An Inequality for the Volume of Inscribed Ellipsoids

L. G. Khachiyan

Computing Center of the USSR Academy of Sciences, Vavilov Street 40, Moscow 117367, USSR

Abstract

Let K be a convex body in R^{n}, and let $x^{*} \in \operatorname{int} K$ be the center of the ellipsoid of the maximal volume inscribed in the body. An arbitrary hyperplane through x^{*} cuts K into two convex bodies K^{+}and K^{-}. We show that $w\left(K^{ \pm}\right) / w(K) \leq$ $0.844 \ldots$, where $w(\cdot)$ is the volume of the inscribed ellipsoid.

1. Introduction

Let K be a convex body in R^{n}. It is known [1] that among all the ellipsoids E contained in the body, $E \subseteq K$, there exists a unique ellipsoid $E^{*}=E^{*}(K)$ of the maximal volume. We call E^{*} the ellipsoid inscribed in the body and denote by

$$
w(K)=\max \{\operatorname{vol} E \mid E \text { is an ellipsoid, } E \subseteq K\}
$$

the volume of E^{*} viewed as a function of K. The center $x^{*}=x^{*}(K)$ of the inscribed ellipsoid is called the center of the body.

Let x^{*} be the center of a convex body K. Since $x^{*} \in$ int K, an arbitrary hyperplane $P=\left\{x \in R^{n} \mid p^{t}\left(x-x^{*}\right)=0\right\}$ through x^{*} splits K into two convex bodies

$$
K^{+}=\left\{x \in K \mid p^{\prime}\left(x-x^{*}\right) \geq 0\right\}, \quad K^{-}=\left\{x \in K \mid p^{2}\left(x-x^{*}\right) \leq 0\right\} .
$$

We show that the size $w(\cdot)$ of the splinters K^{+}, K^{-}is always at least $\alpha=0.844 \ldots$ times smaller than the size of the initial body, i.e., for all n, K, and P

$$
\begin{equation*}
\max \left\{\frac{w\left(K^{+}\right)}{w(K)}, \frac{w\left(K^{-}\right)}{w(K)}\right\} \leq \alpha=0.844 \ldots \tag{1}
\end{equation*}
$$

Remark. In [2] inequality (1) was proven with a worse constant of shrinkage, $\alpha=0.888 \ldots$. It may be conjected that the best possible value of α in inequality (1) equals $0.5 e^{1 / 2}=0.824 \ldots$. The latter value is attained as $n \rightarrow \infty$ in case K is a spherical cone with P parallel to the base.

Remark. If K is a polyhedra defined by a finite system of linear inequalities, then $w(K)$ can be determined in polynomial time with an arbitrary fixed absolute accuracy [2]. The same computational problem for determining vol (K) is \# P hard.

Remark. Replacing the "lower ellipsoidal volume" $w(K)$ by the "upper ellipsoidal volume" $W(K)=\min \{$ vol $E \mid E$ is an ellipsoid, $K \subseteq E\}$, and taking an n-dimensional Euclidean ball as K, we get

$$
\max \left\{\frac{W\left(K^{+}\right)}{W(K)}, \frac{W\left(K^{-}\right)}{W(K)}\right\} \geq 1-\frac{1}{2 n}
$$

under an arbitrary choice of x^{*} and P. Thus, for $W(\cdot)$ inequality (1) can hold for all n only trivially, i.e., with $\alpha=1$.

2. Proof of Inequality (1)

An arbitrary ellipsoid E in R^{n} can be given by the pair (a, A), where $a \in R^{n}$ is the center of the ellipsoid and A is an $n \times n$ symmetric positive definite matrix: $E=\left\{x \in R^{n} \mid(x-a)^{t} A^{-2}(x-a) \leq 1\right\}$. This ellipsoid is the image of the Euclidean unit ball $\|y\|=\left(y^{t} y\right)^{1 / 2} \leq 1$ under the transformation A, shifted to the point a, i.e.,

$$
E=\left\{x \in R^{n} \mid x=a+A y,\|y\| \leq 1\right\} .
$$

In particular, the support function and the volume of the ellipsoid $E \sim(a, A)$ are given by the expressions

$$
\begin{aligned}
& g_{E}(c)=\max \left\{c^{t} x \mid x \in E\right\}=c^{t} a+\left\|c^{t} A\right\| \\
& \operatorname{vol} E=v(n) \operatorname{det} A
\end{aligned}
$$

where $v(n)$ stands for the volume of the n-dimensional Euclidean unit ball. First we need the following

