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Abstract. Given any natural number d, 0 < e < 1, let fa(e) denote the smallest 
integer f such that every range space of Vapnik-Chervonenkis dimension d has an 
~-net of size at most f.  We solve a problem of Haussler and Welzl by showing that 
if d > 2, then 

d -  2 + - - _ <  lim < d. 
d + 2 ~ o  (1/~)log(1/~) 

Further, we prove that fl(e) = max(2, I-l/e7 - 1), and similar bounds are established 
for some special classes of range spaces of Vapnik-Chervonenkis dimension three. 

1. Introduction 

z-nets were in t roduced  by  Hauss le r  and  Welzl  1,8]. The  concept  p roved  to be useful 
in m a n y  fields of  discrete  and  c o m p u t a t i o n a l  geomet ry  and  in learnabi l i ty  theory,  
see 1,1], 12], 1,4], 1,6], and  [9].  In  this p a p e r  we show tha t  the upper  bounds  for 
fd(e) given in 1,8] and  1,2] are  op t ima l  up to a cons tan t  factor. 

The fol lowing t e rmino logy  is t aken  from 1,8]: A range space S is a pair  (X, R), 
where X is a set and  R is a family of  subsets of X. The  members  of  X are called 
points or  elements, members  of  R are called ranges. The range space is finite if X 
is finite. A subset  A c X is said to be shattered by R, if every subset  of  A can be 
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obtained by intersecting A with some range in R. The Vapnik-Chervonenkis 
dimension of the range space (or VC-dimension, for short) is the cardinality of the 
largest shattered subset of X. If arbitrarily large sets can be shattered, then the 
VC-dimension is infinite. 

For some real e, 0 < e < 1, a subset N of a finite set T c X is called an e-net 
for T with respect to R, if N contains at least one point from each range r ~ R with 
t r n  TI > eITt. 

Very often, especially in discrete geometry, the actual range space S' = (X', R') 
is finite but is obtained as the restriction to X' of an infinite range space (X, R), 
where X' c X and R' = {X' ~ r; r ~ R} (see the example below). In most cases, 
only the range space (X, R) matters, and the size or the actual choice of X' does 
not. The following more general definition (the original Vapnik-Chervonenkis 
set-up) is an alternative to restricting an infinite X to a finite X'. 

Given a possibly infinite range space S = (X, R), and a probability measure # 
on X, a set N c X is called an e-net if N intersects all ranges r ~ R, #(r) > e. 
Typically # is the uniform measure on a finite set X'. We simply use the word 
"restriction" in any case. 

In [83 the following proposition is proved by using the probabilistic method 
of Vapnik and Chervonenkis [13]. 

Proposition. Let S = (X, R) be a finite range space of VC-dimension d, and let 
0 < e < 1. Then there exists an e-net for X with respect to R of  size at most 
F(8d/e)'log(8d/~)-l. (Note that the bound is independent of the size of X.) 

Example. Let X be a finite set of n points in the Euclidean plane, and let R be 
the restriction to X of the family of all open half-planes. The VC-dimension of 
such a range space is at most three. Indeed, consider any set of four points in the 
plane. If one of the points is contained in the convex hull of the other points, the 
inner point cannot be cut off alone. If all four points are extreme, two diametrical 
points cannot be cut off. 

For  given e between 0 and 1, an e-net for this range space must contain a point 
in each half-plane that cuts off more than en points from X. By the above theorem 
of Haussler and Welzl, there exists an e-net of size at most F(24/e) log(24/e)-]. In 
Section 5 of this paper we show that this bound can be improved to F2/e7 - 1. 

Furthermore, it was shown by Haussler and Welzl [8] that fd(e) > d/(2e) - 1. 
They finished their paper by asking where the function fd(e) actually lies between 
the two bounds ~(d/e) and O((d/e) log(d/e)). As a first result, Blumer et al. [23 
improved the upper bound to O((d/e) log(I/e)). Then in some special applications 
of e-nets to computational geometry, namely subdividing the space into simplices 
with respect to a given set of hyperplanes, various authors [11 [3], [93 managed 
to do away with the log(I/e)-factor for some special range spaces, building on the 
results of Clarkson [5]. 

