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Abstract. We show that, under reasonable assumptions, any collision-avoiding 
motion-planning problem for a moving system with two degrees of freedom can be 
solved in time O(A~(n) log 2 n), where n is the number of collision constraints 
imposed on the system, s is a fixed parameter depending, e.g., on the maximum 
algebraic degree of these constraints, and A~(n) is the (almost linear) maximum 
length of (n, s) Davenport-Schinzel sequences. This follows from an upper bound 
of O(A.~(n)) that we establish for the combinatorial complexity of a single connected 
component of the space of all free placements of the moving system. Although our 
study is motivated by motion planning, it is actually a study of topological, com- 
binatorial, and algorithmic issues involving a single face in an arrangement of curves. 
Our results thus extend beyond the area of motion planning, and have applications 
in many other areas. 

I. Introduction 

Let B be a robot system having two degrees of freedom (a 2 - D O F  system in 

short), which is free to move in some two- or three-d imensional  space amidst  a 
finite set of  m pairwise openly  dis joint  obstacles O r , . . . ,  Ore, whose geometry is 
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known to the system. The set of all placements of B is a 2-D parametric space 
which we denote by AP (the space of "all placements"; intuitively we think of 
AP as a locally Euclidean manifold which can be covered by a constant and 
usually small number of  patches, each homeomorphic to some simple planar 
domain). The subset of  AP containing all free placements of B (i.e., placements 
in which B does not intersect U~'=~ O~, and no two subparts of  B intersect one 
another) is referred to as the free configuration space of B, and is denoted by FP 
(the space of "free placements");  we also denote by BFP the (topological) 
boundary of  FP. The motion-planning problem for B is: given an initial placement 
Z~ and a (desired) final placement Z2 of  B, both belonging to FP, determine 
whether there exists a collision-free continuous motion of B between these 
placements, i.e., a continuous path from Zj to Z2 within FP (often we are willing 
to "compromise" and require only that the path lie in FP u BFP). If so, we also 
wish to plan such a motion. Since for such a motion to exist, the two given 
placements must lie in the same connected component of  FP (or of  FP u BFP), 
an equivalent formulation of  the problem is to calculate a discrete combinatorial 
representation of  the decomposition of  FP (or of its closure) into arcwise 
connected components. 

This is a relatively simple instance of  the general motion-planning problem; 
see below for a review of  existing work on the problem. 

In our case, the boundary BFP of the space FP can in general be defined by 
a finite number n of collision constraints y ~ , . . . ,  y~, each of which is the locus 
of  placements of  B at which contact is made between a specific subpart of B 
and a specific subpart of  some obstacle or between two specific subparts of B. 
We assume, as is customary in motion planning, that these constraints are 
connected and simple algebraic arcs of  some small and fixed maximal degree d 
(but the results obtained in this paper also hold under weaker assumptions--see 
below). 

With no real loss of generality, we assume the space AP of all system placements 
to be planar. In general, the manifold AP can be more complex. For example, 
for a planar "Stanford arm," namely a line segment free to slide through a fixed 
point and also to rotate around it [FWY], AP is cylindrical; for a two-link planar 
robot arm, AP is toroidal, etc. In these cases we "triangulate" AP, i.e., break it 
into O(1) planar patches, apply our analysis in each patch separately, and then 
glue the results together. 

Let us form the arrangement A of  the arcs y ~ , . . . ,  y,.  This is the planar map 
whose vertices are the endpoints of these arcs and all their intersection points, 
whose edges are maximal connected subarcs of  the yi's whose interiors do not 
meet any other arc, and whose faces are the connected components of the 
complement of  U~=~ y~. By Bezout's theorem (see, e.g., p. 54 of  [Ha]),  the total 
number o f  vertices of  A is O(d2n 2) = O(n2); it easily follows from Euler's formula 
that the number of  edges and faces of  A is also O(n2). 

The above considerations imply that each connected component  of  FP must 
be a face o f  A. The converse is not true in general, because some faces of A 
might represent regions of  forbidden placements of  B. Nevertheless, once A is 
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available, we can obtain FP from it in a straightforward way, by pruning away 
the forbidden faces. In particular, it follows that the combinatorial complexity 
of FP is O(n2). Calculation of  A can be accomplished by a standard line-sweeping 
technique (as in [BO]), in time O ( ( n + p )  log n), where p is the total number of 
intersections between the curves yi, and is O(n 2) in the worst-case. An alternative 
technique has been recently proposed in [EGP*]; it runs in slightly more than 
quadratic time, and is mentioned below. Other related techniques are given in 
[CE], [Cl], [Mul] ,  and [Mu2]. 

So far we have roughly quadratic-time methods for producing FP. Moreover, 
these methods are close to optimal in the worst-case, because there are many 
cases of  motion-planning problems with two DOFs in which FP is actually of  
quadratic size (see below). The key observation of  this paper is that in most cases 
we do not need to calculate the entire FP, but only its connected component C 
containing the initial given placement Zo of  B. Indeed, as long as B moves in a 
collision-free manner from Zo (and is not artificially "lifted up" and "re-started" 
in a position lying in a different component of FP), it will have to remain within 
C. Our goal is thus to precalculate only the component C, rather than the entire 
FP, and thereby achieve better performance. 

Our first main result is that the combinatorial complexity of  such a single 
connected component C is only O(A~+2(n)), where s < - d  2 is the maximum number 
of intersections of  any two constraint curves y ,  y~. Here A,(n) denotes the 
maximum length of  (n, r) Davenport-Schinzel sequences, i.e., sequences composed 
of n symbols, which do not contain equal adjacent elements and also do not 
contain an alternating subsequence of two distinct symbols of length r + 2. It is 
known [HS], [ASS] that At(n) is almost linear in n for any fixed r. More 
specifically, 

Al(n) = n; Az(n) = 2n - 1 (trivial). 
A3(n) = O ( n a ( n ) ) ,  where a(n)  is the functional inverse of Ackermann's 

function, and thus grows extremely slowly [HS]. 
A4(n) = O ( n .  2 "(")) [ASS]. 

A2~(n) = n.  2 °~'~"r-') for s >  2 [ASS]. 
Azs+l(n) = n.  a (n )  °(~'(')'-~) for s >---2 [ASS]. 

Ats(n) = n.  2 n('~"v-') for s > 2 [ASS]. 

Our result is actually a general topological property of arrangements of  curves. 
That is, a single face in such an arrangement of n arcs in the plane, any two of 
which intersect in at most s points, has combinatorial complexity O(A,+2(n)). 
This result has already been established in [PSS] for the special case of arrange- 
ments of  line segments, where s = 1 and the complexity of  a single face is thus 
O()L3(n)) = O(na(n) ) .  Our result extends a recent (somewhat simpler) result in 
[SS5], showing that if the yi's are closed Jordan curves, then the complexity of  
a single face of  A is only O(A,(n)) .  

Our second main result is an algorithm which, given a collection of  n ares 
~'1 . . . .  ,3,,, and a point Zo not lying on any of them, calculates the face of  the 
arrangement of  these arcs that contains Zo. Here we assume that any two ares 
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7i, Y~ intersect in at most s points, and that any arc 3,, has at most t points of 
vertical tangency (so that it can be broken up into at most t + 1 x-monotone 
subarcs); here s and t are assumed to be small fixed constants. Moreover, we 
assume a model of  computation where certain primitive operations involving one 
or two arcs take constant time; typical such operations are: finding the intersection 
points of  a pair of  arcs, finding the points of  vertical tangency of  a given arc, 
finding the intersections of  an arc with a vertical line, etc. All these assumptions 
are reasonable if the arcs yi are algebraic of  low degree as assumed above. Under 
these assumptions, our algorithm runs in O(As+2(n) log 2 n) time and O(A,+2(n)) 
space. Again, in the special case discussed in [PSS] (where the y~'s are line 
segments arising as the Minkowski difference of  the boundaries of  two simple 
polygons),  another algorithm, of  comparable complexity, has been presented. 
Recently, Edelsbrunner et al. [EGS] have obtained an O(nct(n) log 2 n) algorithm 
for calculating a single face in an arbitrary arrangement of line segments. We 
extend the technique of  [EGS] to handle arrangements of  curved arcs. The 
previous algorithm in [PSS] is based on ray shooting in simple polygons (see 
[CG]).  This technique can be applied only in very restricted circumstances (some 
more of  which are mentioned below and discussed in [Sil l  in more detail); in 
particular, it does not seem to generalize to curved arcs. The technique of  [EGS] 
is based on line sweeping, is conceptually simpler, and can be extended to 
our case, although this generalization requires some additional analysis of  the 
intersection pattern of  such arcs, which is developed below. 

