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Abstract. One of Leo Moser's geometry problems is referred to as the Worm 
Problem [10]: "What is the (convex) region of smallest area which will accommodate 
(or cover) every planar arc of length 1?" For example, it is easy to show that the 
circular disk with diameter 1 will cover every planar arc of length 1. The area of the 
disk is approximately 0.78539. Here we show that a solution to the Worm Problem 
of Moser is a region with area less than 0.27524. 

1. Introduction 

Some years ago, Leo Moser produced a published list [10] (see also [5] and [11]) 
of 50 open questions in geometry entitled "Poor ly  formulated unsolved problems 
of combinatorial  geometry." Problem number 11 in Moser 's  list is "What  is the 
(convex) region of smallest area which will accommodate  (or cover) every planar 
arc of length 1?" An alternate way to describe Moser 's  problem is this: What  is 
the size and shape of the flat surface of minimum area that can be used as a 
hammer  head, which upon strategically striking any given planar worm will 
" smash"  the worm simultaneously from stem to stern?" 

In an unpublished paper  of Laidacker and Poole [9], using the Blaschke 
Selection Theorem [8], it is shown that the Worm Problem indeed has a solution. 
That is, there is a convex region of smallest area which will cover every planar 
arc of given length 1. However, the solution is not necessarily unique (see Section 
4 below). Furthermore,  it has been noted in [4] and [16] that the area of a region 
of solution must exceed 0.21946. Consequently, the area of a solution region to 
the Worm Problem lies between 0.21946 and 0.27524. 

In Section 2 progress toward a solution of Moser 's  problem leading up to the 
current result is presented. Section 3 contains a proof  that the area required for 
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a cover of all planar arcs of length 1 is less than 0.27524. Finally, some remarks 
and references to conjectures on "improved solutions" are offered in Section 4. 

2. History of the Worm Problem 

If S is the circular disk with diameter 1 and ~ is a length- 1 arc, then by displacing 
S so that its center coincides with the midpoint of ct, S must include (cover) all 
the points of ~. The area of S is less than 0.78539. Consequently, a solution to the 
Worm Problem has area less than 0.78539. 

On the other hand, Schaer 1-13] has constructed the broadest length-1 arc 
possible, that is, one whose convex hull has minimum width as large as possible. 
This minimum width is greater than 0.43893. Consequently, any solution region 
must cover the straight arc of length 1, as well as the "b road"  arc of Schaer. 
That is, any solution region must have area at least (0.43893)/2 _> 0.21946. Hence, 
the area of any solution region to the Worm Problem lies between 0.21946 and 
0.78539. 

Aram Meir showed that a semidisk of diameter 1 will cover any length-I arc. 
His simple but very elegant proof is contained in Wetzel's paper of 1973 [17]. The 
area of this cover is less than 0.39270, a significant improvement over the disk. 

Schaer and Wetzel [14]-[16] have approached the Worm Problem by con- 
sidering regions whose boundaries are well-known geometric figures such as 
squares, equilateral triangles, etc. For  each class of regions, they determine the 
dimensions of the region with smallest area which covers all length-1 arcs. In the 
case of squares, the one with diagonal length 1 is best, and for equilateral triangles, 
the one with side length slightly greater than 1 is best (see [1] to find why the 
side length must be larger than anticipated). In either case, the areas of these 
figures exceed the area of Meir's semidisk. 

Wetzel, who has done much to popularize the Worm Problem, used the 
approach described above in considering the class of sectors S(r, 219) where r and 
2 0  denote the radius and central angle, respectively. In [17] Wetzel showed that 
if r > (0.5) csc(O), then the sector S(r, 20)  will cover all length-I arcs. Further- 
more, when r = (0.5) csc(®) and the area of the sector S(r, 20)  is minimized as a 
function of O, then the resulting sector covers all length-t arcs and has area less 
than 0.34510, an improvement over Meir's semidisk. 

