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Abstract. We give some uniqueness results for the problem of determining a finite 
set in the plane knowing its projections along m directions. We apply the results 
to the problem of the reconstruction of a homogeneous convex body with a finite 
set of spherical disjoint holes. If m X-ray pictures with directions in some plane 
are given, then the problem is well posed provided the number of the holes is less 
than or equal to m and the set of the directions satisfies a suitable condition. 

1. Introduction 

The problem of  determining the structure of  an object knowing its projections 
along straight lines arises in a variety of  optical contexts (see [1], [6], and [8]). 
Here we consider the reconstruction of a homogeneous plane body K. We assume 
that we know the projections of  K along the complete set of  straight lines parallel 
to m given coplanar directions O~, i = 1 . . . . .  m. In mathematical terms the problem 
is to determine the characteristic function of K from the values of  its integral 
along each straight line in the directions 0~. Such integrals are the projections of  
K along the corresponding straight lines. We assume that we know such integrals 
without error. Under such assumptions the authors in [2], [3], [5], and [9] are 
able to prove some uniqueness and stability results for reconstructing a 
homogeneous plane convex body H. In particular, Gardner  and McMullen [2] 
proved that H is uniquely determined by its projections in m directions Oi if the 
following condition holds: 

(i) The set {Oi} /s not linearly equivalent to a subset of directions of diagonals 
of a regular polygon. 

Let us observe that the set of  directions of  diagonals of  any regular polygon 
is "equally spaced"  and that any equally spaced set o f  directions arises this way. 
More precisely a subset of  directions of  diagonals of  a regular polygon is a set 
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of  directions given by angles at rational multiples of or. Sets which are affinely 
equivalent to such sets will be called affinely rational. Hence the set {0~} satisfies 
the Gardner-McMullen condition (i) if and only if it is not affinely rational. 

Let us now consider the reconstruction of a homogeneous convex body K 
with holes. For reconstructing K we first have to determine the shape and the 
position o f  each hole and then we reconstruct the boundary of  K. The deter- 
mination of  the centers of  gravity of each hole suggests the following problem 
(Problem A): 

Reconstruct a finite set C in the plane knowing its projections along the complete 
set o f  straight lines parallel to m given directions 0~, i = 1 , . . . ,  m. 

Here the projection of  C along a line l in the direction 0~ is the number of  
points of  C lying on I. If  the number ICI of the points in C is less than the 
number m of  the directions 0~ the set C is uniquely determined (Proposition 1). 
Further, when Icl-- m we are able to prove that C is uniquely determined if the 
set {0i} is not affinely rational or C is not the set of  the vertices of  an aflinely 
regular polygon (Proposition 2). Should ]C[ = m + h while h is positive and m is 
sufficiently large with respect to h, a similar result holds (Proposition 3). When 
no conditions are placed on IcI we can construct an example in which the 
uniqueness property does not hold for Problem A (Proposition 4). 

In Section 3 we apply these results to the following continuous reconstruction 
problem (Problem B): 

Reconstruct a homogeneous plane body K obtained from a convex body by the 
deletion o f  a finite number o f  disjoint circular disks from its interior, knowing its 
projections in m directions 0~, i = 1 , . . . ,  m. 

In Theorems 1 and 2 we prove that Problem B is well posed if the set {0i} is not 
affinely rational and the following a priori assumption holds: the number of the 
holes in K is at most m. 

2. Reconstruction of Finite Sets 

Proposition I. Let 01, 0 ~ , . . . ,  Om be m given directions in the plane, and let C be 
a finite plane set consisting o f  n points. I f  n < m then the projections in the directions 
0~, i = 1 . . . .  , m, uniquely determine C. 

We give two different proofs: 

Proof 1. By contradiction, let A and B be two distinct sets with fewer than m 
points and with the same projections in the directions 0i. Let x belong to A \ B ;  
then for each direction 0i there exists a point y~ in the set B such that y ~ - x  is 
parallel to 0~ for each i, i = 1 , . . . ,  m. 

Since the points y~ must be distinct, the set B contains at least m points, 
which contradicts the assumption n < m. [] 
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The following p roof  (see [7]) is constructive. 

Proof 2. For  any direction 0~ let us denote by 0i(C) the set o f  lines with direction 
0~ through the points o f  C. Let r~ and si be the two lines in O~(C) that are 
"ext remal"  in the sense that they bound  a closed strip Si containing C. Each side 
o f  the convex polygon 

P = [~ S, (2.1) 
i = l  

contains at least one point  o f  C and P D C. Since C contains n points and n < m, 
it follows that P has fewer than 2m sides. As the extremal lines r ,  s~, i -- 1 , . . . ,  m, 
are 2m in number,  it follows that three extremal lines intersect in a vertex z of  
P. Moreover ,  one of  these three lines intersects P only in z and, since P D C, it 
follows that z belongs to C;  thus z is explicitly determined by the projections 
o f  C. By eliminating z and each line of  the set 0~(C) that contains it and then 
repeating the above argument,  we may explicitly reconstruct C. []  

When n = m let us consider  the following example: let V and W be two 
congruent  and concentr ic  regular n-gons. The set of  vertices o f  V and the set o f  
vertices o f  W have the same projections in the n directions determined by the 
2n sides o f  the convex hull o f  Vw W (see Fig. l(a) for n = 4 ) .  Let us observe 
that two convex polygons affinely equivalent to V and W also have the same 
property (see Fig. l(b)).  