In 1989 Matou~ek et al. [103 succeeded in establishing the O(1/e) bound On the 
size of e-nets for half-space, disk, and pseudodisk range spaces. That is, if we take 
R to be the set of all open half-spaces in three-space, or all disks or' pseudodisks 
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in two-space, there will be an O(1/e)-size e-net for any restriction of the range space. 
In Section 6 we present the same bound for e-nets of range spaces, where R contains 
all translates of some fixed simple polygon in the plane. No similar bounds are 
known for Euclidean spaces of dimensions higher than three. 

We note that in none of the known examples is the extra factor log(I/e) 
necessary. In Section 2 we show that in general it is. In other words, we show that 
O((d/e) log(I/e)), the upper bound on fd(e) given by Blumer et at. [2], is optimal 
up to a constant factor for all d > 2. Our proof  method is probabilistic and hence 
not constructive. However, considering results on discrepancy, it seems likely that 
the triangle range space gives a simple geometric example where the log(1/0-factor 
is necessary. (In a triangle range space, X is a set of points in the unit square and 
R is the restriction to X of the family of all triangles.) Section 3 contains a slight 
improvement  of the upper bound of [2]. For d = 1, we determine fl(e) explicitly 
in Section 4. Section 5 deals with e-nets for half-planes and Section 6 gives a similar 
result for the translates of fixed simple polygons. 

2. A Lower Bound for Dimensions _> 2 

In this and the next section we show, using probabilistic methods, that, for any 
given d > 2, fd(e) is proportional  to (l/e) log(I/e), where the constant involved is 
between d - 2 and d provided that e is small enough. 

More precisely, we prove 

d - 2 + - -  
2 fa(e) f~(e) 

< lim inf < lim sup < d. 
d + 2 - ~-~o (1/e)log(1/e)-  ~ - ,o  (1/e)log(1/e) - 

We do not know if the limit above exists, so the statement in the abstract is 
somewhat sloppy. 

Theorem 2.1. Given any integer d >_ 2 and any real 7 < 2/(d + 2), there exists an 
go(d, 7)> 0 such that for every e < co(d, 7) we can construct a finite range space 
S = (X, R) of VC-dimension <__ d which does not have an e-net of size smaller than 
(d - 2 + 7)(1/e) log(l/e). In other words, 

L(e) 2 
lim inf > d - 2 + - -  

~+o (1/e) log(1/e) - d + 2" 

Proof In the following, certain parameters (n, r, t) are supposed to be large 
integers, and we disregard the roundoff errors. 

Let 7' be any constant between 7 and 2/(d + 2). Given a sufficiently small e, let 
n = K(l/e) log(l/e), where the constant K depending only on d, 7, and 7' but not 

I / . . k  

on e, will be determined later. Let r =  en, p = e t - a - < / ( 7 ) ,  and let 
/ \  / 

t = (d - 2 + 7)(l/e) log(I/e). Let X be an n-element underlying set. The range set 
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R will consist of randomly selected r-element subsets of X, where each r-set has 
the same chance p to be selected and the selections are done independently. 

We show that if the number n is sufficiently large (that is, if e is sufficiently 
small), then the following two claims hold with a large probability: 

(i) The range space S has VC-dimension <_ d. 
(ii) S does not allow an e-net of  size at most t. 

Proof of (i). The probability that the VC-dimension of S exceeds d is 

/ \ /  n 
< \ [ d + l / / ] / P r ° b [ a  fixed (d + 1)-element set is shattered b y  some 2 a+l ranges] 

?/ "~ d + l  ( n - d - 1  ~ [d+l~ 
= ) I-I [ 1 - ( 1  _p)t , -d- l+~J] t  i y 

d + l  i=o 

( ) '  n I-I [1 -- (1 -- p)('n--ad--l~+i)] (a+~) 
--< d + l  i=o 

l <- d+ 1 r - d  P r - d  P <- nd +1 p eta+l~2. 

(Here we used the inequality 

- -  n r k 

( :  : )  -< ( r ) ( n )  ") 

Plugging in the selected expressions for n and p, we get the upper bound 
(K log 1/e)d+le 2-ta+2)r', which goes to 0 as e--, 0. 

Proof of (ii). The probability that there exists an z-net of size t for X is 

< ( 7 ) ( 1 -  p)(n ~-') < ( 7 ) e -  P(~,-'). 

