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Abstract. The procedure for linear programming in linear time in fixed dimension 
is extended to solve in linear time certain nonlinear problems. Examples are the 
problem of finding the smallest ball enclosing n given balls, and the weighted-center 
problem in fixed dimension. 

1. Introduction 

The problem of  finding the smallest circle enclosing n given points in the plane 
has a long history (see [M1] for references). A linear-time algorithm was given 
in [M1] and it follows from [M3] that in any fixed dimension the smallest ball 
enclosing n points can be found in O(n) time since the problem can be formulated 
as a convex quadratic optimization problem subject to linear constraints. The 
problem of  the smallest enclosing circle is also known as the 1-center problem, 
where one seeks to locate a point (a "facility") so as to minimize the largest 
distance between the facility and any of the n given ("demand")  points. A known 
generalization of the latter is the weighted 1-center problem, where each of the 
demand points has a multiplicative weight associated with it and one seeks to 
minimize the largest weighted distance between the facility and any demand 
point. Different algorithms for the weighted l-center problem were proposed in 
[M2], [MZ], and [Co] until Dyer [D1] proposed an embarrassingly simple trick 
that solves the problem in linear time in any fixed dimension using the search 
method proposed in [M3]. In the same paper Dyer also improves the search 
technique itself obtaining better constants in the linear functions. An analogous 
improvement was proposed by Clarkson [CI]. 

Dyer's trick was to reformulate the problem as a linear optimization problem 
with linear inequalities plus only one quadratic inequality. In this note we consider 
the problem of the smallest ball enclosing n given balls, where it seems that such 
a trick does not work. This problem is in a sense a weighted-center problem with 
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an "additive" weight. We propose a different approach where the constraints 
remain nonlinear but the search technique still works. This approach yields 
linear-time algorithms for a class of problems including the (multiplicative) 
weighted-center problem. 

2. The Smallest Ball Containing a Set of Balls 

For any point p ~ R d and any nonnegative real number r, let B(p, r) denote the 
ball with radius r centered at p, that is, 

B(p, r ) = { y ~  Rd: IIp--yll < -- r}. 

The following problem arose in an algorithm by Pollack and Sharir [PS] for the 
geodesic center of  a simple polygon. 

Problem. Given n balls B(p ~, r i ) c  g d (i--- 1 , . . . ,  n), find a ball B(x, p ) c  R d 
with minimal radius p, such that B(p ~, r~)c B(x,  p) (i = 1 . . . .  , n). 

It is easy to verify the following fact: 

Fact. A ball B(p, r) is contained in another ball B(x, p) i f  and only i f  

I I x - p t l ÷ r ~ p .  

Thus, the underlying optimization problem is the following: 

(P)  
Minimize p 

subject to I[x-p i l l+r ,<-p  ( i =  1 , . . . ,  n). 

Notice that the feasible domain of (P)  is a convex subset of  R d~l since the 
function of  the distance from any point is convex. The problem (P)  can be 
interpreted more generally. In the solution procedure below we do not need the 
numbers ri to be nonnegative. Assume the points pi are demand points so that 
the point pi is currently served by a facility at a distance r~. The problem (P) is 
to find a location x for a facility so as to minimize the largest loss to any demand 
point, where the loss is measured as the difference between the new service 
distance, IIx-p~ll, and the previous one ri. 

To simplify the form of  the problem, the inequalities 

can be written as 

l l x -  p'll ÷ r, ~ P 

I l x -  p 'lJ2 ~ (p - r~) ~, 
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where p is constrained to be greater than or equal to the largest ri. Finally, the 
inequalities can be written in the form 

ilxll = _ 2 ( p , )  Tx + tlpi ii ~ _ p2 + 2 r ip  - r, ~ -< o. 

Let us denote the left-hand side of  the latter by f,(x, p), 

f , (x ,  p )  = Ilxll = -  2(p')rx+ tlp'll ' -  p2+2r, p - r~, 

Minimize p 

(P) subject to f , (x ,p)<-O ( i =  t , . . . ,  n), 

p-> R, 

where R = max{r,}. 
Although the functions f,(x, p) are not linear, they all have the same nonlinear 

terms, namely, Ilxll ~ and _p2. This implies that, for any i ~ j ,  the equation 

f i ( x , P ) = f i ( x , P )  

defines a hyperplane 

H,j = {(x, p): 2 (p ' -pJ )~X -2( r i  - r~)p = ]]pi][2 _ [[pji[2_ r2i+ r2}. 