In fact, we now show that this is the only way that  two configurations can 
determine the same project ions in the case n = m, that is: 

Proposition 2. Let 01, 0 2 , . . . ,  Om be m given directions in a cyclic order and let 
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C be a set consisting of  m points. The projections in the directions Oi, i = 1 . . . .  , m, 
fail  to determine uniquely C if  and only i f  the following conditions hold: 

(ii)(a) there exists an affine map T in the plane such that T (C)  is a regular 
polygon; 

(ii)(b) the directions T( Oi) are different from the directions of  the sides o f T ( C ) ;  
(ii)(c) the directions T( Oi) are equally spaced. 

Let us observe that from condition (ii)(c) it follows that the set {0~} is affinely 
rational. 

In the sequel II will denote parallelism. To prove Proposition 2 we need the 
following lemma: 

[,emma 1. Let P be a convex polygon of  2m vertices zj, j = 1, . . . ,  2m, in a cyclic 
order. Let W and V be the convex polygons of  vertices z2i and z2i-1, i = 1 , . . . ,  m, 
respectively. I f  for all A j = 1 , . . . ,  2m, the following condition holds: 

ZjZj+I II Zj_,Zj+= II Zj-2Zj+3, (2.2) 

then there exists an a~ne  map T such that T( W) and T (V)  are two congruent, 
concentric regular m-gons. 

Proof of  Lemma 1. Since by the assumptions 

z,+2z,+, II z ,+,z ,+, ,  z,+2z,+, II II z,+3z,+6, 

we have that the hexagon zi+5zi+4Zi+lZi+6zi+3zi+ 2 is a Pascal hexagon for each L 
Hence z l , . . . ,  z6 belong to a nondegenerate conic 8. Similarly z2 . . . .  , z7 belong 
to a conic, which must coincide with 8 since z 2 , . . . ,  z6 belong to 8. It follows 
that z~ belongs to 8 for each i. I f  8 is a parabola there exists j such that zj, 
z j + l , . . . ,  z2m, z t , . . . ,  zj_~ are ordered on 8. It is easy to see now that z~zj_3 is not 
parallel to zj_~zj_2, which contradicts the assumptions. Similarly, if 8 is a hyper- 
bola it follows from the convexity of  P that the vertices of  P belong to the same 
branch of  the hyperbola and the argument above can be repeated. So we have 
that 8 is an ellipse. Thus there exists an affine map T such that T(8)  is a circle 
D. By the assumptions we get 

T(z))T(zj+,) II T(zj_,)T(z)+2) 

and since the points T(zi), i = 1 , . . . ,  2m, belong to the same circle D we derive 
that 

d(T(z ,_ , ) ,  T(z,) ) = d(T(z,+t),  T(z,+:) ), 

where d is the Euclidean distance. It follows that T ( W )  and T(V)  are two 
congruent concentric regular m-gons. [] 



Reconstructing Plane Sets from Projections 227 

Proof of Proposition 2. Let P be the polygon defined by (2.1). The boundary of 
P consists of  at most 2m sides. If  the number of  sides of P is less than 2m, by 
repeating the argument in proof  2 of  Proposition 1, we derive that C is uniquely 
determined. Therefore if C is not uniquely determined P has exactly 2m sides. 
Let zj, j = 1 , . . . ,  2m, be the vertices of  P in a cyclic order and let W and V be 
the polygons of  vertices z2~ and z2i-l, i= 1 , . . . ,  m, respectively. Since [C[ = m 
and each side of  P contains at least one point of  C it follows that either C = W 
or C = V. Since C is not uniquely determined W and V have the same projections 
in the directions 0~. So for each direction 0~ there exists a side zjz~+~ such that 
zjzj+~ [I 0~ and (2.2) holds. 

Lemma 1 holds that there exists an affine map T in the plane such that T(W) 
and T(V) are congruent and concentric regular m-gons. Since either C = W or 
C = V we derive (ii)(a). Moreover, the directions of the sides of T(P) ,  that is to 
say the directions T(O~), are equally spaced and different from the directions of 
the sides of T(C) .  This proves (ii)(b) and (ii)(c). Conversely, it is easily seen 
that if the conditions (ii)(a), (ii)(b), and (ii)(c) hold, C is not uniquely determined. 
This completes the proof. [] 

Proposition 3. Let C be a set consisting of m + h points, with m and h positive 
integers. I f  

m > 4h2+ 1 lh, (2.3) 

then the projections of C in the directions Oi, i = 1 , . . . ,  m, fail to determine C 
uniquely i f  and only if  (ii)(a) and (ii)(b) hold and 

(ii)(d) the set of directions {T(0~)} is a subset of a set of m + h equally spaced 
directions. 

First we give a definition and three lemmas. 

Definition. Let J be a set of consecutive integers, with IJ[-> 6. Let Q = {~}~j 
be an ordered set of points. Q is regular if the following conditions hold: 

any five consecutive points of Q are the vertices ordered counterclockwise of  
a convex pentagon (in the strict Euclidean sense: all vertex angles must be 
less than ~r); 

q,q,+~ltq,-~q,+2 for / ,  J D { i - l , i , i + l , i + 2 } ;  
(2.4) 

q,q,+lllq,-2q,+~ for / ,  J = { i - 2 ,  i , i + l , i + 3 } .  