Lemma 1. Let $E^{*} \sim\left(a^{*}, A^{*}\right)$ be the ellipsoid inscribed in a convex body K and let $E \sim(a, A)$ be an arbitrary ellipsoid contained in the body. Then

$$
\operatorname{vol} E / \operatorname{vol} E^{*} \leq x \cdot \exp (1-x)
$$

for any x in the interval

$$
\min _{c \in R^{n}} \frac{\left\|c^{2} A\right\|}{\left\|c^{t} A^{*}\right\|}=\lambda \leq x \leq \Lambda=\max _{c \in R^{n}} \frac{\left\|c^{t} A\right\|}{\left\|c^{t} A^{*}\right\|}
$$

Proof. Since the contents of the lemma is invariant under affine transformations, we may assume that E^{*} is the unit ball $A^{*}=I=\operatorname{diag}(1, \ldots, 1)$ and $A=$ $\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)>0$, where $\lambda_{1}, \ldots, \lambda_{n}$ are the semiaxes of E. Then $\lambda=\min \lambda_{i}$ and $\Lambda=\max \lambda_{i}, i \in\{1, \ldots, n\}$. Since the ellipsoids E^{*} and E are contained in K, it follows that for any $t \in[0,1]$ the ellipsoid $E(t) \sim(1-t)\left(a^{*}, A^{*}\right)+t(a, A)$ is contained in K as well. Consider the function

$$
f(t)=\ln (\operatorname{vol} E(t) / \operatorname{vol} E(0))=\sum_{i \in\{1, \ldots, n\}} \ln \left(1+t\left(\lambda_{i}-1\right)\right)
$$

The maximality of the volume of $E^{*}=E(0)$ implies $f^{\prime}(0) \leq 0$, i.e.,

$$
\operatorname{tr} A=\sum_{i \in\{1, \ldots, n\}} \lambda_{i} \leq n
$$

Therefore

$$
\operatorname{vol} E / \mathrm{vol} E^{*}=\prod_{i \in\{1, \ldots, n\}} \lambda_{i} \leq \prod_{i \in\{1, \ldots, n\}} \lambda_{i} \cdot \exp \left(1-\lambda_{i}\right)
$$

Since $x \exp (1-x) \leq 1$ for all x and the minimum of the function $x \cdot \exp (1-x)$ over $[\lambda, \Lambda]$ is attained in the endpoints of the interval, the proof is completed.

We now want to prove inequality (1). Since $K^{ \pm} \rightarrow K^{\mp}$ as $p \rightarrow-p$, it suffices to prove that $w\left(K^{-}\right) / w(K) \leq \alpha=0.844 \ldots$. Let E^{*} and E^{-}be the ellipsoids inscribed in K and K^{-}. Inequality (1) is invariant under affine transformations and we may assume without loss of generality that $E^{*} \sim(a, D)$ and $E \sim\left(-a, D^{-1}\right)$, where $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)>0$. Since the centers of E^{*} and E^{-}are placed in the points a and $-a$, it follows that $0 \in$ int K. In this case the body K can be defined by the system of linear inequalities $K=\left\{x \in R^{n} \mid c^{t} x \leq 1, c \in K^{0}\right\}$, where K^{0} is the polar set of covectors. The ellipsoids E^{*} and E^{-}are contained in K if and only if

$$
\begin{aligned}
& g_{E^{*}}(c)=c^{t} a+\left\|c^{t} D\right\| \leq 1, \quad \forall c \in K^{0}, \\
& g_{E^{-}}(c)=-c^{t} a+\left\|c^{t} D^{-1}\right\| \leq 1, \quad \forall c \in K^{0} .
\end{aligned}
$$