In 1972 Gerriets showed that a region with area less than 0.32140 covered all 
length-1 arcs [3]. Gerriets'  region is the union of two regions, one whose boundary 
is an isosceles triangle with altitude ¼ and base length 1, and one whose boundary 
is a semi-ellipse with major axis length 1 and minor axis length ½. 

Following Gerriets'  unpublished solution region, Gerriets and Poole I-4] 
discovered a simple solution region with area less than 0.28870. The proof is 
equally simple. Their region is a rhombus with major diagonal 1 and minor 
diagonal 1/x/~. Furthermore, by "snipping off' one corner of the rhombus at the 
end of the minor diagonal, the resulting region has area less than 0.28610 and 
remains a solution region. To the best of our knowledge, this solution region has 
not been improved upon for 16 years, that is, until now. 
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3. A Smaller Solution Region to Moser's Worm Problem 

The following region is a modification of the rhombus solution of Gerriets and 
Poole [4]. The region consists of a 60 ° sector of radius 0.5 (sector DVB) with a 
30°60°90 ° triangle joined to either side, as shown in Fig. 3.1. 

Theorem 3.1. Every planar arc of length 1 can be covered by the region represented 
in Fig. 3.1, whose area is less than 0.27524. 

Preliminary to the proof  of Theorem 3.1 we adopt  some notation and prove 
two lemmas. Let D(X, Y) represent the distance from point X to point Y in the 
plane. Let ~ denote an arc of length 1 in the plane, the "worm."  Any rotation or 
translation of this arc ~ is also called ~. Let ® denote the center or midpoint of 
~. Let b be some point on ~ at least as far from ® as any other point on ~. Call 
the half-arc of ~ containing b the fl-arc, or simply ft. Let t be some point on 
which is not on fl, and which is at least as far from ® as any point not on ft. Call 
this half-arc of ~ containing t the z-arc, or simply ~. 

By an arrow we mean any figure composed of three rays emanating from a 
point V, the two outside rays making 60 ° angles with the center ray. Throughout  
this section we always assume that any arrow under discussion is placed in 
the plane so that 

(1) ~ lies inside the two outside rays of the arrow, 
(2) the center ray passes through ®, the center of ~, and 
(3) ~ is contiguous with at least one of the two outside rays of the arrow (Fig. 

3.2). 

For a given at, such an arrow is completely determined by the direction it points; 
for example, a 6 o 'clock arrow points down (Fig. 3.2). Of  course, the arrows of 
interest will be those whose rays coincide with segments VE, VC, and VA of 
Fig. 3.1. 

For  a specific 0~ and given arrow, we then call a line perpendicular to the center 
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ray at O a crossbar (Fig. 3.2). Furthermore, any point which lies on the same side 
(opposite side) of the crossbar as V is said to be below (above) the crossbar. 

By a rhombus on an arrow we mean the 300-60 ° rhombus with major axis 1 
which coincides with the arrow at V and along the two outside rays (Fig. 3.2). 
By the trap on an arrow we mean a region congruent to Fig. 3.1 whose angle E V A  
coincides with the outside rays of the arrow (Fig. 3.2). 

Lemma 3.2 I f  one side of  an arrow touches one half of  the worm (either fl or z), 

and if D(O, V) < (2x~)/9, then that half-worm is covered by the trap on that arrow 
(Fig. 3.2). 

Proof. Suppose X is one point at which a side of the arrow touches one of the 
worm halves, say VA touches fl at X. If O = V, then fl (as well as z) lies inside 
the circle centered at V with radius 0.5 and the entire worm is covered by the 
trap. Now assume O lies above V. There are several cases to consider, and only 
one of them requires the hypothesis about D(O, V): the case where the half-worm 
goes from O through the arc at the top of the trap and then comes back inside 
the trap to X. The other cases are easy. We consider three cases and leave the 
remaining ones for the reader. 