Lemma 2. Let Q = {q~}j~j be a regular set with g the first index in J. Then 

q,q,÷~llqjqk fori ,  j,k, j < k ,  2 i + l = j + k ,  J = { i , £ k } .  (2.5) 

Moreover, there exists a unique point qs-~ such that {qs-~} w Q is a regular set. 

Remark. Let us observe that the set {q~ , . . . ,  q,} of the vertices of a regular 
n-gon is a regular set for n->6. In this case the point qs_t=qo in Lemma 2 
coincides with qn. 
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Proof o f  Lemma 2. As in the proof  of  Lemma 1 we have that the set Q 
is inscribed in a conic & Moreover, let us observe that (2.4) implies (2.5) 
when k - j  < 6. We argue by induction. Assume that (2.5) holds for k - j  < l, with 
1 - 6 ,  and consider the hexagon qjqj+lqk-3qk-2qk-lqk, with k - j =  I. We have 
qk-lqk-2 [[ qk-3qk" Since ( k - 3 ) - ( j +  l )< l ,  ( k - 2 ) - j < l ,  by induction 
q,-tq, II qj+lqk-3 and q,_~q, [I qjqk-2. Therefore qjqk-2 II qd+lqk-3. Since the hexagon 
qjqj+lqk-3qk-2qk-lqk is inscribed in 8 by applying the Pascal theorem we derive 
that abqk II cb+~qk-l; since by induction qiqi+~ II qj+~qk-~ we have (2.5) for k - j  = I. 

We now prove that q~_l is uniquely determined. In fact, let r be a line 
through qg+2 parallel to qgqg+~ and let s be a line through qg+4 parallel to 
q~+lqg+2. In order to satisfy (2.4) for i = g  and i = g + l  we have qg_~E{rns}.  
So qs-~ is uniquely defined. Moreover, it is easily seen that qg-lqgqg+lqg+2qg+3 
is a convex pentagon and therefore {qg_~} u Q is a regular set. This concludes 
the proof. [] 

Notat ion .  Let A and B be two disjoint sets, each with m + h points and with 
the same projections in the directions 0i, i = 1 , . . . ,  m. Let P be the convex hull 
of  A u B, pO the interior of  P, and OP the boundary of  P. Let 

a = l A n o P I ,  b = l B n O P I ,  a = l A n P ° l ,  [3=[BnP° l '  (2.6) 
c = a + b ,  7 =  a+/3.  

By the assumptions it follows that 

a + c t = b + f l  = m + h .  

We denote by z ~ , . . . ,  zc the points of (A w B)c~ OP in a cyclic order and by Oi(zj) 
the line through z~ in the direction 0i. 

L e m m a  3. Let Oi be a fixed direction. Let z,_~, z,, z, ,  zw be vertices of  P with 
t+ l < u < w ,  Z,_IEB, zwEA. I f  z,z, It Oi and 

z,, z,+~, . . . , z~ are not collinear, (2.7) 

{ z , + ~ , z , + 2 } n A ~ O  and z,_~O~(zo) foreach z~EA with u < v < w ,  (2.8) 

then one of  the following conditions holds: 

zw E O,(z,_,); (2.9) 

O,(z,_,)nAc~ pO# 0 ;  (2.10) 

O,(z,.) n B npO ~ Q. (2.11) 

Proof of  Lemma 3. Let r be the line (parallel to 0~) containing the segment z,z,. 
First we prove that if (2.9) does not hold then z,_, ~ r and Zw ~ r. By contradiction 
let us assume that (2.9) does not hold and z,_, E r. We distinguish two cases: 

(a)  z,_~ E z , z . ;  

(b) z,_, ~ z,z.. 
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In each case OP~ z,z,. In the first case, since P is convex, z,+~, z,+2e z,z~ and, 
since (2.9) does not hold, z~+~, z,+2~ zw. This contradicts (2.8). In the second 
case, since P is convex, the vertices z,, z t+~,. . . ,  z~ belong to z,z~, and this 
contradicts (2.7). The proof  that z~ e~ r follows similarly. 

Now it is easily seen that exactly one of  the following cases will occur: 

(c) zw~O,(z,_O. 
(d) The endpoint of  O~(z~) c~ P different from z~ belongs to the open side z,_j z,. 
(e) The endpoint of O~(z,_~)c~ P different from z,_~ belongs to the relative 

interior of  the polygonal path z , , . . . ,  z~. 

In the first case (2.9) holds. Let us consider the third case. As A and B have the 
same projections in the direction 0~ then O~(z,_O c~ A # f~. But, by (2.8), O~(z,_~) c~ 
A c~ OP = ~ and then (2.10) follows. Similarly, in the second case (2.11) follows. 
This concludes the proof. [] 

Lemma4.  L e t z ~ , . . . , z e b e t h e p o i n t s o f ( A u B ) c ~ O P .  L e t d = y + 3  and le t ebe  
a positive integer with 2(d + e) <- c+2. Let 

and 
J = { - d - e , . . . , O , . . . , d + e + l } ,  

z-a+,_~z_a+, ]l O, for i, 

J ' = ( - d - e - 1 } u J ,  

1___ i_<2d+l .  

I f  Z = {z~}~j is regular and 

Zz~+~A, z2j~B fori ,  j, 2 i + l ~ J ,  2 j e J ,  (2.12) 

then Z ' =  {z~}j~j, is regular and (2.12) holds for i,j, 2i + 1 c J', 2j ~ J'. 

We recall that I(A u B) r~ OPI = c. Therefore, if 2(d + e) + 2 > c the points of  Z 
are not all distinct; for instance, if c = 2(d + e))) then z-a-e = Zd+e. 