The special cases (in addition to that in [PSS]) in which the ray-shooting 
technique can be applied include: 

(a) 

(b) 

Translational motion of a simple polygon P with k sides amidst a collection 
of  n point-obstacles (imagine P translating on a board amidst a collection 
of  pins or pegs tacked to the board). Here we can calculate a connected 
component  of  FP in time O(nk~(nk) log nk log n) (which is slightly better 
than our general bound). 
The case in which the forbidden subspaces induced by the problem 
constraints are all polygonal,  and their sides have only a fixed and small 
number  k of  possible orientations. This would be the case, e.g., for 
translational motion of  a rectilinear simple polygon amidst a collection 
of  rectilinear obstacles. In this case we can calculate a single connected 
component  of  FP in time O(nkoe(n) log n), which reduces to O(n log n) 
in case of  rectilinear regions, and which again is better than our general 
bound. 

However,  as it turns out, these time bounds can also be obtained by an 
appropriate  fine-tuning of the recursion of  the general algorithm given in this 
paper. For this reason we omit here details concerning this alternative ray-shooting 
technique. 

Some related results for the case of  lines or line segments are given in [ EGH 1" ], 
where, for example,  it is shown how to preprocess a collection of n lines in 
roughly O(n 3/2) randomized expected time and roughly linear space so that the 
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face in the arrangement of these lines containing any given query point can be 
retrieved in time roughly O(n~/2+ k), where k is the size of the face. 

As mentioned in the Abstract, we regard our topological and algorithmic 
results as basic important properties of arrangements of curves in the plane. Our 
results have recently been applied to various other problems. One application in 
[EGP*] obtains a generalized "horizon theorem" for arrangements of curves, 
and an incremental algorithm for constructing such arrangements in roughly 
quadratic time. Another recent application in [AgS] obtains fast algorithms for 
detecting intersections between two collections of arcs in the plane. Our results 
have also been recently applied in [SSi] to obtain efficient coordinated motion- 
planning algorithms for two independent systems with two degrees of freedom 
each. 

Related Work 

In an initial series of papers Schwartz and Sharir [SS1]-[SS3], [SA], [SS4] 
obtained polynomial-time motion-planning algorithms for the general algebraic 
case and for several specific robot systems. The Schwartz-Sharir algorithms 
involve decomposition of FP into finitely many simple connected cells and 
construction of a connectivity graph CG representing adjacency of these cells in 
FP. Several recent improvements of these initial results have been based on 
generalized Voronoi diagrams JOY], [OSY1], [OSY2], [LS2], whereas others 
involve optimized variants of  the cell decomposition method [LSI]. Another 
recent technique, due to Sifrony and Sharir [SIS], obtains a motion-planning 
algorithm for the special case of a line segment (a "rod")  translating and rotating 
in a 2-D polygonal region by an explicit calculation of :he boundary of  FP. 

A special case of the 2-DOF motion-planning problem is that of planning a 
purely translational motion for a planar object B amidst polygonal obstacles. 
This problem has been studied in [OY] for the case where B is a disk, and in 
[KS1], [KLPS], [BZ], and [LS2] for the case where B is a convex polygon. These 
purely translational cases turn out to be more favorable than general 2-DOF 
problems, in that the FP boundary in each of  the above two cases contains only 
O(n) vertices, and can be optimally calculated in O(n log n) time using general- 
ized Voronoi diagrams (see JOY] and [LS2]). In general, however, the FP 
boundary for 2-DOF motion-planning problems can contain l)(n 2) vertices (this 
happens even in the purely translational case when the moving system is a 
nonconvex polygon; see a remark in [KS1]). 

Additional discussion of related results is given in Section 2. 
The paper is organized as follows. In Section 2 we introduce the terminology 

and derive a few initial observations about the problem structure. In Section 3 
we analyze the combinatorial complexity of  a single component of  FP, or, more 
generally, of  a single face in an arrangement of  curves. In Section 4 we present 
an efficient algorithm for calculating a single such face, and in Section 5 
we conclude with a discussion of several simple cases, extensions, and open 
problems. 
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2. Terminology and Initial Analysis 

We have already described in the Introduction the abstract representation that 
we use for the general 2-DOF motion-planning problem. In most of  what follows, 
we assume that the space AP  of all possible (not necessarily free) configurations 
of  the moving system B can be embedded in the Euclidean plane. The boundary 
of  the free configuration space FP is contained in the union of a collection F of 
O(n)  (algebraic) simple Jordan arcs Yl . . . . .  ~/,, where each Yi is the locus of 
placements Z of B in which a specific subpart of  B touches a specific part of 
some obstacle, or two subparts of  B touch one another. Consider the arrangement 
A = A(F) of  the curves 2,~ as defined in the Introduction. Let Zo~ FP be a given 
initial placement of  B. As above, our goal is to calculate the connected component  
of  FP containing Zo, i.e., the face of  A containing Zo. 

When A P  cannot be globally embedded in the plane, e.g., when one degree 
of  freedom 0 is rotational and admits the full 2rr range of orientations, we 
represent A P  as the union of finitely many planar " p a t c h e s ' w i n  the above 
example, these would correspond to the subranges 0 -< 0 -< ~r and 7r - 0 ~ 2 r r - -and 
apply the foregoing analysis to each of them separately. It is important to note 
that the number  of  patches is independent of the geometric complexity of  the 
workspace of the system B, and depends only on the type of degrees of freedom 
of  B. 

Example. To illustrate these concepts, consider the case of  an arbitrary (not 
necessarily simply connected) k-gon B translating in the plane amidst a collection 
of  polygonal obstacles having a total of  m sides. Each placement of  B can be 
specified by the position Z of some fixed reference point inside B. There are 
n = O(km)  constraints defining FP, and they induce n constraint curves, where 
each such curve yi is the locus of  placements of  B in which some specific corner 
of  B touches some obstacle edge, or some specific side of  B touches some obstacle 
corner. In this special case it is easily verified that each 3'~ is a line segment, 
obtained as the Minkowski (vector) difference of  the obstacle feature and the 
feature of  B making contact (see, e.g., [KLPS] for more details). Thus in this 
setting, our problem is to calculate the face in an arrangement of  n line segments, 
which contains a given point Zo (see [EGS] and [EGHI* ] ;  a special case of  this 
problem has also been studied in [PSS]). Such a face is illustrated in Fig. 1. 

Let F be the collection of the n constraint curves. We assume that these curves 
are in general position, meaning that no three of  them pass through the same 
point, that no two are tangent to one another, and that no two of them overlap 
(our analysis can be easily modified to handle degenerate configurations of  this 
kind). As noted, the arrangement A(F) consists of  O(n 2) faces, edges, and vertices. 

Before plunging into our  analysis, let as digress for a moment  to consider 
several special cases of  the problem in which the complexity of  the entire space 
FP (not just of  a single component  of  it) is also small. To describe these cases, 
suppose for a moment  that each constraint curve yi is a closed Jordan curve, 
and that it partitions the plane into two regions, so that one of them (which we 
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P 

Fig. 1. A face in an arrangement of segments. 

refer to as the interior of  3',, and denote by Ki) consists exclusively of  forbidden 
positions of  B in which the corresponding constraint is not met, whereas in the 
complementary region that constraint is satisfied. In this setting, the free configur- 
ation space FP is just the complement of  the union K of all the Ki's. I f  the 
maximum number of  intersections s of any pair of curves in F is 2, then it was 
shown in [KLPS] that the overall combinatorial complexity of  K (as measured, 
e.g., by the total number  of  intersections of  the yi's which lie on a K )  is at most 
O(n). A recent result [EGH2*]  considers the case in which each K~ is the region 
enclosed between the x-axis and a Jordan arc 3'~ whose endpoints lie on the 
x-axis, so that each pair of  the arcs yi intersect in at most s = 3 points, and shows 
that in this case the overall complexity of  K is O(na(n)) .  However, as soon 
as s__.4, the complexity of  K can become f~(n2). This complexity can arise in 
actual 2-DOF motion-planning problems, e.g., that of  a purely translational 
planar motion of a nonconvex polygonal object, or that of  a horizontal trans- 
lational motion of a vertical line segment amidst polyhedral obstacles in 
3-space. (It  is clear, as also noted above, that the complexity of  K is at most 
O(sn 2) = O(n2).) 

Thus, unless we face particularly favorable special cases, the complexity of  
the entire FP, and thus the complexity of  any algorithm that computes the entire 
free configuration space, must be quadratic in the worst case. It is the purpose 
of this paper  to show that the combinatorial complexity of  a single component  
of FP is in general close to linear, and that calculation of such a component  can 
be accomplished in close to linear time. 

Before closing this initial set of  observations, we note that FP can be calculated 
in close to quadratic time in the worst case: 

Theorem 2.1. The free configuration space FP, or, more generally, the arrangement 
A of  the n constraint curves, can be calculated in O ( ( n + p )  log n) = O(n 2 log n) 
time, where p is the number of  intersections between these curves. 