Suppose the half-worm fl goes from ® to X and then crosses segment AB at 
point T. Reflect segment AB in line VA and let T' be the reflection of T (Fig. 3.3). 
If the worm could go from O to X and then cross AB at T, then it could go from 
O to X and then cross AT '  at T'. However, the distance from O to AT',  is ½, so 
this case is impossible. 

Next suppose the half-worm fl goes from ® to X and then across the arc BD. 
For  any point Z on BD we have D(X, Z) > D(X, B), so this case is impossible. 

The other cases are omitted except for the case where fl goes from O through 
Z on arc BD, and then back inside the trap to X. For  this last case assume 

D(O, V) < (2x/3)/9. Then the length of the half-worm that escapes must be greater 
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than D(®, Z) + D(Z, X). It can be shown analytically that when D(®, V) _< (2x/3)/9, 

D(®, Z) + D(Z, X) > D(®, B) + D(B, X) > 0.5 

Therefore, this escape is impossible and the half-worm/~ lies inside the trap. [] 

Lemma 3.3. I f  one side of an arrow touches one half of the worm (either ~ or 
z), and if a point on that half-worm, as distant from 6) as any point on that 
half-worm, lies on or above the crossbar for that arrow, then that half-worm is 
covered by the trap on that arrow (Fig. 3.4). 

Proof Referring to Fig. 3.4, note that each half of the rhombus EVAC'  is an 
equilateral triangle. Furthermore,  in each equilateral triangle we can inscribe a 
smaller equilateral triangle measuring ½ on a side, each side being perpendicular to 
one side of the triangle in which it is inscribed. That  is, D(S, R ) =  D(S, T ) =  

C I 

A 

S T 

V 

Fig.  3.4 
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D(R, T) = ½, D(V, S) = (2x/3)/9). We will show that under the hypothesis of the 

lemma, the distance from V to ® is less than or equal to (2x/3)/9, hence, Lemma 
3.2 applies. 

Suppose fl is the half-worm which satisfies the hypothesis of this lemma, and 
that it is contiguous with the arrow (say at X on VA). By way of contradiction, 
suppose O lies on SC' above S, as shown in Fig. 3.4. From the work of Gerriets 
and Poole [4] we know that fl lies inside the rhombus. Every point inside the 
rhombus and above the crossbar is less than a distance of ½ from ®, while for the 
point X on fl, D(®, X) > D(S, R) = ½. Therefore the point on fl most distant from 
® does not lie above the crossbar, contrary to the hypothesis. Consequently, ® 

must lie on the segment SV. Since D(S, V) = (2x/3)/9, Lemma 3.2 applies and fl is 
covered by the trap. [] 

Proof of Theorem 3.1. If both fl and z simultaneously touch the sides of any 

arrow while D(V, O) < (2x/~)/9, then, by Lemma 3.2, ~ is covered by the trap. 
Up to this point, we have tacitly assumed that the arrow points to 6 o'clock. 

In the remainder of the proof three different types of rotations are considered: 

(1) The arc ~ is rotated keeping the arrow fixed. During this rotation, the center 
of ~, denoted by O, may move along ray VC, so that ~ lies inside the arrow 
and is in contact with the arrow at all times. 

(2) The arrow is rotated keeping the arc ~ fixed. During this rotation, ray VC 
moves back and forth through ®, to keep the arrow just touching ~. 

(3) Both the arc ~ and the arrow are simultaneously rotated. During this 
rotation the distance D(V, O) is fixed. 

In each case, the three conditions describing the relationship between ~ and the 
arrow prevail. In the first two types of rotations, note that D(V, O) changes during 
the rotations. 

First, we dispose of the special case where one half of ~ never touches either 
side of any arrow, as the arrow rotates 360 ° around ct from 6 o'clock back to 6 
o'clock again. Since b -is one of the points on ~ most distant from O, it is easy 
to show that fl. must touch one side of some arrow. In fact, if ~ is first 
positioned so that Ob is horizontal and b lies to the right of ®, then b lies on the 
upper side of the arrow pointing to 4 o'clock. Consequently, if only one half of 
is contiguous with any arrow, it must be ft. Thus, we may assume that in this 
special case z never touches any side of any arrow, regardless of the direction in 
which the arrow points. 

