance condition, and show that it gives an exact 
characterization of tilable convex polygons. We start with several definitions. 

It is convenient to view P's boundary as oriented clockwise. With respect to 
this orientation we speak of tail(e) and head(e) of an edge e of the polygon. The 
edges of the polygon can be partitioned into equivalence classes where two edges 
are in the same class if they are parallel. We call the equivalence classes slope 
classes. Two edges in the same slope class are opposite (or antiparallel) if their 
orientations are 180 ° apart. 

Balance Condition. In every slope class, S, the vector sum of all the (oriented) 
edges in S is zero. 

Lemma 2. A polygon, P, is tilable only if  it meets the balance condition. 

Proof If two boundary segments are matched, they must be opposite and of 
equal length. Thus this lemma follows from Lemma 1. [] 

For a convex polygon, each slope class contains at most two edges. Therefore, 
in order to meet the balance condition, each class must contain exactly two 
equal-length edges. This turns out to be sufficient for tilability. 

Theorem 1. A convex polygon, P, is tilable if  and only if  it respects the balance 
condition. 

Proof By Lemma 2, the condition is necessary. To prove sufficiency, we construct 
a tiling of P inductively in the number of slope classes of P. As noted, each slope 
class contains two equal-length edges, so if P has two slope classes, it is a 
parallelogram. Figure 3 illustrates the induction step below. Let {A, A'} be some 
slope class of P. Let C be the part of P's boundary from head(A') to tail(A) and 
let C' be the piecewise-linear curve parallel to C from tail(A') to head(A). The 
region bounded by C and C' can clearly be tiled with a path of parallelograms. 
The remaining part of P is a convex polygon satisfying the balance condition with 
one fewer slope class (the pair {A, A'} is gone), and is, therefore, tilable by the 
inductive hypothesis. [] 

We note that this tiling minimizes the number of tiles; (n/22) for an n-sided 

convex polygon. We also point out that a convex polygon is tilable if and only if 
it is a zonotope. The reader is referred to [6] for a discussion of zonotopes. 
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Fig. 3. Tiling a convex polygon. 

4. The Convex Crossing Condition 

In the following sections, until explicitly stated, we consider only polygons that 
admit a tiling for which the corresponding boundary segments are whole edges. 
Furthermore, we deal only with such tilings. 

The balance condition is a necessary condition for tiling, which is also sufficient 
for convex polygons. However, it is not sufficient for general polygons. A simple 
example is shown in Fig. 4. This polygon has a "waist," i.e., a place where it is 
too narrow to permit matching of the horizontal pair of edges. However, the 
absence of a waist is not sufficient for titability. An example is shown in Fig. 5 [4]. 

Two pairs of edges {A, A'} and {B, B'} c r o s s  if we encounter exactly one of B 
and B' in the clockwise path from A to A'. 

Fig. 4. Untilable balanced hourglass. 
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A 

Fig. 5. Untilable waistless polygon. 

Lemma 3. If  two pairs cross, then in any tiling in which they are, respectively, 
matched, the connecting path of one pair intersects the connecting path of the other. 

Proof. Since any connecting path is a continuous region in the plane. []  

Assume, without loss of generality, that the sequence of edges encountered 
clockwise is A, B, A', B'. Attach head(A) to tail(B) and consider the angle subtended 
to the right of A (i.e., the angle on the inside of P). If this angle is no more than 
180 °, then we say that the pairs {A, A'} and {B, B'} have a convex crossing. 

Convex crossing condition (for a matching). Every two matched pairs that cross 
have a convex crossing. 

A polygon satisfies the convex crossing condition if it admits some matching that 
does. 

Lemma 4. A polygon, P, is tilable only if it satisfies the convex crossing condition. 

Proof. By Lemma 3, if two matched pairs cross, then their connecting paths 
intersect. This intersection is well-defined (i.e., is a parallelogram) exactly when 
the two pairs have a convex crossing. []  

Now note that the polygons in Figs. 4 and 5 both have pairs {A, A'} and {B, B'} 
that violate the convex crossing condition. 
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5. The Main Theorem 

Theorem 2. A polygon, P, is tilable if and only if it satisfies the balance and convex 
crossing conditions. 

Proof. Both conditions have been proven necessary. As stated earlier, we assume 
that for the matching which has the convex crossing property, the corresponding 
boundary segments are the edges of P. Following the proof we show how to relax 
this assumption. 