The algorithm which calculates FP is a straightforward modification of  standard 
line-sweeping techniques (see [ BO]), applied to the collection of  constraint curves 
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3';. We note that p may be substantially larger than the actual number q of  these 
intersections which lie on OFP. We leave it as an open problem whether FP can 
be calculated in time O((n + q)log n) (or, in view of  the results below, even in 
time O((n+q) log  2 n)) where q is as above. Another open problem is whether 
we can apply the topological sweeping technique of lEG]  to obtain an algorithm 
whose complexity does not involve the log n factor. 

Remark. A recent result of  [EGP*] gives an O(nA~+2(n)) algorithm for calculat- 
ing the arrangement A(F) using an incremental construction technique, whose 
analysis is based on the results obtained in this paper. For arrangements of 
segments, it was shown in [CE] that they can be computed in time O(n log n + t), 
where t is the number  of  intersections between the n given segments. Two other 
papers [CI], [Mul ]  give randomized algorithms that construct an arrangement 
of  segments in an incremental fashion; their expected running time is also 
O(n log n + t). See also [Mu2] for an extension of  this technique to the case of  arcs. 

3. The Complexity of a Single Component of FP 

In this section we obtain an almost-linear upper  bound on the combinatorial 
complexity of  a single connected component  of  FP. Specifically, we show: 

Theorem 3.1. Under the assumptions made in the preceding section, the com- 
binatorial complexity of any single connected component of FP is at most O(A, +2(n )). 

Proof. Let f be the given connected component ,  and let C be a connected 
component  of  its boundary.  It suffices to show that if k arcs of  F appear  along 
C, then the number  of  subarcs of  these arcs which constitute C is O(A~+2(k)). 
Thus, without loss of  generality, we may assume that all n arcs of  F appear  along 
C. For each y; let u;, v~ be its endpoints. Let y~ (resp. yU) be the directed arc 3,, 
oriented from u; to v; (resp. from vi to ui). 

Without loss of  generality, assume C is the exterior boundary component  of 
f Traverse C in counterclockwise direction (so that f lies to our left) and let 
S = (s, ,  s2, • . . ,  st) be the circular sequence of oriented curves in F in the order 
in which they appear  along C (if C is unbounded,  S is a linear rather than 
circular sequence). More precisely, if during our traversal of C we encounter a 
curve y; and follow it in the direction from u~ to v~ (resp. from v; to u~), then we 
add y+ (resp. Yl) to S. As an example, if the endpoint  ui of  y~ is on C and is 
not incident to any other arc, then traversing C past u; will add the pair of 
elements y~-, y+ to S, and symmetrically for v;. See Fig. 2 for an illustration. Note 
that in this example both sides of  an arc y~ might belong to our connected 
component ;  in our original motion-planning application this usually was not the 
case, because crossing a constraint curve generally means that the system is 
passing from free to nonfree placements, but the generalized problem that we 
study now allows for such two-sidedness. 
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Fig. 2. Traversing a face boundary and the resulting sequence S. 

We use the following notation. We denote the oriented arcs of  F as ¢~ . . . .  , ¢2,. 
For each ~:~ we denote by I~:,1 the nonoriented arc yj coinciding with ~. For the 
purpose of  the proof  we transform each arc y~ into a very thin closed Jordan 
curve 3'* by taking two nonintersecting copies of  y~ lying very close to one 
another, and by joining them at their endpoints. This will perturb the component  
f slightly but, under our assumption on general position, it will not change the 
combinatorial structure of  the boundary of f, and in particular of  C. Note that 
this transformation allows a natural identification of  one of  the two sides of  3'* 
with 3'~ and the other side with 3'i-. 

We next need the following lemmas: 

Lemma 3.2 (The Consistency Lelqma). The portions of each arc ~ appear in S 
in a circular order which is consistent with their order along the oriented ~ ; that is, 
there exists a starting point in S (which depends on ~i) such that if  we read S in 
circular order starting from that point, we encounter these portions in their order 
along ~. 

Proof. Let if, -r/ be two portions of ~:~ which appear  consecutively along C in 
this order (i.e., no other portion o f ~  appears along C between ~" and rt). Choose 
two points x c ~" and y c rt and connect them by the portion a of  C traversed 
from x to y, and by another arc/3 within the interior of  1~:~1". Clearly, a and/3 
do not intersect (except at their endpoints) and they are both contained in the 
complement of  (the interior of) f. Thus their union a w/3 is a closed Jordan curve 
and f is fully contained either in its exterior or in its interior. We claim that any 
point on ~:~ between l: and r/ is contained in the side of  a u/3  which does not 
contain f. Indeed, connect such a point z to x along an arc p that proceeds very 
near ~i along the exterior of  t~:~t* (see Fig. 3). Clearly, p and/3 are disjoint, and, 
deforming a slightly as necessary, we can assume that p intersects a transversally 
and exactly once, which is easily seen to imply our claim. This claim completes 
the proof  of  the lemma. [] 

For each directed arc ~:i consider the linear sequence V~ of all appearances of  
~:~ in S, arranged in the order they appear  along ~:i. Let /z~ and u~ denote, 
respectively, the index in S of  the first and last elements of  V~. Consider S = 
(s~ . . . .  , s,) as a linear, rather than circular, sequence (this step is not needed if 
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i here S C  

Illustration of the proof of  the consistency lemma. 

C is unbounded) .  For each arc ~:~, if/~i > vi we split the symbol ~:i into two distinct 
symbols ~ , ,  ~:~2, and replace all appearances  o f  ~:i in S between the places p.~ and 
t (resp. between 1 and v~) by ~:~ (resp. s¢;2). (Note  that Lemma 3.2 implies that 
we can actually split the arc ~:~ into two connected subarcs, so that all appearances 
o f  ~:~ in S* represent port ions o f  the first subarc, whereas all appearances  of  ~:~2 
represent port ions o f  the second subarc.) This splitting produces  a sequence S*, 
o f  the same length as S, composed  of  at most  4n symbols. 

The assertion o f  the theorem is then an immediate  consequence o f  the 
following: 

Lemma 3.3. S* is a (4n, s + 2 )  Davenport-Schinzel sequence. 

Proof. Since it is clear that no two adjacent  elements o f  S* can be equal, it 
remains to show that S* does not contain an alternating subsequence o f  the form 
~'. • • r/. • • ~'. • • r/. • • o f  length s + 4. Assume to the contrary that S* does contain 
such an alternation, and consider  any four consecutive elements o f  this alternation, 
which, without  loss o f  generality, can be assumed to be ~7" • • r/. • • ~7" • • r/. Choose 
points  x, y e ~r and points  z, w e r/ so that C passes through these points in the 
order  x, z, y, w. Cons ider  the following five Jordan  arcs: 

flxy = an arc within the interior o f  [~J* connect ing x to y;  
/3~ = an arc within the interior o f  ]r/I* connect ing z to w; 
f l= = the port ion o f  C traversed in counterclockwise direction from x to z; 
/3zy = the port ion o f  C traversed in counterclockwise direction from z to y; 
/3y,~ = the port ion o f  C traversed in counterclockwise direction from y to w. 

Note  that/3=,/3~y,/3~w are pairwise nonintersecting and that they also do not 
intersect/3xy,/3z~. We claim that fl~y a n d / 3 ~  must  intersect one another.  Assume 
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Fig. 4. Illustration of the proof of Lemma 3.3, 

the contrary, and consider the planar graph G composed of these five arcs as 
edges. Clearly, G has three faces, and its edges all lie in the complement of the 
interior of f. Thus f is fully contained in just one of these faces. Moreover, as 
/3 = fl~z w/3...,, w flyw is traced from x to w, all points lying on the left side o f /3  
sufficiently near it belong to f. By deforming the plane we may assume that 
lies on the x-axis, with x, z, y, w appearing along it from left to right in this order, 
that the portion of  the upper halfplane sufficiently near ~ is contained in ~ that 
the two arcs/Jx,, and/3~, emanate downward from the respective points y and z, 
and that the portions of these arcs within sufficiently small neighborhoods of  
these two respective points are just straight vertical segments; see Fig. 4. 

Let a and b be two points in the relative interior of/3~,/3~.~, respectively, let 
a', b' be two corresponding points lying below and very close to a, b, respectively. 
By the properties of  G, neither a' nor b' lies in the face of G containing f 
Moreover, if a' and b' are chosen sufficiently near /3, the straight segment 
connecting a' to b' will intersect each of/jxy,/jzw in exactly one point. This easily 
implies that a '  and b' both lie in the same face ~ of G. Consider the closed 
Jordan curve t3" traced as we move from a to a'  along a short segment, from a'  
to b' along a path that connects these points in ~, from b' to b along another 
short segment, and finally from b to a along/3. It is easily checked that points 
along /3~w slightly after z lie on one side of /3* and points on that curve just 
before w lie on the other side of/3*. Thus/3~w has to intersect/3", which however 
is impossible because /3* is contained within ~ w/~, which is openly disjoint 
from/3~,. 