This hyperplane has the following useful property. If the point (x, p) is known 
to lie in the open halfspace delimited by H 0 where f~(x, p )< f j (x ,  p) then the 
constraint f~(x, p) <- 0 becomes redundant. Similarly, if the point (x, p) is known 
to lie in the complementary open halfspace f,(x, p )> f j (x ,  p) then the constraint 
fj(x, p) -<- 0 becomes redundant. Here we can apply the multidimensional search 
technique proposed in [M3] as we outline below. For more detail the reader is 
referred to [M3] and [D2]. 

The technique can be loosely stated as follows. Assume there exists a certain 
unknown point x * c  R a, and an "oracle" is available which can tell for any 
hyperplane H c R d whether the point x* lies on H, or else which of  the halfspaces 
bounded by H contains x* in its interior. Given n hyperplanes H ~ , . . . ,  Hn c R a, 
we would like to decide the position of the unknown point x* relative to "many"  
of the hyperplanes Hi (i = 1 , . . . ,  n), consulting the oracle only a "small" number 
of times. The interpretation of  "many"  and "small" depends on the particular 
version used. In our case the unknown point is the optimal solution (x, p) to our 
problem, which is unique by strict convexity. An oracle is an algorithm that 
decides the position of this point relative to any given hyperplane H. As pointed 
out in [M3], when the objective function is convex, we can use as an oracle an 
algorithm that solves the optimization problem with an additional requirement 
that the point lie on H;  then, another optimization problem over the neighborhood 
of the constrained optimum reveals the "correct" side of H. 

In our case the oracle would work as follows. Consider a constrained problem: 

Minimize p 

(Pc) subject to llx-pil[+ri<<-p ( i =  1 , . . . ,  n), 

a Tx + otp =1~, 



608 N. Megiddo 

where a ~ R a and a and/3  are scalars. To solve the problem (Pc), we recurse on 
the dimension of  the domain. Suppose (x', p') is the optimal solution of  (Pc). 
There is at most one side of  the hyperplane H = {x: a r x + a p  = 13} where the 
objective function of  (P)  may attain a value smaller than p'. Such a side may be 
found as follows. First, let I denote the set o f  indices i of  "active" constraints 
at (x', p ') ,  that is, for i ~ / ,  

I Ix ' -p ' [ I  + r, = p'. 

We are interested in a direction h of  movement  from x'  along which all the 
functions 

d,(x)  = t l x - p ' l l  + r, 

are decreasing. Obviously, h is such a direction if and only if, for every i ~ / ,  

( x -p ' )Th<O.  

I f  no such h exists then the opt imum of  the constrained problem coincides with 
that of  the unconstrained one; otherwise, a solution h indicates a side of the 
hyperplane H that contains the optimal solution of  (P)  as follows. Consider 
points x of  the form 

x = x ( e ) = x ' + e h  

and let 

P = P(e)  = max{lix(e) -P ' I ]  + r~}, 

where e->0. At least the first linear piece of  p(e) indicates a direction of 
improvement  and hence the "correct"  side of  the hyperplane H. A direction h 
as above can be found by solving a l inear-programming problem (in fixed 
dimension). 

Notice that the recursion gives rise to slightly more general problems, where 
in addition to the initial constraints we also have several linear equality constraints 
through which the dimension is reduced. This does not represent a difficulty at 
all. Linear equality constraints can be used to eliminate variables. We then end 
up  with a generalized form o f  the problem (P) :  

Minimize p 
( / ; )  

subject to I I A x - p ' l l + r , < - p  ( i = l  . . . .  ,n ) ,  
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where A is a certain matrix. The latter can be solved with essentially the same 
methods. 

As in the linear programming algorithm in fixed dimension, the search tech- 
nique lets us discard in linear time a fixed fraction of the constraints and hence 
the entire procedure runs in linear time in any fixed dimension. Using the 
improvements proposed by Dyer [D2] and Clarkson [CI], the coetticient of the 
linear function varies with the dimension l ike o(3d2). 

3. The Weighted-Center Problem 

The weighted-center problem can be solved using an idea similar to the one 
presented in Section 2. The optimization problem is the following: 

(w) 
Minimize A 

subject to w, llx-p'll<-A ( i =  1 , . . . ,  n), 

where w, (i = 1 . . . .  , n) are given positive constants. This is equivalent to 

or  

Minimize A 

subject to Ilx-p'tl<-A/w, ( i=  1 , . . . ,  n), 

Minimize # 

subjectto [txllZ-2(p')~x+ IlP'll2<-~/w~ ( i=  1 , . . . ,  n). 

Following the idea of Section 2, it becomes useful to consider the hyperplanes 

fl ll  ll } 
\ w, w , /  

The rest of the algorithm is very similar to the algorithm developed in Section 2. 
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