By first rotating ~, position fl so that b lies directly above O. Then for the 6 
o'clock arrow, b lies on VC'. We know that fl touches one side of the 6 o'clock 
arrow and that no portion of ~ lies below the arrow. Since the point b is above the 
crossbar, by Lemma 3.3 we may infer that fl is contained in the trap. Also, since 
b is above O, the circle centered at ® with radius D(O, b) lies below the top of 
the trap. Hence, all of~ lies below the top of the trap, since b is as far or farther from 
O than any point on ~, and 0t is covered by the trap. 

Now that we have disposed of this special case, for the remainder of the proof 
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we may assume there is at least one arrow in which z is contiguous with one side 
of that arrow. As noted above, there is always some arrow in which fl is contig- 
uous with one side. By continuity, if one half of ct touches one side of one arrow 
while the other half of ~ touches one side of another arrow, then there is some 
intermediate arrow where both halves, fl and z, touch the sides. For  the remainder 
of the proof, we assume there is at least one position of the arrow in which both 

and z are simultaneously contiguous with the arrow. Furthermore, if fl and 

are both contiguous and D(L, ®) <_ (2x//3)/9, then by Lemma 3.2, ~ is covered by 
the trap. 

Therefore, in the final cases, we make use of Lemmas 3.2 and 3.3 to show that 
in each case the worm must lie inside the trap. 

Given an orientation of the arc ct and an arrow which touches both fl and z, 
rotate both ~ and the arrow together until Ob is horizontal and t is on or above 
the line through ®b (Fig. 3.5). Without loss of generality, assume b lies to the 
right of ®. There are two cases to consider, which depend on the location of t 
with respect to a vertical line, L a, perpendicular to Ob at 19. 

Case 1. Assume t lies on or to the left of L o. If  D(19, t) < (2x/~)/9, we are done. 
If not, then both b and t lie outside a circle centered at ® with radius ½. Since b 
lies to the fight of 19, any part  of fl which lies to the left of Lo also lies inside this 
circle because it lies within 0.5 of b, and every point that is outside the circle and 

to the left of Le is more  than (1 + x/2)/3 from b. We can therefore position (or 
construct) two arrows with sides tangent to the circle centered at 19 with radius 
D(19, t), such that t is a point of tangency for one of the sides. Since t and b are 
on opposite sides of Lo, one such arrow points to some time between 9 o 'clock 
and 11 o'clock. From a previous remark we know-that if this arrow were rotated 
counterclockwise around ct to 4 o'clock, b would touch. Therefore, there is some 
arrow between 11 o 'clock and 4 o 'clock which is contiguous with both fl and z. 
For  any such arrow, either b or t lies above the corresponding crossbar (that is 
to say, on the opposite side of the crossbar from V, the vertex of the arrow). As 
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shown in the proof  of Lemma 3.3, this implies D(V, ®) < (2x/3)/9. Application of 
Lemmas 3.2 and 3.3 show that ct is covered by the trap. 

Case 2. Assume t lies to the right of L o (on the same side of L o as b). F rom our 
assumptions regarding arrows, the 6 o'clock arrow touches either fl or z. 

Case 2a. Assume the 6 o 'clock arrow touches ft. Since b is on the crossbar, by 
Lemma 3.3 fl is covered by the trap. If z is also covered by the trap corresponding 
to the 6 o 'clock arrow, we are done. If  not, then some point on z crosses the top of 
this trap, and so there is some arrow pointing between 10 o'clock and 12 o 'clock 
which touches z. Therefore, there is some clockwise rotation of the arrow from 6 
o'clock to 12 o'clock which is contiguous with both fl and z. For  any such 

arrow, b is above the crossbar. Hence, for this arrow, D(V, ®) < (2,v/3)/9 and 
is covered by the corresponding trap. 