This shows that each quadruple of consecutive elements in our alternation 
induces at least one intersection point between the corresponding arcs /3~y c ~" 
and/jzw c r/. Moreover, it is easily checked that for any pair of distinct quadruples 
of this type, either the two corresponding subarcs of the form/3~y along ~ are 
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disjoint, or the two subarcs fl~w along -q are disjoint. Thus all these intersections 
must  be distinct. Since the number  of  such quadruples  is s + 4 - 3  = s +  1, we 
obtain a contradict ion,  which completes the p roof  of  the lemma, and thus also 
o f  the theorem. [] 

Remark. It has been proved recently in [SS5] that if the curves y, in F are closed 
Jordan  curves, or Jordan  arcs unbounded  in both directions, then the complexity 
o f  a single componen t  o f  A(F)  is at most O(A~(n)). 

Remark. Applying our theorem to the case where each % is a line segment, we 
obtain an upper  bound  of  O ( A 3 ( n ) )  = O(nc~(n)) on the complexity of  a single 
componen t  of  A(F).  The results o f  [WS] and [Sh] imply that this bound  is tight 
in the worst case. This special case of  the theorem has already been established 
in [PSS]. 

4. Calculating a Single Component in an Arrangement of Curves 

In this section we show how to calculate a single componen t  f in an arrangement 
o f  a collection F o f  n Jordan  arcs ~/1,. • -, ~/,, having the property that no pair 
o f  them intersect in more  than s points. Our  algorithm runs in time 
O(As+2(n) log 2 n) and is thus close to linear. We assume a model o f  computat ion 
involving infinite-precision real arithmetic, in which s tandard operat ions involving 
one or two curves in F are assumed to take constant  time. Moreover,  since our 
technique is based on line sweeping, we assume that the shape o f  each curve in 
F is relatively simple and not too "wiggly." Specifically, we assume that each 
curve in F has at most  t points o f  vertical tangency,  for some fixed constant  t, 
so that we can break it into at most  t + 1 Jordan  arcs that are mono tone  in the 
x-direction.  Thus, in the remainder  of  this section we assume each y ~ F to be 
x -mono tone  (this addit ional  condit ion is satisfied in most applications;  in par- 
ticular, it holds for curves that are algebraic o f  a fixed maximal degree). Also, 
we assume that the curves o f  F are in general position, so that each intersection 
o f  a pair  o f  these curves is either at a c o m m o n  endpoint  or is a transversal 
intersection at a point  in the relative interior o f  both. We also assume that no 
two intersection points or endpoints  lie on the same vertical line, so as to simplify 
the description o f  our line-sweep algorithm (none o f  these assumptions are 
essential, and simple modifications of  our  algorithm will make it work also in 
the presence o f  degeneracies).  Typical operat ions that are assumed to take 
constant  time are: (a) find the intersection points between a pair  of  curves in F; 
(b) find the intersection between a vertical line and a curve in F. 

The algorithm that we seek thus receives as input a collection F of  n Jordan 
arcs (or closed curves) with the above properties,  and a point  x not lying on any 
o f  these curves. Its output  is a discrete representat ion of  the connected component  
f o f  the ar rangement  A(F)  containing x. The representat ion that we use is the 
collection o f  the connected  components  o f  the boundary  o f  f, each given as a 
circular list o f  subarcs and vertices appear ing along that boundary  component  



On the General Motion-Planning Problem with Two Degrees of Freedom 503 

in counterclockwise order. The algorithm extends the technique in [EGS] for the 
calculation of a component  (actually of many components simultaneously) in an 
arrangement of  line segments. 

The high-level description of our algorithm is quite simple. We use the follow- 
ing divide-and-conquer technique. We split F into two subcollections F, ,  F2 of 
roughly n/2 curves each, calculate recursively the components f~,f2 of 
A(F~), A(F2), respectively, that contain x, and then "merge"  these two com- 
ponents to obtain the desired component  f. Note t h a t f  is the connected component  
of f~ c~f2 containing x. However, it is generally too expensive to calculate this 
intersection in its entirety, and then select the component  containing x, because 
the boundaries of  f~ and f2 might intersect in many (quadratically many in the 
worst case) points that do not belong to the boundary of f ,  and we cannot afford 
to find all of  them. 

The set-up for the merge step is as follows. We are given two connected (but 
not necessarily simply connected) regions in the plane, which we denote respec- 
tively as the red region R and the blue region B. Both regions contain the point 
x in their interior, and our task is to calculate the connected component  f of  
R c~ B which contains x. The boundaries of  R and B are composed of (maximal 
connected) portions of  the given curves in F, each of  which are denoted in what 
follows as an "arc"  (or "subarc") .  

For technical reasons that are explained below, we extend this task as follows. 
Let P be the set containing x and all endpoints of curves of  F which lie on the 
boundary of  either R or B. Clearly, P contains at most 2n + 1 points. For each 
w e P let fw denote the connected component  of  R c~ B which contains w (these 
components are not necessarily distinct). Our task is now to calculate all these 
components (but produce each distinct component  just once, even if it contains 
several points of  P). We refer to this task as the red-blue merge. (The algorithm 
given below actually works in more general i ty--R and B can be the union of 
several connected regions, and P can be an arbitrary (finite) collection of  points, 
as long as it contains all the endpoints of  the curves in F which lie inside B, R 
as above.) We call the resulting components fw purple regions, as each of them is 
covered by both the red and the blue region. An illustration of this merge is 
shown in Fig. 5. 

The major  technical result on which our algorithm relies is that the overall 
complexity of  these purple regions is small, so that it is not expensive to produce 
all of  them. This is a consequence of the following extension of the combination 
lemma of  [EGS];  it yields a somewhat weaker bound than that obtained in [EGS], 
but it suffices for our purpose. 

4.1. The Combination Lemma for Arrangements of Curves 

The combination lemma that we establish in this subsection is somewhat stronger 
than the version needed for our red-blue merge. We first introduce a few notations. 
Let R~ . . . .  , R,, be a collection of m distinct faces in an arrangement of  a collection 
F~ o f " r e d "  Jordan arcs, and let B1, • • . ,  Bn be a similar collection of faces in an 
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Fig. 5. The r ed -b lue  merge.  

arrangement of  a set Fb of  "blue" Jordan arcs (again, each pair of arcs from 
Fr u Fb are assumed to intersect in at most some fixed number s of  points). Let 
P = { P l , - - - ,  Pk} be a collection of  points so that each p~ c P belongs to one red 
face R,,, and to one blue face Bn,. Let E~ be the connected component of  R,,. c~ B,, 
containing p~ (i.e., E~ is the face of  the combined arrangement ofFr  u Fb containing 
p~). Then we have: 

Lemma 4.1 (The Combination Lemma for Arrangements of Curves). The total 
complexity of  all the regions E~ is O( r + b + k), where r and b are the total number 
o f  arcs composing the boundaries o f  the red regions and the blue regions, respectively. 

The first step in the proof  is, as in [EGS], to consider the special case of a 
single red face R, a single blue face B, and a single point p belonging to B c~ R. 
Let E be the connected component of B n R containing p. Let u (resp. v) denote 
the number of  connected components of OR (resp. OB), and let r (resp. b) denote 
total complexity, i.e., number of  subarcs of  the original curves along the boundary, 
of  R (resp. B). We assume that the red and blue arrangements are in general 
position so as to avoid degeneracies in the structure of R, B, and E, such as 
tangencies or points of  triple intersection of curves along their boundaries. This 
assumption is made for the sake of exposition; a more refined version of the 
analysis given below can handle these degeneracies. 

[,emma 4.2. Under the nondegeneracy assumptions, the complexity o r E  is at most 
(s + 3)(b + r + 2u + 2v - 4t), where t is the number o f  connected components of  oE. 

Proof  We first describe the general outline of  the proof, and then fill in the 
details of  each step. We analyze each component ~ of  the boundary of E 
separately, by tracing the sequence of red arcs and the sequence of  blue arcs in 
the Qrder they appear along ~. In step (1) below, an extension of  the "consistency 
lemma" (Lemma 3.2) shows that the sequence of  red arcs along ~ is consistent 
with the sequences of  red arcs along each component of  the boundary of  R, and 
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similarly for the blue sequence. We notice that a single red arc from R can be 
repeated several times along ~. However, in step (3) we argue that these repetitions 
must be interspersed with blue arcs which "advance"  along the boundary of B. 
Although it is possible for a single red arc to be interspersed with a single blue 
arc for a while, after at most s +3  alternations at least one of them has to be 
replaced by another, as in the proof  of  Lemma 3.3. Another complication that 
can arise is that ~ may visit several components of  the boundary of  R or of  B, 
so that some of them are visited more than once. We show in step (2) that the 
duplication of  arcs along ~ that may result from this effect is only linear in the 
number of  components.  Altogether these arguments imply that the complexity 
of E is linear in the input size, as asserted in the lemma. 

