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An Inequality for the Volume of Inscribed Ellipsoids
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Abstract. Let K be a convex body in R" and let x*eint K be the center of the
ellipsoid of the maximal volume inscribed in the body. An arbitrary hyperplane
through x* cuts K into two convex bodies K* and K ~. We show that w(K*)/w(K) <
0.844..., where w(-) is the volume of the inscribed ellipsoid.

1. Introduction

Let K be a convex body in R" It is known [1] that among all the ellipsoids E
contained in the body, E & K, there exists a unique ellipsoid E* = E*(K) of the
maximal volume. We call E* the ellipsoid inscribed in the body and denote by

w(K) = max{vol E|E is an ellipsoid, E < K}

the volume of E* viewed as a function of K. The center x* = x*(K) of the inscribed
ellipsoid is called the center of the body.

Let x* be the center of a convex body K. Since x*eint K, an arbitrary
hyperplane P = {x e R"|p'(x — x*) = 0} through x* splits K into two convex
bodies

={xeK|p(x —x*) 20}, K ={xeK|p'(x—x*)<0}.

We show that the size w(-) of the splinters K*, K~ is always at least o = 0.844. ..
times smaller than the size of the initial body, i.e., for all n, K, and P

ax{w(K Yy w(K™)

m,m}sa=0.844.... )
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Remark. In [2] inequality (1) was proven with a worse constant of shrinkage,
o = 0.888... . It may be conjected that the best possible value of « in inequality (1)
equals 0.5¢!/2 = 0.824... . The latter value is attained as n— oo in case K is a
spherical cone with P parallel to the base.

Remark. If K is a polyhedra defined by a finite system of linear inequalities, then
w(K) can be determined in polynomial time with an arbitrary fixed absolute
accuracy [2]. The same computational problem for determining vol(K) is # P-
hard.

Remark. Replacing the “lower ellipsoidal volume” w(K) by the “upper ellipsoi-
dal volume” W(K) = min{vol E|E is an ellipsoid, K < E}, and taking an
n-dimensional Euclidean ball as K, we get

{W(K*) W(K')} 1
X y >1——
W(K)  W(K) 2n

under an arbitrary choice of x* and P. Thus, for W(:} inequality (1) can hold for all
n only trivially, ie, witha = 1.

2. Proof of Inequality (1)

An arbitrary ellipsoid E in R" can be given by the pair (a, 4), where ae R" is the
center of the ellipsoid and A4 is an n x n symmetric positive definite matrix:
E = {xeR"|(x — aA~*x — a) < 1}. This ellipsoid is the image of the Euclidean
unit ball ||y|| = (»)!/? < 1 under the transformation A, shifted to the point 4, i.e.,

E={xeR"x=a+ Ay, Iyl < 1}.

In particular, the support function and the volume of the ellipsoid E ~ (a, 4) are
given by the expressions

g:(c) = max{c'x|x € E} = c'a + ||c'Al,
vol E = v(n) det A,

where v(n) stands for the volume of the n-dimensional Euclidean unit ball. First we
need the following

Lemma 1. Let E* ~ (a*, A*) be the ellipsoid inscribed in a convex body K and let
E ~ (a, A) be an arbitrary ellipsoid contained in the body. Then

vol Efvol E* < x-exp(l — x)
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for any x in the interval

leAl el
M feas] = A S XS A= maxr s

Proof. Since the contents of the lemma is invariant under affine transformations,
we may assume that E* is the unit ball A* =1 = diag(l,...,1) and A=
diag(4,,...,4,) > 0, where 4,,..., 4, are the semiaxes of E. Then 4 = min 4; and
A =max 4;, ie {1,...,n}. Since the ellipsoids E* and E are contained in K, it
follows that for any te[0,1] the ellipsoid E(t) ~ (1 — t)(a*, A*) + t(a, A) is
contained in K as well. Consider the function

f(® = In(vol E(t)/vol E(0)) = ' Y In(l + (4 — 1))

Therefore
volEfvol E*= [] A< ][] Avcexp(l —4).

ie{l,..,n} ie{l,...n}

Since x exp(l — x) < 1 for all x and the minimum of the function x-exp(l — x)
over [4, A] is attained in the endpoints of the interval, the proof is completed. [

We now want to prove inequality (1). Since K* — K ¥ as p — —p, it suffices to
prove that w(K ~)/w(K) < o = 0.844.... Let E* and E~ be the ellipsoids inscribed in
K and K~. Inequality (1) is invariant under affine transformations and we may
assume without loss of generality that E* ~ (a, D) and E ~ (—a, D™'), where
D = diag(d,, ..., d,) > 0. Since the centers of E* and E~ are placed in the points a
and —a, it follows that Oeint K. In this case the body K can be defined by the
system of linear inequalities K = {x € R"|¢'x < 1, c e K°}, where K? is the polar set
of covectors. The ellipsoids E* and E~ are contained in K if and only if

gp(c)=ca+ D] <1, Vcek®,
ge-(©)= —ca+ ||cD7Y| <1, VeeK®

Multiplying the last inequalities for a fixed ce K°® we get
de < D) DY < (1 + da)l — dfa) =1 — (ca)?,

ie.,

cc + (ca)? = ||t /I + ad|| = gg(c) <1, VceK",
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where E is the ellipsoid given by the pair (0,./] + ada’). Hence the ellipsoid

E ~ (0, /I + aa') is contained in K. Note that vol E = v(n)- /1 + d'a. We now
wish to apply Lemma 1 to the ellipsoids E* and E. To this end, let us show that

e\ /T + ad'l] V1 +da '/ + ad'|
min - =< <A =max —f———,
ceRn li'D]| d ce R® ¢ Dl

where d = max(d,,...,d,). Indeed, let d = d,. Setting ¢, = (1,0,...,0) we have

< Nc‘,\/1+aa'ﬂ =\/1 + a? <\/1 + d'a
- Dl d ~ d

On the other hand, the choice ¢, = a/||a| yields

\/I +a‘as\/l t+da_|cp/1 + ad| <A

d EY TN Y T

and we can apply Lemma 1:

volE /1 +a’as\/l :ata-exp(l V1 +a'a>.

volE*  d,---d, d

To complete the proof the last observation is needed: since the center a of the
ellipsoid E* lies on the boundary of K 7, it follows that

a¢int E- = {xeR"\x=—a=D"1y |yl <1}

In other words, 2|laD|| = 1, and consequently 4d%(a‘a) > 1. Therefore

- - g
w(K”) volE 1 l-exp(Z——z 1+aa>

WK) VolE* (@, dy-& a

! N VA G SO ARV R
e e e A G

=0.844...,

the last maximum being attained in the root d* = 1.517... of the cubic equation

4d% — 3d* —4d*> — 1 =0.
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