We estimate ( 7 ) f r o m  above by (en/t) t, and ( n - t ) r  from below by 

( 7 ) ( 1 - r / ( n - t + l ) ) ' .  Using the inequality 1 - a x > e  -bx for b >  a, 0 < x <  

1/a - 1/b, we get the upper bound 

(7) texp{_el-a-r 'e- tr / tr-d, ,  ,,} =(7)texp{_el-d-r'+tK/,r-d,,ta-2+,}. 

This will go to 0 if the exponent 1 - d - y' + (K/(K - d)Xd - 2 + y) < - 1, which 
holds if K was chosen large enough. [] 
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3. An Upper Bound for Dimensions _> 2 

In this section we give a better constant value in the upper bound of Blumer et 
al. [2]. Just as in I-7] and [2], we simply adapt the original proof  of Vapnik and 
Chervonenkis to the covering problem. 

Theorem 3.1. Let S = (X, R) be an arbitrary range space of  VC-dimension d, and 
let # be an arbitrary probability measure on X .  (We assume that the ranges are all 
#-measurable.) I f  e > 0 is sufficiently small in terms of  d, then there exists an e-net 
o f  size at most t = (d/e)[log(1/e) + 2 log log(i/e) + 3], that is, a set N c X o f  size 
< t such that N intersects every r ~ R with I~(r) >_ e. 

InJact, a random set o f  size t is an e-net with a large probability (roughly 1 - e-d). 
Consequently, 

f#) 
lim sup < d. 

~ o  (1/e) log(1/e) - 

Just as in the previous section, we were somewhat sloppy in stating the theorem, 
for the value of t above is not an integer. 

Proof  We use the main lemma of Vapnik ~ td ~?hervonenkis [13], independently 
discovered by Sauer [12]. 

Given a subset Y c X, we write Rir for the restriction of R to Y. Define 

g(R, k) = maxlR1rl. 
Irl=k 

Theorem (Vapnik-Chervonenkis,  Sauer). For any range space S(X,  R) o f  dimen- 
sion d, 

Now let us select with possible repetition t random points from the universe 
X, where the selections are done with respect to the measure #. We get a random 
sample x ~ X'. As the bits are picked independently, x is selected with respect to 
the measure #'. Write N for the set of elements in x. 

Theorem 3.2. Let  T > t be any integer. Then 

Prob(N does not cover R) <_ 2g(R, T) 1 - -  . 

Choosing T = (d/eXlog(I/e)) 2, we get from this after some routine calculations 
that Prob(N does not cover R) < 1, which implies the upper bound claimed in 
Theorem 3.1. Thus, we only prove the last theorem. 
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Hav ing  picked the string x of  length t, let us keep on choosing other  T - t 
elements. Call the new string y, and let z = (x, y). For  a specific r e R, we write 
I(r, x) for the number  of  bits in x that  belong to r, count ing with multiplicity. 

We want  to est imate the probabi l i ty  

P rob (N  does not  cover  R) = P(3re R; I(r, x) = 0). 

The following inequali ty is an easy consequence of the independence of x and 
y, but  the reader  m a y  want  to reflect on this, since this together  with the 
condi t ioning that  follows are the heart  of  the proof:  

Prob(3r  E R; l(r, x) = 0, I(r, y) >_ m) 
Prob(3r  e R; I(r, x) = O) <_ 

min te r  Prob(I(r ,  y) _> m) 

Choosing  m to be the median  of I(r, y), we get 

Prob(~r  e R; l(r, x) = 0) <_ 2 Prob(3r  ~ R; I(r, x) = 0, l(r, y) >_ m). 

For  a sample  z = (x, y), we write {x, y} for the multiset  of  sample  elements in (x, y). 
Fo r  a fixed r, the condi t ional  probabi l i ty  for given {x, y} is (writing s -- [I(r, z)J) 

Prob(l(r,x) = O,l(r, y) >_ m,{x, y}) <_ x[l(r, z) >_ m ] ( T -  t ) / (  

<_Z[I(r,z)>_m] 1 -  <_ 1 -  

Since given {x, y}, there are at most  g(R, T) different intersections of  the r's with 
the multiset  {x, y}, and we get 

( Prob(3r  e R; I(r, x) = O, I(r, y) > ml{x, y}) < g(R, T) 1 -- 

Tak ing  total  expectat ions,  and using the known fact that  the median  of a binomial  
distr ibution is within 1 of  the mean,  m > (T - t)~ - 1, we get the theorem. [ ]  

4. Exact Bounds for Dimension One 

In this section we determine the exact value of fl(e), that  is, the smallest  size of  
an e-net guaranteed  in every range space of VC-dimens ion  one. 