By collapsing a pair of the polygon, we mean removing a matched pair of edges 
from the polygon and connecting the two remaining boundary segments. This can 
be visualized as continuously shrinking the two edges until they are both of length 
zero. Both the balance and the convex crossing conditions are invariant under 
this operation. We call a polygon for which no two edges cross simple. 

Note. Under this definition, in a simple polygon a vertex or edge may overlap 
with another vertex or edge. 

Adding back a pair is the opposite of collapsing the pair. We call a pair of edges 
{A, A'} minimal if the clockwise boundary path from A to A' contains no pairs. 

The outline of the proof is as follows. We create a sequence of polygons: 

P2 c P3 c --- c Pn/2 = P, 

where, for 2 <_ i < n/2, Pi has i pairs, and is obtained from Pi÷ 1 by collapsing a 
minimal pair. 

Now the proof proceeds by induction, by showing that: 

Claim 1. P2 is simple and tilable. 

Claim 2. I f  Pt is simple, then it is tilable. 

Claim 3. I f  Pi is not simple, then neither is Pt+ 1. 

Thus, since the original polygon (Pn/2) is simple, it follows that it is tilable. 
We now proceed to prove the above claims. 

Proof of  Claim 1. Recall that P2 respects the balance condition. If the sequence 
of edges is A, B, A', B', then it is a parallelogram, and thus is simple and tilable. 
If the sequence of edges is A, A', B, B', then it is two connected line segments, and 
thus is simple and trivially tilable (since it has no area). [] 

Proof of  Claim 2. Let {Ai, A;} be the pair added back to Pt- 1 to obtain Pt. 
Without loss of generality, assume the pair is horizontal with At oriented right 
and A; oriented left. Since this pair is, by assumption, minimal in Pt, the boundary 
from At to A] (clockwise) contains no pairs. We call this the right boundary. It 
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follows from the convex crossing condition that all the edges in the right boundary 
must be oriented downward (not necessarily vertically). A consequence of this is 
that Pi is the union of Pi- 1 and a path of parallelograms connecting A~ and A~ (along 
their right boundary). If P~ is simple, then this union is a disjoint union, and the 
tilability of P~ is a consequence of the tilability of Pi_ 1- [ ]  

Proof of  Claim 3. First we claim that if Pi is not simple, then there is a point 
on the plane, x, such that the boundary of the polygon wraps around it more than 
once in the clockwise direction. This follows from the above observation that Pi 
is the union of two simple polygons (Pi- 1 and a path of parallelograms). 

We call the number of times the polygon wraps around a point x in the 
clockwise direction, the winding number of x. If x has a winding number greater 
than 1, the inner loop (around x) is the simple, closed curve that most immediately 
encircles x in the clockwise direction and is made up of sections of the boundary 
of the polygon. The outer loop (around x) is the simple, closed curve made up of 
sections of the boundary that encircles x in the clockwise direction and is not 
encircled by any other sections of the boundary. 

The last part of the theorem states that despite the addition of more pairs there 
will always be a point with a winding number more than 1. As above, let A~+ 1, 
A'~+ 1 be the pair added at stage i + 1, and let C~÷ 1 be the clockwise path along 
the boundary from At+ 1 to A~+ 1. Let x be the point with the winding number 
greater than 1 before the addition of A~ + 1, A'~ + 1. We distinguish between two cases: 

Case 1. Ci+ l contains some edge of the inner loop around x. Let e be such an edge. 
We choose x' to be infinitesimally close to e and to the right of e (with respect to 
the direction e is pointing) in the polygon P~. Note that P~ has a winding number 
greater than 1 around x'. 

Treating the boundaries of P~ and P~ ÷ 1 as curves, we can show that the curve 
Pi can be continuously deformed into the curve P~÷ 1 in such a way that, in the 
process of deformation, no intermediate curve passes through the point x'. 
Homotopy  theory [9] tells us that this implies that the winding numbers of Pi 
and P~+ 1 around x' are the same. 

Case 2. Ci+ l does not contain any edge of the inner loop around x. In this case the 
inner loop around x remains intact. Consider the boundary of the polygon, P~, 
with the sections forming the inner loop deleted. This is still a closed curve 
wrapping around x at least once in the clockwise direction. We claim that the 
corresponding sections of the boundary of P~+I wrap around x at least once. We 
distinguish two subcases. 