To begin the proof,  let us fix a single component  sr of  aE, and assume, without 
loss of  generality, that it is the exterior component.  Trace ~ in, say, counterclock- 
wise direction (with E lying to the left), and let S = S(= ( s~ , . . . ,  Sq) be the 
(circular) sequence of the subarcs of  aR, aB as they appear  along ~'. Clearly, the 
sum of the lengths of S s, over all connected portions ¢ of  aE, is the complexity 
of E. 

The proof  consists of  the following steps: 
(1) Let a be a subarc of, say, aR which appears along ¢. Let a l ,  a2 be two 

connected portions of  a c~ ¢ consecutive along a, such that when a is traversed 
with R lying to its left, al precedes a2. It follows from Lemma 3.2 that a~ and 
a2 are also adjacent along ~', in the strong sense that the portion of  ¢ between 
a~ and a2 does not intersect the connected component  of  aR containing a. 

We use the notation "the portion of  S between si and sj" to mean the 
subsequence (si+l . . . .  , sj_~) if i < j ,  or the subsequence (si+l, •. •, Sq, s ~ , . . . ,  sj_~) 
i f j  < i. The property stated above then amounts to saying that if si = s t are two 
consecutive appearances of  some red arc a in S, with the first appe, arance 
preceding the second one along a, then either the portion of  S between s~ and 
sj consists of  blue arcs exclusively, or, if it contains red arcs at all, they must all 
belong to other components  of  oR. 

(2) Let S (r) be the (circular) subsequence of S obtained by deleting from S 
all the blue subarcs, and let S(r) be the sequence obtained from S (r) by further 
deleting, from left to right, each element which becomes equal to the element 
immediately preceding it. The sequences S ~b) and gcb) are defined symmetrically 
for the blue parts of  S. See Fig. 6. 

We claim that g(r) is of  length at most r~+2u~-2,  where u s is the number  of  
distinct connected components  of OR appearing along ~', and r s is the total number 
of red subarcs composing these u s components.  

(Note that )"su¢ = u, and ~s rs = r, since no component  of  OR can appear  along 
two distinct components  of  dE.) 

To prove the claim, assume a is a red subarc appearing more than once in 
S(~). By (1), all elements of  S(~) lying between two consecutive appearances 
~I~), gJr) of  a (arranged in this order along a)  must belong to other components 
of OR. We charge the second appearance of  a to the component  of  oR containing 
glr+)~. Let o "(r) be the (circular) sequence of  the connected components of  OR in 
the order they appear  along ~ (so that no two adjacent elements of  tr (r) are equal). 
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Fig. 6. The sequences S, S (~), and St~ 

As in the proof  of  the Combination Lemma of  [EGS], it is fairly easy to show 
that cr ~r) is a circular (us, 2)-Davenport-Schinzel sequence (i.e., it is composed 
of  uc symbols, no two adjacent elements of  it are equal, and it does not contain 
a subeycle of  the form ( a .  • • b.  • • a .  • • b)). Hence its length is at most 2u~-2 
(see [ES] for a proof  that proceeds by induction on the number of  symbols). 
Moreover, it is easily checked that the charging scheme described above never 
charges an element of or ~r) more than once. Hence the total number of duplications 
of  elements in g~r) is at most 2u~-2 ,  from which the claim follows. 

In a fully symmetric manner, it follows that the length of  ~b) is at most 
b~+2vc-2 ,  where vg, be are defined analogously as the number of connected 
components of OB appearing along ~, and the number of blue subarcs composing 
these components. 

(3) We now have to account for duplications of  adjacent elements in S ~r~, S Ibm, 
which have been erased in ~r) ,  ~cb), respectively. Consider S ~ .  It consists of 
(maximal) runs, where each run is a contiguous subsequence of  identical elements, 
and is represented as a single element in S~). (Figure 6 shows two such nontrivial 
runs--(aaaa) and (gg).) Let p be a run in S ~) of  the single subarc a having 
length/.  We use the following charging scheme. For each element s~ "~ of  p, other 
than the first element, we examine the portion ~ of S ~b) which appears in S 
between s~_)~ and s~ ~). If it consists of more than one element, then they must all 
be distinct, and we charge one token to the (element of  g~b) corresponding to 
the) second element of  this portion. For example, in Fig. 6, the portion of S ~b~ 
between the two appearances of  g is (Oq), so we charge the duplication of g to 
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the corresponding element rl o f  ~(b~. Otherwise 6 consists o f  a single element 
(b) If  s~ ~ :~ _(b) si . T ~j_~, then again we charge one token to the corresponding element 

of  g(bt Otherwise no charge is made. In Fig. 6, the run ( a a a a )  has the following 
portions o f  S (b) between its e l e m e n t s ~ ( a ) ,  (at), and (/3). Thus the third element 
of  this run does not cause any charge to be made;  the fourth element charges/3  
(in g~b)), and the second element charges a (assuming a does not appear  again 
on dE before its displayed portion).  We use a symmetric  charging scheme to the 
runs o f  S (b~. 

Consider  now the full sequence S. An element o f  S is said to be charged if it 
is a charged element in either S(*~ or ~tb). It is easy to check that no  element of  
S(') or o f  ~q(h) is charged more than once, so the total number  o f  tokens charged 
is at most 

I g(~'l + IS(b)l ~ r~ + b e + 2u~ + 2v~ - 4. 

Consider a port ion S* of  S between two consecutive charged elements si and sj. 
Assume that  this port ion contains more than one element in some run, and assume 
that the r ightmost such duplicat ion occurs within a run o f  some arc a in, say, 
S (r). (In Fig. 6, consider the port ion S* = ( a a a ) . )  Let Sk, = Sk2 = a be this r ightmost 
duplication. Since no charge was made within S*, there must occur  a single blue 
arc a between Sk, and Sk2, which furthermore is not  the first in a run of  S (b). Let 
st, = st2 = a be the two consecutive occurrences o f  a within its run in S (b) so that 
12 = k l  + 1 .  I f  s~, also lies within S*, then again we must have l~ = k~ - 1, so that 
there is a single appearance  o f  a between these two appearances  o f  a, and this 
appearance is also not the first in its run. Cont inuing backward in this manner,  
it is easily verified that either the first element o f  the run o f  a or  the first element 
of  the run o f  a must  lie outside (i.e., before) S*, and that a and a are the only 
elements being dupl icated in consecutive places in S (r) or  in S (b) within S*. Now, 
as in Lemma 3.3, the max imum number  o f  alternations o f  the arcs a and a along 

is s + 3, so that at most  s + 2 alternations can occur  within S*. 
In other  words,  we have shown that the excess o f  S ~r) and S (b) over ~q~r~ and 

~(b~, between any two adjacent  charged elements, is at most  s + 2 .  Since 
the number  o f  charged elements is at most  r ~ + b ~ + 2 u ¢ + 2 v ~ - 4 ,  it follows 
that the total length o f  S is at most  ( s + 3 ) ( r ~ + b ¢ + 2 u ~ + 2 v ¢ - 4 ) .  Summing 
over all componen t s  ~ o f  OE, we obtain that its total complexi ty is at most  
(s + 3 ) ( r  + b + 2u + 2 v -  4t) ,  as asserted. [ ]  

Remark. Compar ing  our  analysis with that  of  the Combina t ion  Lemma of  [EGS] ,  
we see that  our  b o u n d  is not the best possible, at least for the case o f  straight 
segments. It would  be nice to sharpen our bound ,  if possible. However ,  our 
result implies that the complexi ty o f  E is O ( r +  b) ,  which is sufficient for our  
purposes. 