Theorem 4.1. For every finite range space S = (X, R) of  VC-dimension one and for 
any real number e, 0 < e < 1, there exists an e-net of  size at most max(2, El/e7 - 1). 
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Proof  As the range space S is one dimensional, every pair of  distinct elements 
x, y ~ X satisfies at least one of the following four condit ions:  

(i) There is no range r e R such that  r c~ {x, y} = Z holds. 
(ii) There is no range r ~ R such that r ~ {x, y} = {x} holds. 

(iii) There is no range r ~ R such that r c~ {x, 3/} = {Y} holds. 
(iv) There is no range r ~ R such that r _~ {x, y} holds. 

If condit ion (i) holds for some pair {x, y}, we choose these two elements to form 
the e-net and the theorem is true. Otherwise, we define a partial order  " < "  as 
follows: 

If  (ii) is valid for some pair x, y ~ X, then let x ~ y. 
If  (iii) is valid for some pair  x, y ~ X, then let y < x. 

If x < y and y -< x, then we say that  x is equivalent to y (x ~ y). That  is, x and 
y are indistinguishable: every r ~ R contains either both or  none of them. It is clear 
that  " < "  defines a partial order  ~ on the equivalence classes. (We disregard those 
elements that do not belong to any range.) 

We claim that .Y' has at most  [-1/el - 1 maximal elements. Indeed, it is easy to 
see that each connected componen t  of ~ contains exactly one maximal element, 
furthermore,  each connected componen t  g of  ~ has more  than en elements. 
(Consider some element x in g .  x appears in at least one range. This range is 
entirely contained in <~ and its cardinality is larger than en.) 

Moreover ,  every range r ~ R contains a maximal element of  ~ (trivial). Hence, 
the at most  F1/e] - 1 maximal  elements form an z-net. [ ]  

Theorem 4.2. For every real e, 0 < e < 1, there exists a one-dimensional range 
space that does not allow an e-net of  size less than max(2, I-1/e-] - 1). 

Proof  (Case 1) If e > ½, then max(2, F1/e] - 1) is equal 2. To show that this 
bound  is tight, choose an integer n large enough to satisfy (n - 1)/n > e. Consider  
the range space S -- (X, R) with X = {1, 2 . . . . .  n} and R = {X -- {k}; 1 _< k < n}. 
Obviously,  S is of  VC-dimension one, as for no pair x, y ~ X and for no range 
r ~ R is {x, y} n r = ~ satisfied. On  the other  hand, an e-net for S has to contain  
at least two elements. 

(Case 2) I fe  < ½, then max(2, r l / e ]  - 1) is equal to F1/e]  - 1. The claim follows 
from the following more  general observation. 

For  any d and for any 0 < e < 1, it is easy to construct  a range space of  
VC-dimension d which does not  permit an e-net of size smaller than [-d/e] - d. 
Indeed, choose an integer n such that  en/d is not  an integer and let X be a set of  
cardinali ty n. Par t i t ion X into sets (X  o, X 1 . . . . .  X k )  , such that  IX01 < Fen~d] and 
such that  IXit -- Fen~d], for i > 0 (X o m ay  be empty). An easy calculation shows 
that  k equals rd/e] - 1, for n large enough.  

Let R be the family of  all subsets that can be obtained as the union of d distinct 
parts X i in the above partition. Obviously,  the range space S = (X, R) is of  
VC-dimension d. N o w  consider an e-net of  S: If it does not  contain more  than 
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(k -- a t) elements of X, then there exist d of the X~'s with X~ n Net = ~Z~. The union 
of these d sets is a range in R. The claim follows. []  

5. e-Nets for Half-planes 

In this section we estimate the size of the smallest e-net in a half-plane range space 
(see the example in Section 1). 