Proof of  Lemma 4. By repeatedly applying Lemma 2 there exist 2 y +  1 points 
q-a-e-~2v+l),... • q-d-e-I such that the set 

{q-d-e-~2~*l),..., q-d-e-l ,  Z-d-e, Z-d-e+l , . . . ,  Zd+e+l} (2.13) 

is regular. 

Let f =  - d  + e - 1. Since by assumption Z-d+~-IZ-d+i H O~ for i, 1 <--- i ----- 2d + 1, then 
(2.13) implies 

Z_d_eEOi(Zf+2i ) for i, i-->1, f + 2 i < - d + e + l ;  (2.14) 

q_a_e_lEOi(Zf+2i+l) for i, i->1, f + 2 i + l < _ d + e + l ;  (2.15) 

q-d-e-2eOi(zf+2~+2) for i, i>--l, f + 2 i + 2 < - d + e + l ;  (2.16) 

q-d-¢-3eOi(Z/+2i+3) for i, i>--l, f + 2 i + 3 < - d + e + l .  (2.17) 
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We assume that Z-d-e ~ A; that is, d + e is odd. In the other case the proof 
follows similarly. 

To prove Lemma 4 we prove four statements. 

(I) Let  us assume that z-a-e-~ ~ B and Z '  is not regular. Then q -d-e - I  ~ B c~ pO 

If  Z '  is not regular then 

Z-d-e- i  ~ q -d -e - l .  (2.18) 

Let i be such that i>-2, f + 2 i < - d + e .  Since d = 7 + 3 = ( a + f l ) + 3  and f =  
- d  + e - 1 ,  then i can take a +/3 + 2 different values. Let us consider the four 
points z -a -e - l ,  z -a-e ,  Zs÷2i, and Zs÷2i+l. Lemma 3 and (2.14) imply that one of 
the following cases will occur: 

(ai) z -a -e - ,  e 0~(Zs+2i+l); 
(b,) O,( zs÷ 2,÷~) ra B n p O  ~ 0 ;  
(ci) O ~ ( z - a - e - l ) n A n P ° # O .  

If  there exist i, j, i ¢ j ,  such that (a~) and (aj) hold, then 

z - a - e - ,  e O,( zs+ 2,+ ,) c~ 0j(zs+2~+~) 

and, by (2.15), we derive z -a -e - i  = q - a - e - t ,  contradicting (2.18). 
Therefore, 

(a~) holds at most for one index. (2.19) 

Furthermore, as a = IA n p°l, then 

(c~) holds at most for a indices. (2.20) 

Form (2.19) and (2.20) it follows that (bi) must hold at least for fl + 1 indices. 
We now prove that there exist i, j ,  i # j ,  such that (b~) and (bj) hold and 

0,(Zs+2,+,) n Oj(zf+2~+l) n B n p O  ~ 0 .  (2.21) 

Otherwise, for each / , j ,  i # j ,  such that (b~) and (bi) hold 0~(Zs+2~÷~) n B c~ pO and 
0j(Zs+v+0 n B n p o  are disjoint sets. Therefore ~ + 1 ---IB n P° f contradicting the 
definition of  ~. 

By (2.15), 0~(Zs+2~+~)n Oj(zs+2j+l)={q-a-,-~}, therefore (2.21) implies that 
q-a-~-~ ~ B n pO. This concludes the proof  of  statement (I). 

(II) Let  us assume that Z-a-~-~ ~ B and Z '  is not regular. Then q-a-e-3 E B n pO. 

Let i be such that i - 2 ,  f + 2 i + 2 < - d + e .  Since d = ~ , + 3 = ( a + f l ) + 3  and 
f =  - d  + e -  1, then i can take a + ~ + 1 different values. First we prove that one 
of  the following cases will occur: 

(d,) Z-a-e-I  e 0,(z±+2~+3); 
(e()' Oi(Zf+2i+3) ('~ B A pO ~ ~ .  
(f,) O , ( Z _ d - e - l ) n A n P °  # f~ .  
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We fix an index i and distinguish two cases: (a~) does not hold and (a~) holds. 
If  (ai) does not hold, let us consider the four points Z-d- , -~,  Z-d-~, Z~+ s, and 

z:~+S+3. In this case Z - d - ~ - ~  O~(Z~o) for each z~ c A with 2 i + f <  v < 2 i + f + 3 .  
Therefore by Lemma 3 and (2.14) it follows that either (d~), (e~) or (f~) holds. 

If  (a~) holds, by (2.15), z2~+f+~, Z-d-e-~, and q-d-~-~ are on the same straight 
line parallel to O~; therefore IO~(Z_d_e_~)n BI->2 and, since A and B have the 
same projections in the direction Oi, (f~) follows. In any case either (d~), (e~) or 
(fi) holds. 

We observe that 

q--d--e--3 ~ Z - d - e - l .  (2.22) 

Otherwise (2.13) implies that the polygon Z-d_e-lq-d-e-lZ-d-eZ-d-e+iZ-d-e+2 is 
convex. Since Z-d-e-I ,  Z-d-e, Z-d-e+1, and Z-d-e+: are consecutive points in the 
boundary of the convex polygon P, by the definition of P it follows that 
q-d-~-~ ~ pO, contradicting statement (I). 