Case 2a. x is not covered by the path of parallelograms of the pair {Ai+I, A~+I}. 
The outer loop around x in Pi can be continuously deformed to the outer loop 
around x in P~+ 1 and hence the outer loop still has a winding number at least 1 
around x and the entire boundary has a winding number at least 2. 

Case 2b. x is covered by the path of parallelograms of the pair {Ai+ 1, A~+ 1}. By the 
observation that P~+ 1 is the union of Pl and the path of parallelograms, wc find 
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that the portion of the boundary of Pi ÷ 1, excluding the inner loop, wraps around 
x at least once. Hence the entire boundary of Pi ÷ 1 wraps around x more than once. 

[] 

5.1. Remarks 

First we explain how the proof of the main theorem works without the assumption 
that the boundary segments corresponding to the tiling are whole edges. This is 
easy--assume there is a tiling that partitions the boundary into arbitrary segments; 
simply introduce dummy vertices at the ends of all segments, and carry out the 
proof on this "new" polygon. Consequently, proof of tilability of this new polygon 
translates immediately to a proof for the original one. 

The second point we should mention is that the proof is constructive. If we are 
given a matching which satisfies the convex crossing condition, then our proof 
implies the following simple tiling algorithm: repeatedly find a minimal pair and 
tile the path connecting it along the part of the boundary that contains no pairs. 
A minimal pair can be found in O(n) time, so this tiling procedure runs in time 
O(n2). We use it as the final step of our algorithm, which is described in the next 
section. 

6. The Algorithm 

In this section we describe our algorithm that determines if a polygon is tilable 
by parallelograms, and, if so, produces such a tiling. The algorithm must first 
construct a feasible matching between the boundary edges of the polygon and 
then produce a tiling that corresponds to this matching. The algorithm runs in 
time O(n2), where n is the number of vertices of the polygon. Note that this 
algorithm is optimal when the number of tiles required is ®(n 2) (as in the case of 
convex polygons). For simplifying the discussion here, we assume that the numbers 
(in the input and throughout the computation) are real, and that arithmetic 
operations (such as addition, square root) are performed in unit time. The input 
is a sequence of points (each with X and Y coordinates) which are the vertices of 
the polygon. The output, if the polygon is tilable, is a list of the connecting paths 
of all matched pairs. Furthermore, when an edge is matched with several others, 
the lengths of all its pieces are specified. 

Before we plunge into the algorithm, we describe an important theorem that 
states that, up to trivial modifications, the matching of polygon edges is unique. 
More specifically, we say that a matching is degenerate if it contains two pairs 
from the same slope class that cross. This is because the parallelogram at which 
they cross is degenerate--a line segment. An example is shown in Fig. 6. 

Lemma 5. Any tilable polygon admits a tiling for which the underlying matching 
is nondegenerate. 

Proof. Figure 6 demonstrates a local transformation that removes a degenerate 
crossing. Note that this transformation may increase the number of tiles. This can 
be performed independently for each such crossing, and the lemma follows. [] 
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A B 

degenerate parallelogram 

B'  A'  

A B C 

A' B'  C' 

Fig. 6. Transformation for removing a degenerate crossing. 

Theorem 3. Any tilable polygon has a unique matching which is nondegenerate. 

The proof is given below. Now we proceed to describe the algorithm. It has 
the following six main steps: 

1. Compute slope classes. 
2. Test balance condition. 
3. Compute visiblity relation (explained below). 
4. Compute matching. 
5. Test convex cro.ssing condition. 
6. Produce output. 

A partition into slope classes can be obtained by sorting the edges by slope in 
O(n log n) time. The balance condition can then be tested in O(n) time by traversing 
the sorted list once. 

We say that two opposite edges of a slope class are visible (to each other) if 
they can be connected by a curve internal to the polygon, which is monotone in 
the direction perpendicular to the two edges (i.e., starting from one edge, you can 
continuously "move forward" inside the polygon until you reach the other edge). 
Note that this condition is equivalent to having the possibility of having a 
connecting path of parallelograms between them. Thus a feasible matching can 
match only visible pairs. Since a matching that satisfies the convex crossing 
condition is a feasible matching, it must match only visible pairs. 
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The visibility relation is computed for each slope class separately. Once the 
slope class is fixed, the notion of visibility can be defined between any pair of 
points of the polygon. We describe the computation for one slope class, which is 
assumed to be horizontal. (Any slope class can be made horizontal in O(n) time 
by applying a suitable linear transformation to the vertices of the polygon.) We 
thus refer to the two types of edges in the slope class as floors and ceilings. The 
idea for computing visibility is the following: the polygon is partitioned into a 
small number of visibility regions, where two points are in the same region if the 
same set of points is visible to both of them. (This partition turns out to be similar 
to the "monotone  decomposition" that has appeared in the literature [5], [14].) 
A visibility digraph, whose nodes correspond to the visibility regions, is constructed. 
In this digraph there is a directed path between two nodes if and only if the 
corresponding regions are mutually visible. It is used later to compute the 
matching. 