Proof o f  the Combina t ion  L e m m a .  The p roof  is a fairly straightforward (and 
SOmewhat simplified) adapta t ion  o f  the p roof  o f  the combinat ion  lemma for line 
segments given in lEGS] .  For  the sake o f  completeness we describe the modified 
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proof  with some detail. Fix a blue face B = B j  which contains k i of  the given 
points, say P l , . . . ,  Pk,. Let ~'l . . . .  , ~1~ be the distinct connected components of 
8B. For each of  these points p~ let E~ denote the connected component  of  B c~ R,, 
which contains Pi, as defined above. Traverse each ~,~ and partition it into 
connected portions 8 so that each such portion intersects the boundary of only 
a single region Ei (and so that two adjacent portions intersect distinct such 
regions); note that in general the endpoints o f  the portions 8 are not uniquely 
defined. We define a plane embedding of a planar graph G as follows. The 
vertices of  G are the points p i , . . . ,  Pk, and additional l~ points ql . . . .  , qt,, so that 
qi lies inside the connected component  Hi of  R 2 -  B whose common boundary 
with B is ~i- For each portion 8 lying on some ~,, and intersecting some OEi, we 
add the edge (q,,,,p~) to G, and draw it by taking an arbitrary point in /~ c~OEi 
and connect it to p~ within E~ and to qm within Hm. The connectedness of  each 
E~ and each Hm implies, as in [EGS], that we can draw all edges of  G so that 
they do not cross one another. It follows from the definition of the portions 8 
that in this embedding of  G each face is bounded by at least three edges (note 
that G can have multiple edges between a pair of  vertices). Thus by Euler's 
formula the number  of  edges in G, and thus the number  of  portions 8, is at mo~t 
3(kj +/s). Figure 7, borrowed from [EGS], illustrates these arguments for the case 
of  segments. 

We next define, for each p~, a modified "b lue- red"  region B* containing p~ 
as follows. I f  R = R,, does not intersect OB at all, then we take B* = R. Otherwise 
we start at some point z on OB nOE~, and traverse the portion B of OB containing 
z (as defined in the preceding paragraph),  with B lying to the left, until its last 

i / "X "" 5 : :  

/- \ ; .~. ,  ~ :  ~ .~ ./ ,, /', 
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Fig. 7. Bounding the number of boundary portions using planarity. 
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Fig. 8. A "'blue-red" region B*. 

intersection with OE~. Then we turn along OR into B and follow OR until its next 
intersection with OB. Since this intersection necessarily lies in aE~, we have landed 
on another portion S' ofaB which intersects aE~, and we follow 8' in the direction 
which keeps B to our left, until its last intersection with OE~, and continue this 
way until we get back to the starting point z. This yields one component  of  the 
boundary of  the desired blue-red region B*. I f  in this process we have not 
encountered all portions 8 of  OB intersecting aE~, we pick another starting point 
on one of  the portions we have missed, and repeat the tracing from that point. 
Finally, we add as components  of  aB* all components of  aR which bound Ei 
but which are not intersected by aB at all (and are thus contained in the interior 
of B). Tracing all components  of  the boundary of OB* in this way yields a 
well-defined connected region bounded between these boundaries. Figure 8 shows 
an example of  such a blue-red region. 

It is easily checked that B* contains Ei and is contained in B. We define, in 
a completely symmetric manner,  a modified " red-b lue"  region R* around each 
pi. It follows that the connected component  of  B* n R* which contains p~ is 
exactly E ,  Moreover,  assuming that no two points p ,  pj give rise to the same 
intersection face E, it is easy to check that aB* n Ej = OR* n Ej = O for any i # j .  
In other words, no arc of  B* or of  R* can appear  on the boundary of another 
E~ (with Ej lying on the same side of  that arc). 

We are now in a position to apply Lemma 4.2. Let 

b~ = the number  of  blue arcs of  B*, 
r~ = the  number  of  red arcs of  R*, 
ui = the number  of  connected components of  OB*, and 
v~ = the number  of  connected components of  OR*. 

By construction, all such components  actually appear  along aE~. Since each arc 
of OE~ is either a portion of  a blue arc of  B* or a portion of a red arc of  R*, a 
slight modification of  the proof  of  Lemma 4.2 (in which we only need to account 
for duplications of  blue arcs of  B* and of  red arcs of  R*) implies that the 
COmplexity of  E~ is at most  O(b~ + r~ + u~ + v~). Summing these inequalities over 
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all points p,-, we conclude that the overall complexity of the regions Ei is at most 

To bound Y.i hi, consider all blue-red regions B* contained in one original blue 
region Bj. Then ~p, cB, bi is bounded by the number of arcs of Bj plus a term 
proportional to the number of subarcs 8 into which aB) is partitioned. By the 
preceding argument, this additional term is O(k~ + !i) where k~ is the number of 
points p~ in B~, and lj is the number of connected components of OBj. We thus 
obtain, summing over all blue faces Bj, 

~ b i=O kj+ . 
i I j = l  

But ~ kj = k, and the total number of components of the blue faces is clearly 
bounded by their total complexity b. Hence 

b, = O(b+ k). (ii) 
i 

Repeating this counting for the red faces we obtain 

r, = O(r+ k). (iii) 
i 

Finally, ~ u~ (and ~ v~) can be bounded in a similar manner, noting that for 
each original blue face B~, the sum )~p,~B, u~ is bounded by lj plus the number of 
subarcs 6 along OBj, so that 

• j i j = l  

and similarly 

~. v, = O(r+ k). (v) 
i 

[3 Combining inequalities (i)-(v) completes the proof of the lemma. 

4.2. The Red-Blue Merge 

We now continue the description of our red-blue merge. Let ~r be the total 
number of vertices in the purple regions. The combination lemma, Lemma 4.1, 
implies that zr = O ( b + r + n ) =  O(b+r) .  

To facilitate our merge, we require certain information to be precomputed 
and available for each collection. Specifically, we require that the red region R 
be subdivided into x-monotone subregions by drawing vertical rays up and down 
from each point w in P n R, till they meet an edge of R (we call the resulting 
vertical segment through w the red vertical divider at w, and denote it by p(W)). 
It is easily checked that this does produce a decomposition of R as desired. See 
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Fig. 9. Vertical dividers. 

Fig. 9 for an illustration. Similar partitioning is required for the blue region, 
using blue vertical dividers (denoted as /3(w)), thereby obtaining a similar 
collection of  blue x-monotone subregions. 

These monotone decompositions of the red and blue regions are easy to obtain 
using a straightforward vertical line sweeping, in time O((b + r) log(b + r)). Note 
that a particular monotone subregion may terminate on the left or the right either 
because of  a point of  P, or because of a locally x-extremal vertex of  the correspond- 
ing region. Our algorithm will produce a similar partitioning of  the purple regions 
into monotone subregions, which we call the purple subregions. 

We calculate the purple subregions by sweeping with a straight line. Notice 
that purple subregions start or end at x-coordinates associated with either a point 
of P, or with an x-extremum of  the red or blue region, or with a red-blue 
intersection. In a left-to-right sweep we discover the portion of each purple 
subregion that is to the right of  the leftmost point in P giving rise to it. Then 
afterward, in a right-to-left sweep, we get the portion of each purple subregion 
to the left of  the rightmost point in P giving rise to it. Together, the two sweeps 
discover all the purple subregions. 

Our algorithm will thus also attempt to construct purple regions incident to 
each blue or red endpoint (provided that the endpoint is also contained in the 
opposite-colored region--otherwise no such purple region is to be generated), 
even though such a purple region might not belong to the desired purple com- 
ponent f= fx .  That is, some of these purple subregions might be disconnected 
from f (see Fig. 5 for an example). Intuitively, the reason for calculating these 
extra purple subregions is that we do not know a priori the shape o f fx ,  which 
may be very "wiggly." If  we use only the point x to "trigger" the generation of  
purple subregions, we may need to sweep back and forth many times until we 
obtain the entire fx. However, using all endpoints of the red and blue arcs as 
triggering events is easily seen to yield, in just two sweeps as above, all the 
subregions of  which fx is composed, and, as noted, perhaps a few extra subregions 
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as well. However, we will be able to detect all spurious subregions at the end of 
the algorithm, as follows. Consider the graph whose nodes are the final purple 
subregions, and whose edges connect pairs of  purple regions adjacent along some 
vertical divider. Then a simple breadth-first search on this graph, starting from 
the purple subregion that contains x, will yield the desired component f ;  all the 
unreachable purple subregions will simply be discarded. (Note also that the size 
of  the additional "fake" purple regions is at most O(b + r) as follows easily from 
Lemma 4.1.) 

We describe below only the left-to-right sweeping step; the right-to-left is 
symmetric. We start this sweep by constructing a priority queue, ordered by 
x-coordinate, which contains all the vertices appearing along the boundaries of 
the given red and blue regions, together with the point x. We sweep over the red 
and blue subregions separately, and at the same time will also sweep over the 
purple subregions, and detect (portions of) them as we sweep. We speak of 
the red, blue, and purple planes, respectively. The purpose of  these separate 
sweeps is to avoid having to process "uninteresting" red-blue intersections, i.e., 
intersections which do not occur along the boundary of  a purple region. 