If  there exist i, £ i ~ j ,  such that (d~) and (dj) hold then 

Z-d-e-~ ~ O,(Zs+2,+3) n 0j(Zs+2~+3) 

and, by (2.17), we derive Z-d-e-~ = q-d-e-3,  contradicting (2.22). Therefore 

(di) holds at most for one index. (2.23) 

Furthermore, as a = I A n p0l, then 

(f~) holds at most for a indices. (2.24) 

From (2.23) and (2.24) it follows that (e~) has to hold at least for fl indices. 
We now prove that there exist i, j, i # j ,  such that (e~) and (es) hold and 

0,(Zs+:,+3) n os(zf+2j+3) n B n p O  ~ O. (2.25) 

Otherwise, for each i , j ,  i # j ,  such that (ef) and (ej) hold O,(Zf+2~+3) n B n pO and 
0s(Zs+2~+3) n B npO are disjoint sets. 

Furthermore, if (e~) holds and q-d-e-~ ~ Oi (Zs+2~+3) n B npO then, by (2.15), 
z2~+s+~, z2~+f+3, and q-d-e-~ are on the same straight line parallel to 0~. Since 
z2i+s+~, z2~+s+3 e A n OF, q-d-e-I  E B N pO and A and B have the same projections 
in the direction 0i, then 

lOj(ZS+2i+3) n B n P° I -> 2. 

In conclusion, if (2.25) does not hold then the set 

U {o,(zs+~,+3) n B npO} u {q-d-~-~} 
i: (el) holds 
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contains at least/3 + 1 points. Therefore /3 + 1 -- IB n P° 1, which contradicts the 
definition of/3. 

By (2.25) and (2.17) it follows that q-d -e -3~  B n  pO. 

(III) Let  Z-d-e-I  C B. Then Z-d-e-1 = q - d - e - i ,  that is, Z '  is regular. 

Let us assume that Z '  is not regular. By induction, the same argument as in 
the proof of statement (I) and (II) shows that 

q - d - e - l ,  q - d - e - 3 , ' . .  , q -d -e - (2 t i+ l )  E B r iP° .  

This contradicts the assumption that/3 = IB n P° I 

(IV) Z-d-e- i  ~ B. 

We argue by contradiction. Let us assume that Z-d-e-~ ~ A. The same argument 
as in the proof of statement (III) shows that 

Z-d-e-1 = q-e-~-2 .  (2.26) 

We observe that (2.26), (2.14), and (2.16) imply that 

z-d-e  ~ 0,(Zs+2,), Z-d-~-~ ~ 0,(Zs+2,÷2), 

for i, i-> 1, f + 2 i + 2 - <  d + e +  1. Since the line 0i(Zs+2~+0 lies between the lines 
Oi(zy+2i) and 0i(Zs+2~+2) then Oi(zs+2i+OnaP={zz~+s+l,z} with z in the open 
segment Z-a-e- ,Z-a-e .  Since the open segment does not contain points of A u B 
and A and B have the same projections in the direction 0~, then 

Oi( Zy+ 2i+ l ) N B n p O  ~ 0 .  (2.27) 

We now prove that there exist i, j, i ~ j ,  1 - i -< d, 1 - j - <  d, such that 

0~(Zs+2~+l) n Oj(Zf+~+~) n B n p O  ~ (~. (2.28) 

Otherwise 0~(zs+z,+l) n B npO and 0j(Zs+2j+,) n B n p o  are disjoint sets for each 
i, j ,  i ¢ j ,  and this implies that IB n P°l-> d = 3,+3 contradicting the definition 
of  3'. 

Inequalities (2.28) and (2.15) imply that 

q-d-e- I  E B npO.  (2.29) 

Equations (2.26) and (2.13) imply that the polygon 

g - d - e -  l q - d - e -  I Z - d - e Z - d - e +  l g - d - e +  2 

is convex. Therefore, since 2 - a - e - ~ ,  g - d - e ,  Z - d - e + l ,  and Z-d-e+2 are consecutive 
points in the boundary of the convex polygon P, by the definition of P it follows 
that q-d-e - I  ~ pO. This contradicts (2.29). This contradiction concludes the proof 
of  statement (IV) and of  Lemma 4. [] 
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Proof o f  Proposition 3. First let us observe that each line ! in the direction 0~ 
that supports P must contain at least one point of A and one point of B. Therefore 

m<_a, m<_b, 2m<_a+b,  (2.30) 

and since a + a = m + h, b +/3 = m + h we have 

a<-h, /3<-h, y ~ 2 h .  (2.31) 

In particular, P has at least 2m sides and, since h > 0, (2.3) implies that P 
has at least 30 sides. 

We now prove that there exists an affine map T such that 

T ( A  c~ OP) and T( B n OP) are two congruent and concentric 
regular polygons. (2.32) 

In the sequel we denote by R~ the interior of the convex hull of  the six points 
z~-2, z H ,  z~, z H ,  z~+2, z~+3. Since P has more than ten sides, any five consecutive 
such hexagons intersect and any five nonconsecutive hexagons have empty 
intersection. 