Theorem 5.1. Let X be a finite point set in the plane, n = I X I, let R be the restriction 
to X of  the family of  all open half-planes, and let 0 < e < 1. Then there exists an 
e-net for X with respect to R of  size at most [2/e]  - 1. 

Proof. (Case 1) If ~ < e < 1 holds, then [-2/e] - 1 = 2. In this case we use the 
following property of the so-called center c of X: every open half-plane covering 
more than 2n/3 points of X contains c. (A proof  for the existence of such a point 
c can be found, e.g., in [7].) 

Let A x y z  be a triangle in X containing c but no element of X in its interior. 
Let us partition the elements of X into three classes according to which side of 
A x y z  is met by the segments connecting them with c. (Note that if b-~ passes 
through a vertex of/X, xyz for some v e X, then v belongs to two classes.) Obviously, 
at least one of the three classes, say the class corresponding to the side ~-y, has at 
least n/3 + 1 points. We choose {x, y} to be our net. (Every half-plane not 
containing c, contains at most 2n/3 points. Every half-plane containing c but neither 
x nor y avoids the n/3 points behind ~-y.) 

(Case 2) 0 < e < ] holds. Consider an e-net N such that (i) all points of N lie 
on the convex hull of X and (ii) N is minimal, i.e., if we remove any point from 
N, it is not an z-net any more. Let Po, P2 . . . . .  Pk-1 be the points of N listed in 
clockwise order on the hull. For  0 _< i _< k - 1, let L(i) denote the line through 
P~-1 and Pi+ 1, let h(i) be the open half-plane bounded by L(i) that contains Pi and 
let Ih(i) l be the number  of points in h(i) n X.  If k = 3, we already have an z-net of 
size 3 < F2/e-] - 1 and so we assume k _> 4 in the rest of the proof. 

We observe that Ih(i)] > en holds for all i, 0 < i < k - 1 (otherwise we could 
remove p~ from the net). Furthermore,  we claim that every point of X lies in at 
most  two of the h(i)'s: if p e X  lies in three different h(i)'s, it must lie in some 
h(i) c~ h(j), where i > j  + 1, but in this case, the points p~_ 1 and Pj+I are not 
extreme, a contradiction. Thus we get that the h(i)'s altogether contain each point 
at most  twice and therefore 

k k 

2tXl ~ ~ Ih(i)l > ~ alXl = kelXl 
i=1 i=1 

holds. This directly implies k _< F2/e-I - 1. [ ]  

This result is close to being optimal, as the following theorem gives a lower 
bound that deviates from the upper bound by at most one. 
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Theorem 5.2. For any e, 0 < e < 1, there exists a range space (X, R), where X is 
a finite point set in the plane, and R is the restriction to X of the family of all 
open half-planes, such that every e-net for (X, R) contains at least 2F1/e-]-  2 
elements. 

Proof We explicitly construct such a range space. The pointset X is defined as 
follows: benj + 2 points are placed on a piece of the parabola y = x 2, 
- 1 < x < + 1. Then every single point p in this group can be cut off by a line 
I(p) that lies below the other benj + 1 points in this group. We place n/(ben j + 2) 
of these groups on the parabola y = - x  2, - oo < x < + oo, in such a way that 
each l(p) lies below the LenJ + 1 other points in the same group as p, but above 
all the other points. 

Obviously, an e-net for (X, R) must contain at least two points from each group 
(otherwise, l(p) would cut off benJ + 1 points not in the net). If n is large enough, 
there are [-1/e-] - 1 groups. []  

6. ~-Nets for the Translates of a Simple Polygon 

Consider some fixed closed simple polygon P in the plane. In this section we deal 
with e-nets for range spaces S = (X, Rp) of the following form: X is a finite set of 
points in the plane and Rp is the restriction to X of the family of all translates P' 
of P. Obviously, for nonconvex polygons P, the VC-dimension of such polygon 
range spaces can become arbitrarily large, depending on the particular shape of 
P. For  convex polygons P, we can prove the following lemma. The reader will 
observe that the proof neither makes use of the boundedness of the polygon nor of 
its piecewise straight boundary, but only of its convexity. Hence, the result holds 
for arbitrary convex regions in the plane. 