Every time we encounter a point p of  P, we start one or two new purple 
subregions in the purple plane. At such an event we create, for each new purple 
region, two new purple "scouts": the upper scout and the lower scout. It is the 
job of  these two scouts to walk along the upper and lower boundaries of  the new 
purple regions, respectively. We describe the behavior of the upper scout u of 
one such region; the lower scouts behave symmetrically. See Fig. 10, 

The upper scout u starts on a red or blue arc, as determined by the closest of 
the upper endpoints of  the vertical dividers p(p),/3(p). The scout u moves right 
along that arc following the sweep line, but it needs to watch out for certain 
events that might influence the upper purple boundary of  its region. Without loss 
of  generality, we assume that u currently sits on a red arc. Figure 11 illustrates 
some aspects of  the watching process. 

The scout u has first to look up to the nearest blue arc/3 (note that since u 
is "purple,"  the entire vertical segment between u and/3  must be contained in 

o 

y 
j J  

Fig. 10. Introduction of  scouts. 
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B). The reason is that the blue boundary above u might at some future point 
drop below the red boundary the scout is currently following. If  this were to 
occur, then u would have to follow the blue boundary,  because now it delimits 
the purple subregion. However,  there might be another scout v already watching 
that blue arc/3 from below. In that case only the highest of u and v needs to 
watch/3 from below: the other scout can rest, since it is certain that the higher 
scout is "protect ing" it from/3. See Fig. 1 l(a). In more technical detail, watching 
a blue arc /3  means timt u has to determine whether the arc p it lies on and 13 
intersect to the right of  the sweep line, and, if so, add the leftmost such intersection 
as an event into the priority queue of the sweep (each of  these operations, except 
for the priority queue insertion, is assumed to take constant time in our model 
of  computation).  In addition, if the sweeping process reaches the right endpoint 
of  either p or/3, which is not an endpoint of  the whole curve (from F) containing 
that arc, u has to retest for a potential intersection between the new pair of  arcs, 
and, if it exists, add the leftmost such intersection to the queue. When such a 
red-blue intersection is eventually swept across, u has to move to the blue arc 
t3, and to begin to watch the red boundary above it (starting with p). See Fig. 
l l (b) .  (Note  that the blue boundary above u, or the red boundary it currently 
follows, may also change discontinuously if the sweep reaches the endpoint of 
the corresponding full curve. When this happens, one of  the things we have to 
do is to check whether the watching assignment of  some purple scout has to 
change, and to inform the scout of  this change. See below for more details.) 

The scout u has also to look down to its lower partner and check for their 
(ieftmost) possible intersection (to the right of  the sweepline), because when the 
two of them come together the current purple subregion must end. This, of  course, 
might happen  earlier, if another point of P is encountered between these 
scouts. 

The key propert:¢ here is that each blue or red arc is watched (at any given 
time) by at most one upper  scout and at most one lower scout, who sit on arcs 
of  the opposite color. But these assignments of  who watches over whom can 
change. 

One way that can happen is that a purple region can end because its two 
purple scouts come together. This will occur, for instance, when the rightmost 
vertex of  a red subregion lies inside a blue subregion. In this event, the two 
purple scouts of  that purple subregion are eliminated. However,  some transfer 
o f  watching responsibility may now be indicated. I f  the upper  scout u was 
watching a blue arc/3, then we must consult the next upper  purple scout down 
from u, say v. I f  v is currently idle, because the next higher blue arc above v is 
the same arc/3 watched by u, then u transfers to v the responsibility of  watching 
ft. See Fig. l l (c) .  I f  v is already watching another  blue arc, then we leave it 
undisturbed, as its blue arc must be below/3. 

Another  way the two purple partner scouts can come together is when a purple 
region ends at a red-blue  crossing. Any transfers of  watching responsibility that 
need to happen  now can be dealt in an entirely analogous way. I f  a purple region 
ends because another  point  p of  P appears  between the scouts, then again the 



On the General Motion-Planning Problem with Two Degrees of Freedom 515 

two scouts are eliminated, but in this case they will generally be replaced by new 
scouts spawned by p. 

The reassignment of watching responsibility that occurs when we sweep 
through a point p of P is, in more detail, as follows. At this time zero, one or 
two new purple subregions are created. Assume for simplicity that only one new 
subregion arises, and let u be its top scout. This scout u finds the opposite-colored 
arc e it has to watch by searching through the list of arcs of that color currently 
intersecting the sweepline (and represented as a balanced binary tree). But then 
u also has to consult the upper purple scout u* (resp. u-)  lying directly above 
u (resp. below u). If u + is watching the same e (more precisely, if u + lies below 
e), then u remains idle. Otherwise u begins to watch e and checks whether u-  
is also watching e, in which case u-  becomes idle. See Fig. l l (d) .  Similar but 
somewhat modified actions are taken when two new purple regions are spawned 
at p. 

In further detail, suppose p is an endpoint of a red original curve; then we 
check whether p also lies in the blue region B. If so, we start one or two new 
purple regions incident to p (and lying to its right), and proceed with scout 
creation and watching reassignments as above; otherwise no new purple region 
is to be generated at p. In either case, if the vertical divider p(p) extends both 
up and down from p (i.e., p is a point of "vertical tangency" on the boundary 
of its region), then some red boundaries currently watched by a purple scout 
may change discontinuously. For example, if the two red arcs e~, e 2 incident to 
p extend to the right of p (with e~ lying below e2), then we search through the 
list of purple regions along the sweepline to find the upper scout u lying directly 
below p, and, if it lies on a blue arc, tell u to start watching e~, unless it is 
watching a red arc lying below p. If u lies on a red arc, then if it is idle we leave 
it undisturbed; if it is watching a blue arc lying below p we again leave it 
undisturbed; however, if u watches a blue arc/3 above p, then it is easily checked 
that p must also lie within the blue region B, and consequently two new purple 
regions will be created at p, new purple scouts will be spawned along 81, e2, and 
the (upper) scout along el will relieve u from the responsibility of  watching fl, 
as explained above. Similar or symmetric actions are taken in all the other 
subcases. 

Finally, some transfer of  watching may be required at a red-blue crossing 
lying, say, on the top boundary of some purple region. Suppose the corresponding 
top purple scout u was lying on a red arc p just before the intersection, and 
afterward it moves along a blue arc/3. As noted above, u now has to start watching 
p, but we also need to check whether the top purple scout v lying directly below 
u has to change the arc it is watching, or become idle. Details are similar to the 
cases considered above, and can be easily worked out by the reader. 

Our scout watching scheme is designed in such a way that when a boundary 
of some purple subregion begins to traverse a new arc, only a constant number 
of scouts have to be told about it. This implies that handling such an event 
requires only a constant number of operations, including tree searches and priority 
queue updates, and thus takes only logarithmic time. 
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Note that this procedure not only produces the purple regions, but also their 
x-monotone decompositions into purple subregions, which will be handy for 
further processing. However, some preprocessing might still be required before 
subsequent merges (call them purple-violet) can be performed. This is because 
an endpoint p of some purple original curve may also lie within the violet region, 
in which case we will need to find the violet vertical divider at p, and this 
information in general is neither part of the "purple" data nor part of the "violet" 
data, and can be obtained only by combining information from these two 
collections prior to their merge. 

Let us now analyze the complexity of this process. The purple scouts simply 
trace the boundaries of  the purple regions. Each such scout needs to schedule 
into the priority queue possible intersection events between the arc it is currently 
sitting on, and the arc it is watching (including the possible intersection between 
the current top and bottom arcs of the same purple subregion). Note that new 
events are scheduled when we sweep either through a point in P, through a blue 
vertex, through a red vertex, or through a red-blue crossing (which is a vertex 
of  a purple subregion). Moreover, at each such point only a constant number of 
new events are scheduled. Thus the total number of events ever scheduled is 
proportional to the total input and output size, which, by Lemma 4.1, is O(b + r). 
Thus each event costs O(log(b+r)) time to insert into (and delete from) the 
priority queue. The additional operations of our procedure involve updating the 
red, blue, and purple lists along the sweepline, of  creating and eliminating scouts 
(i.e., purple subregions), and of  reassigning watching responsibilities. It is plain 
that we need to perform only O(b+r) such operations, and that each can be 
carried out in O(log(b + r)) time (because the maximum size of the red, blue, 
and purple lists along the sweepline is at most O(b + r)). The final step of detecting 
"true" purple subregions (those that are connected to the "anchor" point x), 
and of eliminating the other subregions, can be done by a simple graph searching 
(as explained earlier) in time linear in the number of purple subregions produced 
by the algorithm, i.e., in O(b+r) time. Thus our procedure runs in overall 
time O((b + r) log(b + r)). Moreover, in our application each of the regions 
R and B is a single connected component in an arrangement of n/2 Jordan arcs 
(or curves), each pair of which intersect in at most s points. We have thus 
shown: 

Theorem 4.3. Given two connected "red"  and "blue" regions R, B, both containing 
a given point x, whose boundaries are composed respectively of r and b subarcs of 
some collection of Jordan arcs (or curves), no pair of which intersecting at more 
than s = O(1) points, we can calculate the connected component f of the intersection 
R n B which contains x, in time O((r+  b) log(r+ b)), under the assumptions made 
at the beginning of the section concerning the given curves and the model of 
computation. 