For each x ~ ( A w B) n p O  let us define 

Px= U {~,z,+,}. 
i:  x~  Ri 

Let us observe that Fx consists of consecutive segments z~z~+~ and it consists of 
at most five such segments. Let 

F= U Fx; 
x ~ ( A w B ) r ~ P  0 

we have that F consists of  at most y connected components and of 5y segments 

zizi+l . 
Let sj and rj be the lines parallel to 0~ that support P. On sj c~ OP we choose 

a segment zjzj+~ with one end in A and the other in B. Similarly, we choose on 
r~ c~aP another such segment. Let E be the union of  the segments above for 
j = 1 , . . . ,  m, let G = OP\E, and let 

D = OP\ (G u F).  (2.33) 

Since G contains a + b - 2 m  segments z~z~+~ then G u F consists of  at most 
a + b - 2 m  + y connected components and of  at most a + b - 2 m  + 5y segments 
z~z~+~. Since a + a = b +/3 = m + h, a +/3 = y, then G u F consists of  at most 2h 
connected components. Therefore, by (2.33), D too consists of  at most 2h 
connected components. 
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Since D = E \ F  and by definition E contains at least 2m segments ziz~+~, we 
derive that D contains at least 2 m -  53, segments z~z~+l. Therefore there exists a 
connected component  Z of  D which contains a number of  consecutive segments 
z~zi+~ greater than or equal to ( 2 m - 5 y ) / 2 h .  From (2.3) and (2.31) Z contains 
at least 2 y + 7  consecutive segments z~z~+l of P. 

We can assume that the set of  vertices of  Z have the order z -a ,  Z-d+l,  • • • ,  Zd+~, 
with d = y + 3. Furthermore, since the segments in Z belong to E, we can assume 
that 

Z-d+,-,z-d+, II 0, for i = 1 , . . . , 2 y + 7 ,  

z2~+l ~ A for i ,  - d  <- 2i + l <- d + l ,  

Z2iEB for / ,  - d < - 2 i < - d + l .  

Let us consider the four points Zj_l, zj, zi+t, and zj+ 2 for j, - d  + 1 -<j-< d - 1. 
Since z~z~+l II 0-d+~+t, since by (2.33) Rj n (A u B) c~ pO = O and since A and B 
have the same projections in the direction O-d+i+~, it follows that 
zj-lzj+2 [1 0-d+j+l. Similarly, 

zj_~zj+3 II o_d+j.-, for j , - d + 2 < - j < - d - 2 .  

Therefore {z-a, Z - d + l , . . . ,  Zd+l} is a regular set. 
We now apply Lemma 4 to show that { Z - d - l ,  Z -d , .  • • ,  Zd+l} is a regular set 

and Z-d-1 ~ A.  Similarly, { Z - d - l ,  Z - a , . . . ,  Zd+~, Zd+2} is a regular set and Zd+2 ~ B. 
By repeating the argument above we get that z2i+l ~ A, z2~ ~ B for each i, that 

c = a + b is even, and that {z-<c/2)-2, z-~c/2)-1,.  • • ,  ztc/2)+3} is regular. This implies 
that P satisfies the assumptions of  Lemma 1. Therefore there exists an affine map 
T satisfying (2.32). We conclude that A n OP and B n OP have the same projections 
in the directions 0 ,  i = 1 . . . .  , m. Then A c~ pO and B n p0 also have the same 
projections in the directions 0 ,  i = 1 . . . .  , m. Since 

[An  P° I = [B n pO[ < m, 

from Proposition 1 it follows that 

A n P ° =  B c ~ p ° = o .  

This proves (ii)(a), (ii)(b), and (ii)(d). Conversely, it is easily seen that if 
conditions (ii)(a), (ii)(b), and (ii)(d) hold, C is not uniquely determined. This 
completes the proof. [] 

We conjecture that Proposition 3 holds even if in (2.3) the lower bound for 
m is decreased. However, this bound cannot be too low. For instance, for h = 1 
and m = 4 Proposition 3 does not hold. In fact, for any set of  four direction 01, 
02, 03, 04 there exist two sets A and B consisting of  five points, with the same 
projections in the directions 0i. In Fig. 2 A consists of  black points, B consists 
o f  white points, c = s i n ( a + ~ 8 ) / c o s a . s i n ~ ,  d = - ( c c o t a + t a n f l ) ,  a,  f l e  
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(0, ¢r/2), and the directions 0t, 02, 03 and 04 are, respectively, given by the vectors 
(0, 1), (cos o~, sin a ) ,  (1, 0), and (cos/3, - s in /3 ) .  

The fol lowing proposition shows that when there is no a priori bound on [CI, 
then for any finite set o f  directions {0i} the uniqueness property for Problem B 
does not hold. 

Proposition 4. Let {Or, 0 2 , . . . ,  Ore} be an arbitrary finite set of  directions in the 
plane. Then there exist two distinct finite sets A and B with the same projections in 
the directions Oi. 

Proof. First let us observe that if m = 1 Proposition 4 is trivial. For m > 1 we 
argue by induction. Let A and B be two finite sets with the same projections in 
the directions 0 ,  i = 1 . . . .  , m - 1, and let r be a fixed vector with direction 0m. 
It is easy to see that the sets 

, ~ = A u { B + r } ,  B = B u { A + r }  

have the same projections in the directions 0 ,  i =  1 , . . . , m  (see Fig. 3(a) 
and (b)). [ ]  
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Fig. 3 

Let us observe that the cardinality of  the sets A and B in the proof  of  Proposition 
4 is equal to 2 "-~. 

The following result is related to the classic nonuniqueness theorem for 
Radon transforms; it was observed by Lorentz [4]. 

Corollary. Let { 0~ , 0 2 , . . . ,  Ore} be an arbitrary finite set of directions in the plane. 
Then there exist two distinct sets with nonempty interior and with the same projections 
in the directions 0~. 