Lemma 6.1. For any convex polygon P and for any set X of points in the plane, 
the VC-dimension of (X, Re) is at most three. 

Proof We have to show that no set {a, b, c, d} of four points in the plane can 
be shattered by the translates of P. If one of the points is contained in the convex 
hull of other points, these other points cannot be covered by P without covering 
the inner point at the same time. Hence, we may assume that the four points are 
in general position and form a convex quadrangle l-qabcd. We will prove that one 
of the diagonal pairs ac or bd cannot be cut off by P. 

To do this, we look at the problem from a different point of view. Instead of 
keeping the four points fixed and covering them by translates of P, we now fix 
the polygon P and translate Fqabcd. If both diagonals could be covered by P, then 
there must exist two copies Da'b'c'd' and Fqa"b"c"d" such that a', c', b", d" lie inside 
of P and a", c", b', d' lie outside. For  x, y, two consecutive points in Da'b'c'd', let 
h+(x, y) denote the dosed half-plane bounded by the line through x and y and 
containing []a'b'c'd' and let h-(x,  y) denote the complement of h+(x, y). Now the 
following holds: 
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b", d" cannot lie in h-(a',  d') n h-(d',  c'). 
b", d" cannot lie in h-(a',  b') c~ h-(b',  c'). 
a" cannot lie in h + (d ', a') c~ h + (a ', b'). 
c" cannot lie in h + (d ', c') n h + (c ', b'). 

(If b" lay in h-(a' ,  d') c~ h-(d' ,  c'), then d' would lie in the interior of •a'c'b". 
As a', c', b" lie inside P and P is convex, d' must be inside P, too. This is a 
contradiction. The other cases are settled by analogous arguments.) Now it is 
obvious that there is no possible position for []a"b"c"d". [] 

Theorem 6.2. For any simple closed polygon P in the plane, there exists a constant 
c(P) with the followin9 property. For any polygon ranye space S = (X, Re) and for 
any real ~, 0 < e < l, there exists an z-net of  size at most c(P)/e. 

Proof  We use arguments similar to those in [11]. First, we observe that it is 
sufficient to prove the theorem for triangles, because the interior of any simple 
closed polygon can be decomposed into a set of triangles z 1, zz . . . . .  Zk. If our 
polygon P covers _> en points of X, then at least one of these triangles covers 
>_ (e/k)n points. Hence, if we can find, for each triangle rl ,  ~2 . . . .  , Zk, (~/k)-nets N~, 
N2 . . . .  , Nk of sizes at most  c(zl)/(e/k) . . . . .  C(Zk)/(e/k ), then the set N = N 1 ~ . - -  w N k 
will meet the requirements with c(P) = k(c(z O + ""  + C(Zk)). 

Further, if P is a triangle we can do the following. We divide the plane into 
squares by putting a grid on it. Let us choose the size of the grid (i.e., the length 
of the squaresides) so small that the diameter of each square is smaller than the 
width (i.e., the smallest altitude) of the triangle P. This ensures that any square 
intersects at most  two sides of a translate of P. 

Now for any translate of P containing at least en elements of X, there exists a 
square such that this translate covers at least (e/On elements of X within this 
particular square, where t is the number  of squares intersected by the translate of 
P. Clearly, (diam(P)/gridsize + 1) 2 is an upper bound for t. Now our goal is to 
find, within each square Qi that contains n i > (e/t)n points of X, an (en/(tni))-net M~ 
of size at most ?(P)/(en/(tni) ) for translates of P. Then M = M~ u M 2 u " "  forms an 
z-net for S -- (X, Re) of size at most  

?(P)tni ~(P}t 2~ ni c(P}t 
L i en e n e 

and by setting c(P).'= tS(P) our proof  is complete. 
Thus, it is sufficient to prove the statement for point sets within some square 

Qi. As any square Qi is intersected by at most two sides of a translate of P, we 
are in a similar situation as in the proof  for the half-plane range spaces in Section 
4. We define a point x in X n Q~ to be P-extreme if it can be separated from the 
other points in X c~ Q~ by a translate of P, i.e., x lies inside the translate and 
X n Qi - {x} lies outside. The P-extreme points form a so-called P-convex hull 
and now we can apply an argument analogous to that in Theorem 5.1. []  
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