The time bounds given above are for the merge step of our algorithm. Using 
Theorem 3.1, we thus obtain, by straightforward calculation. 
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Theorem 4.4. Given a collection F of  n Jordan arcs (or curves), having the property 
that no pair of  them intersect in more than s points, and also satisfying the conditions 
made above, we can calculate the connected component of  A(F) containing a specified 
point x, in time O(A~+2(n) log 2 n) (or in time O(A~(n) log 2 n) for closed Jordan 
curves). 

Remarks. (1) This result follows and extends the previous algorithm given in 
[EGS] for the case of  line segments. It shows that the red-blue merge is a versatile 
technique of  a purely topological nature, which can be applied to fairly general 
classes of  curves. 

(2) Our version of the combination lemma (Lemma 4.1) is weaker than the 
corresponding lemmas for lines or for line segments, as given in [EGS], in that 
the bound it produces involves the red and blue complexities r, b with coefficients 
greater than 1 (namely, s+3) .  This does not allow us to apply the lemma in a 
repeated recursive fashion (as has been done in [EGS]) to obtain sharp upper 
bounds on the complexity of many connected components in an arrangement 
A(F) as above. However, assuming that a sharp bound on this complexity can 
be obtained by other means, our red-blue merge can be easily extended to obtain 
an algorithm for calculating m such components, each specified by a given point 
within it, in time comparable with their total worst-case complexity. Recently, 
[CEG*] have obtained sharp upper bounds for the complexity of  m faces in 
arrangements of n circles, or of n unit circles, or of  n pseudolines (i.e., x-monotone 
unbounded arcs, each pair of  which intersects at most once). Using their bounds, 
we can obtain the following results (we omit details of the solutions of the 
resulting divide-and-conquer recurrences, which are based on random sampling 
of the given collection of  curves, and are very similar to those obtained in [EGS]). 

Corollary 4.5. 

(a) We can calculate m distinct faces in an arrangement of  n unit circles in 
(randomized) time O(m2/3-~ n2/3+2~ log n + n log 2 n) for any 8 > O. 

(b) We can calculate m distinct faces in an arrangement of n arbitrary circles 
in (randomized) time O(m3/5-~ n4/5+2n log n + n log 2 n) for any 8 > O. 

(c) We can calculate m distinct faces in an arrangement of  n pseudolines (under 
an appropriate model of  computation) in (randomized) time 
O(m2/3-g n 2/3+2~ log n + n log  2 n) for any 8 > O. 

(3) Concerning lower bounds, it is easy to establish an f l(n log n) bound by 
reducing from sorting. We do not know of  any larger lower bound. In particular, 
we pose it as an open problem whether a component of  A(F) can be computed 
in time O(A~+2(n) log n). We note that an algorithm with such complexity exists 
for the calculation of  the lower envelope of the arcs in F [At], [HS]. 

(4) If  the collection F consists of  n closed Jordan curves, then we can use 
our red-blue merge to calculate a single component of  A(F) in time 
O(as(n) log 2 n), making use of the bound obtained in [SS5], as mentioned at 
the end of  Section 3. In the special case s = 2, a simple adaptation of  the algorithm 
in [KLPS] yields an algorithm with that complexity. 
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(5) Returning to the original motion-planning problem, the above procedure 
will yield a single connected component of  FP, provided this component is fully 
contained in a single planar patch of  the entire parametric space AP. If AP is 
not planar, and the desired component C which contains the initial placement 
Z "spills" over into more than one patch, we obtain C using the following 
technique. Let AP~,. . . ,  APq be the planar patches which compose AP, and 
assume that Z lies in AP1. We first calculate the component Co in AP~ containing 
Z. If Co does not reach the boundary of  AP~, then C = Co. Otherwise, we also 
calculate all the unbounded components in each of the patches AP~. Assuming 
that the number of  patches is constant, and that each of  the constraint curves is 
broken into a constant number of  connected subarcs, each lying within a single 
patch, it is easily checked that the total complexity of all unbounded components 
of the patches is O(As÷2(n)), and that they can all be calculated in time 
O(hs+2(n) log 2 n), using the above algorithm. The desired component C is easily 
seen to be the union of  Co with certain portions of the unbounded components 
within the patches. More precisely, as Co reaches the boundary of  APt, C extends 
into another patch, necessarily as a portion of  the unbounded component within 
that patch; similar "propagat ion" of  C into further patches continues until the 
whole of  C is obtained. Clearly this tracing of  C can be accomplished within 
the above time bound. 

Let us discuss a few applications of our results to some specific motion-planning 
problems. As a first example, consider a line segment B = PQ free to rotate in 
three dimensions about its endpoint P which is fixed at the origin. The motion 
of  B clearly has two degrees of  freedom, and, assuming the obstacles that B has 
to avoid are all polyhedral (with a total of n edges), we easily check that any 
pair of constraint curves intersect in at most s = 1 point. Thus the complexity of 
a single component of  FP is O(na(n)), and can be calculated in time 
O(not(n) log 2 n). (Note that in this case AP can be represented as the surface 
of  a sphere in three dimensions, or, alternatively, as the union of  two planar 
patches.) 

As a second example, let B be a two-link arm PQR moving in the plane 
(amidst polygonal obstacles) with the point P fixed at the origin. Here AP can 
be represented by a torus, or by a union of  four planar patches. By using tan(0J2),  
tan(02/2) as the system parameters, it is easily checked that each constraint curve 
is algebraic of (at most) fourth degree. Moreover, it can be shown that each pair 
of  constraint curves intersect in at most s = 2 points (on a single patch). It follows 
that the complexity of  a single component of  FP is O ( ) t a ( n ) )  , and that it can be 
calculated in time O(A4(n) log 2 n). 

As a final example, consider the problem of  coordinated motion planning for 
two "planar  Stanford arms" [FWY], [SSi], where each arm is a straight segment 
PiQi free to translate through a fixed point Ci and also rotate about that point, 
for i = 1, 2. We consider a special case of coordinated motion, in which the two 
endpoints Q~, Q2 must be in contact with each other throughout the motion. This 
problem has been studied in [FWY], who gave an O(n 2 log n) algorithm (where 
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n is the total number of obstacle corners and edges). A recent result in [SSi] 
shows that the desired free space can be taken to be a single component in the 
intersection of the two 2-D configuration spaces of  the two separate arms. Since 
each of  these spaces has O(n) complexity [FWY], [SSi], a single application of  
our red-blue merge yields the desired space in time O(n log n). 

5. Conclusion 

The results obtained in this paper provide a satisfactory solution to the general 
motion-planning problem with two degrees of freedom. The problem is in a much 
more confused state, however, when we consider problems with three degrees of  
freedom. There, under assumptions similar to those made above, the complexity 
of the entire FP is O ( n  3) in general, although there are certain favorable cases 
in which the complexity reduces to quadratic or near-quadratic. For example, 
for a line segment moving in the plane amidst polygonal obstacles, the complexity 
of FP is O(n 2) [LS2], [SIS]. For a convex k-gon moving in a similar environment, 
the complexity of FP is O(knA6(kn)) [KS2]. (See also [Si2] for a few other 
favorable instances of this sort.) However, for a nonconvex (e.g., an L-shaped) 
polygon, the complexity of  FP can be f~(n3), as is easily checked. As above, we 
would like to conjecture that a single connected component of  FP, which is all 
we really need to compute, will have smaller, e.g., near-quadratic, complexity. 
However, this appears to be a much harder problem, and is largely open. Some 
progress was recently made on this problem for the special case in which the 
surface patches bounding FP are n triangles in 3-space. It was shown in [PSI 
that the complexity of  a single component of  their complement is at most 
O(n3-1/49). This was improved in [AS] to O(n7/30l(n) 2/3 log 4/3 n) ,  where this 
also bounds the total complexity of all nonconvex components. Another simplified 
case is where instead of  calculating the boundary of  a component of  the comple- 
ment of the given constraint surfaces, we only want to calculate their upper or 
lower envelope, i.e., the portions of these surfaces seen from a point at infinity 
in the direction of the positive or negative z-axis. For triangles, it was shown in 
[PS] that the complexity of  their upper envelope is O(n2a(n)), and that this 
bound is worst-case optimal. However, for arbitrary surfaces, even in this restric- 
ted problem subcubic upper bounds are not known, except for a few special 
cases noted in [SS5]. 
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