Proof. Let A and B be as in Proposition 4. Let us consider two families F~ and 
r2 of  disjoint homogeneous and congruent disks C~ with center the points of  A 
and B, respectively. Let 

F = U  q, s = U  q; 

then F and G have the same projections. [] 

The results in this section are also connected with projections of  a finite 
number  of  mass points, that is, points in which positive masses are concen- 
trated [7]. 

3. Reconstruction of Convex Bodies with Holes 

In this section we prove two theorems which provide conditions for the reconstruc- 
tion of  a homogeneous convex body K with a finite number  of  disjoint holes 
(Problem B). 

Definition. Let n be a positive integer and let K,  be the class of  plane convex 
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bodies with at most n disjoint circular holes. More precisely, let 

Kn = i M \  (_3 Qh : M is a plane convex body, t <- n, Qh is a disk and 
t h ~ l  

-x 

M ~ Qh for h = l, . . . , t, Qh C~ Qk = O for h ~ k } . 

Similarly we define 

/(n = I H \ G  C~: H is a plane convex body, s<-n, C~ is a disk and H ° D  C~ 
i i = l  

for i =  1 . . . . .  s, C~c~ C~ - - ~  for i # j } .  

Recall that knowing the projection of  K in the direction 0~ is equivalent to 
knowing the values of the integral of the characteristic function of K along each 
straight line in the direction 0, 

First we prove the following lemma. 

I,emma 5. Let K belong to I~n and let W belong to Kn. Let us assume that K and 
W have the same projections in the directions Oi, i = 1 , . . . ,  m. Then the holes of  W 
coincide with those of  K i f  one o f  the following conditions holds: 

r e>n;  (3.1) 

m = n and the set {01, 02 , . . . ,  0,,} is not ajfinely rational. (3.2) 

Proof We have 

and 

K = H \  LJ C~ (3.3) 
/ = 1  

W = M \  ~.J Qh, (3.4) 
h = l  

with M and H plane convex bodies, Ci and Qh disks, t - n, and s <- n. l.~t 0j be 
a fixed direction. We assume that 0~ is orthogonal to the x-axis. The projection 
of  H in the direction 0~ is a concave function hi(x),  defined on a compact interval 
[mj, dj]. Moreover, the projection of a disk Ci in the direction 0j is given by the 
function g~.~(x) where 

girl(x)={20 x / r 2 - ( x - a l ) 2  otherwise,if a , - r ,<-x<-a i+r , ,  

where a~ and r~ denote, respectively, the abscissa of the center and the radius of 
Ci. Therefore the projection fj(x) of K in the direction 0j is 

f~(x) = hi(x) - ~ g,d(x), x e [mj, at]. (3.5) 
i = l  
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Similarly, if we consider the projection of  W, from (3.4) we have 

fj(x)=vj(x)- ~ Uhj(X), x~[mj, dj], (3.6) 
h=l 

where vj(x) is the projection of M in the direction 0j and 

Uh,j(X)=(2oX/P2--(X--bh)2 if bh--Ph <-X<--bh+Ph, 
otherwise, 

where bh denotes the abscissa of  the centre of  Qh and Ph its radius. 
Since h~(x) and vi(x) are concave functions in (m s, dj), from (3.5) and (3.6) 

we infer that fj has an unbounded one-sided derivative in (mj, dj) at the points 
ai+ ri, i = 1 , . . . ,  s, and at the points bh +Ph, h = 1 , . . . ,  t. In other words, from 
the projection of  K in the direction 0~ we determine the sets Lj and Rj of the 
lines parallel to 0j which are tangent from the left and from the right (resp.) to 
some disk Ci and to some disk Qh (see Fig. 4). 

I 

I a ,  I 
I I 
I I 
I I 

t~ 

Fig, 4 
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But we have more. Let I belong to Lj, let E(I) be the family of  disks C~ tangent 
from the right to l, and let F(l) be the corresponding family of  disks Oh. Since 
K e / ( , ,  I intersects the x-axis in a point with abscissa x in (mj, dj). By differentiat- 
ing (3.5) we get 

1 , f~  + O(v/'e'), e > 0 ,  (3.7) E D+fj(x+e)=O+h~(x+e) x / ~ .  a,-,,=x 

where O(x/-~) goes to zero when e tends to zero, and D ÷ denotes right differen- 
tiation. Similarly, by differentiating (3.6) we get 

D+fi(x + e) = D+vj(x + e) - ~  

From (3.7) and (3.8) we obtain 

1 E 4p-/~+0(4~), ~>0. (3.8) 
~2-E h: b~,-ph=x 

Let us observe that if there exists a circle D such that 

D~(Ci}n{Q,} ,  

then K u D and W w  D satisfy the assumptions of  Lemma 5 and (3.1). 
We argue by contradiction and we assume that {Ci} ~ {Qh}; from the remark 

above it follows that we may assume 

{C,} c~ {Qh} = Q. (3.10) 

Let C be a fixed circle of  {C~}, with radius r. Let 

' an ent to 1 
j = l  

R ( C ) = { I e  Cj Rj, l tangentto C) .  
j = l  

We have 

I t ( c ) l  = IR(C)I = m. (3.11) 

Let us assume now that (3.1) holds. From (3.11), by the pigeonhole principle, 
we derive 

There exists at least one circle Q in { Qh} such that Q has three tangent 
lines in common with C, and each of  the tangent lines supports Q and 
C from the same side. (3.12) 

From (3.12) we get that Q = C, which contradicts (3.10). This concludes the proof  
when (3.1) holds. 