Case 2b. Assume the 6 o 'clock arrow touches z. Then we can rotate the arrow 
clockwise and at some time before 12 o'clock, one of two things will happen: 
either both fl and z will touch the arrow in which b lies above the crossbar, or 
else we reach a point where z touches the arrow and in which t lies on the 
crossbar. In the first situation, Lemmas 3.2 and 3.3 apply and ~ is covered by the 
trap. In the second situation we may rotate both ~t and the arrow together until 
the arrow points to 6 o'clock. With the roles of (fl, b) and (z, t) reversed, the 
conditions of Case 2a are satisfied, except for the trivial modification that z 
lies to the left of ®. This completes the proof  of Theorem 3.1. [] 

4. Remarks and Conjectures on Solution Regions 

While we seek to solve covering problems in the plane, such as the Worm Problem 
of Moser or any others, there are three important  observations which should be 
made. 

First, a solution to a covering problem may not be unique. For  example, 
suppose L denotes the line segment of length 1 while S denotes the region bounded 
by the square of maximum area which can be inscribed in a semidisk D of diameter 
1. Let E = {L, S}. In Fig. 4.1, $1 and S 2 are congruent copies of S while L 1 = A'B',  
L 2 = AB,  L 3 = D'E', and L4 = DE each represent congruent copies of L. 11 and 

L 
11 A' A S, S 2 D D" 

\\ I I 

B' B E E' 

Fig. 4.1 
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12 a re  parallel lines coincident with opposite sides of S 1 and S 2 a s  indicated. Then 
for each possible line segment L* congruent to L and lying between LI and L 2 
(or L 3 and L4), and contiguous at its endpoints with l~ and 12, consider the convex 
hull, C* determined by L* and S~ (or L* and $2). Let • denote all such regions 
C*. It can be shown that each element of • is a minimal area cover for the dements 
of E, and that they are not all equivalent under translation and rotation. 
Consequently, there are infinitely many distinct minimal covers for the set of 
elements in E. 

Second, the boundary of any minimal solution region need not intersect any 
of the elements to be covered. For  example, if E denotes the set of all closed disks 
of radius r < 1, then the closed disk C of radius 1 is the unique minimal cover 
for the elements of 5,. And C can cover any element B of 5, without its boundary 
intersecting any part of B. 

Finally, perhaps the most important observation is that a straightforward 
induction type argument will not yield a solution region to a covering problem. 
For  example, if E is a collection of compact convex sets and E ' =  5 , -  {a} 
represents the collection of all but one of the sets in 5,, then a minimum cover C 
of 5, may not even cover any minimum cover C' of 2;'. Specifically, suppose 
E = (D, S, L)  where D, S, and L are defined as in the first example of this section. 
If X;' = {S, L}, then the unique minimum cover of 5, is dearly the set C = D. 
However, as noted in the first example, there is a whole family • of sets, each 
member of which is a minimum cover of E' = {S, L}. In no case can any member 
of • be covered by C, the minimum cover of 5, = {D, S, L). 

In seeking candidates for solution regions to Moser's Worm Problem with area 
less than 0.27524, we should keep in mind four special length-1 arcs: the straight 
line segment, the block U-shaped arc whose convex hull is a square with side 
length ½, the "broad worm" of Schaer [13], and the two-angle Z-arc of Besicovitch 
[1]. Candidate regions must cover these. 

Conjecture 4.1 [16]. The sector S(1, re/6) with area less than 0.26180 is a solution 
region. 

Conjecture 4.2 [4]. The 300-600-90 ° right triangle, whose smallest side has length 

(x//3 + 4)/6~/3, is a solution region. Its area is less than 0.26350. 

Conjecture 4.3 [4]. The right isosceles triangle, whose smallest sides have length 
equal to 1.5, is a solution region. This region has area 0.25. 

Conjecture 4.4 [4]. The 30o-600-90 ° right triangle with hypotenuse equal in 

length to (6 + 2x//3)/9 is a solution region. Its area is less than 0.23450. 
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