Multiplying the last inequalities for a fixed $c \in K^{0}$ we get

$$
c^{t} c \leq\left\|c^{t} D\right\|\left\|c^{t} D^{-1}\right\| \leq\left(1+c^{t} a\right)\left(1-c^{t} a\right)=1-\left(c^{t} a\right)^{2}
$$

i.e.,

$$
c^{t} c+\left(c^{t} a\right)^{2}=\left\|c^{t} \sqrt{I+a a^{t}}\right\|=g_{E}(c) \leq 1, \quad \forall c \in K^{0}
$$

where E is the ellipsoid given by the pair ($0, \sqrt{I+a a^{1}}$). Hence the ellipsoid $E \sim\left(0, \sqrt{I+a a^{t}}\right)$ is contained in K. Note that vol $E=v(n) \cdot \sqrt{1+a^{i} a}$. We now wish to apply Lemma 1 to the ellipsoids E^{*} and E. To this end, let us show that

$$
\min _{c \in \mathbb{R}^{n}} \frac{\| c^{t} \sqrt{I+a a^{t} \|}}{\left\|c^{t} D\right\|}=\lambda \leq \frac{\sqrt{1+a^{t} a}}{d} \leq \Lambda=\max _{c \in R^{n}} \frac{\| c^{t} \sqrt{I+a a^{t} \|}}{\left\|c^{t} D\right\|},
$$

where $d=\max \left(d_{1}, \ldots, d_{n}\right)$. Indeed, let $d=d_{1}$. Setting $c_{1}=(1,0, \ldots, 0)$ we have

$$
\lambda \leq \frac{\| c_{1}^{t} \sqrt{I+a a^{t} \|}}{\left\|c_{1}^{t} D\right\|}=\frac{\sqrt{1+a_{1}^{2}}}{d} \leq \frac{\sqrt{1+a^{2} a}}{d}
$$

On the other hand, the choice $c_{2}=a /\|a\|$ yields

$$
\frac{\sqrt{1+a^{i} a}}{d} \leq \frac{\sqrt{1+a^{t} a}}{\left\|c_{2}^{t} D\right\|}=\frac{\| c_{2}^{t} \sqrt{I+a a^{t} \|}}{\left\|c_{2}^{t} D\right\|} \leq \Lambda
$$

and we can apply Lemma 1 :

$$
\frac{\operatorname{vol} E}{\operatorname{vol} E^{*}}=\frac{\sqrt{1+a^{t} a}}{d_{1} \cdots d_{n}} \leq \frac{\sqrt{1+a^{t} a}}{d} \cdot \exp \left(1-\frac{\sqrt{1+a^{t} a}}{d}\right)
$$

To complete the proof the last observation is needed: since the center a of the ellipsoid E^{*} lies on the boundary of K^{-}, it follows that

$$
a \notin \operatorname{int} E^{-}=\left\{x \in R^{n} \mid x=-a=D^{-1} y,\|y\|<1\right\} .
$$

In other words, $2\|a D\| \geq 1$, and consequently $4 d^{2}\left(a^{\prime} a\right) \geq 1$. Therefore

$$
\begin{aligned}
\frac{w\left(K^{-}\right)}{w(K)} & =\frac{\operatorname{vol} E^{-}}{\operatorname{vol} E^{*}}=\frac{1}{\left(d_{1} \cdots d_{n}\right)^{2}} \leq \frac{1}{d^{2}} \cdot \exp \left(2-\frac{2 \sqrt{1+a^{a} a}}{d}\right) \\
& \leq \frac{1}{d^{2}} \cdot \exp \left(2-\frac{2 \sqrt{1+1 / 4 d^{2}}}{d}\right) \leq \max _{d^{2}}\left\{\frac{1}{d^{2}} \cdot \exp \left(2-\frac{\sqrt{4 d^{2}}+1}{d^{2}}\right)\right\} \\
& =0.844 \ldots,
\end{aligned}
$$

the last maximum being attained in the root $d^{2}=1.517 \ldots$ of the cubic equation $4 d^{6}-3 d^{4}-4 d^{2}-1=0$.

References

1. L. Danzer, D. Laugwitz, H. Lenz, Uber das Löwnersche Ellipsoid und sein Analogen unter den einem Eikorper einbeschriebener Ellipsoiden, Arch. Math. 8 (1957).
2. S. P. Tarasov, L. G. Khachiyan, I. I. Erlich, The method of inscribed ellipsoids, Soviet Math. Dokl. 37(1) (1988).