~. ~ = E ~ h .  (3.9) 
i: CiEE(I) h: Qhc~F(I) 
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Let us assume now that (3.2) holds. Statement (3.12) cannot occur, otherwise 
Q = C which contradicts (3.10). By the pigeonhole principle and (3.11) we derive 
that s = t = m and the following situation occurs: 

Each circle Oh has exactly two tangent lines in common with C, for 
each circle C in {C~}; conversely, each circle C~ has exactly two tangent 
lines in common with Q, for each circle Q in { Qh}. (3.13) 

From (3.13) it follows that each line l in Lj is tangent from the left just to one 
circle Q of  {Oh} and just to one circle C of  {C~}. From (3.9) we deduce that the 
radius of  Q is equal to the radius of  C and therefore we get that all the circles 
C~ and Oh have the same radius. 

Let A be the set of  the centers of  {Ci} and B of {Qh}. We know that for each 
line l in Lj there is exactly one point in A and one point in B on the same side 
of  I and at the same distance f rom/ .  Therefore we conclude that A and B have 
the same projections in the directions 0 i, j = 1 , . . . ,  m. So the problem has been 
reduced to Problem A. Since the set {0~, 0 2 , . . . ,  0m} is not affinely rational we 
conclude that A = B. This concludes the proof. [] 

From Lemma 5 and the Gardner-McMul len  result [2] quoted in the Intro- 
duction, Theorem 1 follows. 

Theorem 1. Any set K ~ I(n is uniquely determined by its projections in m directions 
01, 0 2 , . . . ,  0,, if  m >- n and if the set {Ol, 02 , . . . ,  On} is not a~nely rational. 

Notation. Given K s/~n and a direction 0i we denote by Si(K) the Steiner 
symmetral of  K in the direction 0i. 

S~(K) is a symmetric set with respect to the line through the origin perpen- 
dicular to the direction 0i ; furthermore, 

Si(K) n r is a connected set, possibly empty,  for any line r in the direction 0i, 
S~(K) has the same projection as K in the direction 0~. 

Let us observe that S~(K) provides the same data for problem B in a different 
form. We denote by A the class of  the sets which are the Steiner symmetrals of  
some K in / (n  with respect to some direction in the plane. Given m directions 
0~, 02 . . . .  ,0,~ we introduce the mapping S: 

S ( K ) = ( S , ( K ) , S 2 ( K ) , . . . , S ~ ( K ) ) ,  Kc I~ . ,  

from /~n to (A)". We put both on /(~ and on A the topology induced by the 
Hausdorff distance 

d K max llx - yll, tix - y l J )  
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Fig. 5 

Now we prove the well posedness for Problem B. 

Theorem 2. I f  m >- n and the set {0~, 0 2 , . . . ,  0,1} is not affinely rational then the 
mapping S is continuous and continuously invertible on S(/( , ) .  

Proof. Vol~i~ [9] has proved Theorem 2 when n = 0, that is for homogeneous 
convex bodies without holes. The general proof follows by a similar argument. 
Therefore we outline only the principal differences. 

Let K = H\[J~=~ C~, with H a convex body and C~ disjoint disks. Le t / j  be a 
strip parallel to 0j, containing K in its interior (see Fig. 5). Let us assume that 
there exists a sequence {A,}, A, e/~n, such that {S(A,)} converges to S(K)  and 
{A,} does not converge to K. 

For t large enough I ~ S j ( A , ) ,  j =  1 . . . .  , m; therefore (~y~,/~ ~A, .  Since 
m 

f']~=~/j is a compact set there exists a subsequence {AA,} of  {A,} converging to 
a set W e K,,  W # K. Since S is a continuous mapping, W has the same projections 
of  K in the directions 0~, and Lemma 3 implies that the holes of W coincide 
with those of  K. Therefore W e / ~ ,  and by Theorem 1, W =  K, contrary to the 
assumptions. This concludes the proof. [] 

In addition we point out a nonuniqueness result for Problem B when we have 
no a priori bound on the number of holes. 

Proposit ion 5. Let {0~, 0 2 , . . . ,  Or,} be an arbitrary finite set of  directions in the 
plane. Then there exist two distinct sets K~ and K2 in I~,, n large enough, with the 
same projections in the directions 0i. 
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Proof Let F and G be as in the proof of Proposition 4. For this proof it is 
sufficient to consider the set K~ and K: defined by 

K t = H \ F ,  K 2 = H \ G ,  

where H is a convex body containing in its interior F and G. [] 

Finally, we mention the problem of reconstructing the spatial trajectories of 
elementary particles. This arises in bubble chamber experiments, where trajec- 
tories are photographed from several viewpoints (see [6]). The reconstruction 
for any planar section, when the optic axes are coplanar, suggests studying the 
following analogue of Problem A: 

Given a set of m directions {0t, 02 , . . . ,  Ore}, let li be a straight line orthogonal 
to 0, passing through the origin of the axis. The problem consists in reconstructing 
a finite set C in the plane knowing the orthogonal projection ¢ri(C) of C on 
each line Iv re(C) is the union of the orthogonal projections of each point in C 
on the line I;. Unlike Problem A it happens that for each point xe  re(C) we do 
not know the number of the points in C with the same orthogonal projection x. 

We are able to prove that Propositions 1 and 2 of Section 2 hold for this 
problem too. 
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