The visibility regions are determined by "dents" in the Y direction. This is best 
explained by a picture, and is shown in Fig. 7(a). A dent is either a vertex which 
is a local minimum or maximum for the Y-coordinate or a floor or ceiling. Each 
dent breaks the polygon into two or three regions, and at least one of these regions 
is incident upon another dent. Thus the total number of visibility regions is at 
most 2d + 1, where d is the number of dents. The number can be smaller when 
several dents have the same Y value. 

The visibility digraph (Fig. 7(b)) is defined as follows: it has a node correspond- 
ing to each visibility region, and there is an arc from node v to node w if region 
v touches region w and is above it. Thus directed paths represent visibility in 
precisely the manner we want. 

The visibility digraph can be constructed in O(n) time per slope class given a 
triangulation of P with a few additional linear-time operations [2], [3], [8], 1-14]. 
Details are omitted here. 

6 
8 ® 

b c 

5 
-5 

(a) (b) 

Fig. 7. (a) Polygon with visibility regions and lengths indicated. (b) Visibility digraph with supplies 
(positive) and demands (negative). 
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The matching is computed by performing a supply-demand [7] computation 
on the visibility digraph with the following parameters. All arcs have infinite 
capacity. The supply/demand of a node is the algebraic sum of the lengths of 
ceilings and floors contained in the region it corresponds to, as shown in Fig. 7. 
In the tiling the supply/demand of a node corresponds to the total width of 
connecting paths that must leave/enter the corresponding visibility region. Note 
that, in general, an edge may be matched with several others. The following 
observations are crucial for obtaining an efficient algorithm and for proving 
Theorem 3. 

Lemma 6. The visibility digraph has O(n) nodes and is an oriented tree (i.e., its 
underlying undirected graph is a tree). 

Proof. As noted above, the number of nodes is at most 2d + 1, where d is the 
number of vertices at local minimum or maximum. The second fact follows from 
the assumptions that the polygon has no holes and is connected. [] 

Lemma 7. A supply-demand problem on an oriented tree has at most one solution. 

Proof. Each arc constitutes a cut. The flow crossing a cut is determined by the 
supplies and demands on both sides. Therefore, the flow on each arc is uniquely 
determined. [] 

Proof  o f  Theorem 3. The lemmas above show that if the visibility digraph admits 
a flow pattern that matches ceilings to floors, then it is unique. A flow pattern 
corresponds to a unique nondegenerate matching. The theorem follows. [] 

The supply-demand problem we defined can be solved in linear time by 
repeatedly pruning a leaf from the tree. When a leaf is pruned, the value of its 
neighbor is updated by adding the leaf's net supply (or subtracting its net demand), 
and the flow on the arc connecting to the leaf is equal to its net supply (demand). 
If a supply leaf has an incoming arc or a demand leaf has an outgoing arc, then 
there is no solution (the polygon is untilable). After computing the flows, a simple 
computation (splitting flows at each node and tracing paths) gives the unique, 
nondegenerate matching and the lengths of segments into which the edges are 
split. The resulting flow paths and matching for Fig. 7 are shown in Fig. 8. This 
step takes time O(nk), where k is the number of ceilings. Thus it takes O(n 2) for 
the whole polygon. We note here that even though an edge can be matched with 
several others, there are less than n pairs. This follows from the fact that the pairing 
relation (when described as a graph) contains no cycles. 

After the matching is determined, the convex crossing condition is checked. 
This can be done in O(n 2) time by traversing the sequence of edges while referring 
to the list of matches (each edge points to its mates). Finally the output can be 
produced by the construction in the main proof, as explained in the previous 
section. 
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Fig. 8. (a) The folows on the visibility digraph of Fig. 7. (b) A tiling of the polygon of Fig. 7 with 
the matching of horizontal segments indicated. 
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