
Discrete Comput Geom 4:491-521 (1989) [)i~'rel~ N Comlmtati'sml

On the General Motion-Planning Problem with
Two Degrees of Freedom*

Leonidas J. Guibas , 1"2 Micha Sharir, 3: and Shmuel Sifrony 3

DEC Systems Research Center, 130 Lytton Avenue, Palo Alto, CA 94301, USA

Computer Science Department, Stanford University, Stanford, CA 94305, USA

3 School of Mathematical Sciences, Tel-Aviv University, 69978 Tel Aviv, Israel

4 Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street,
New York, NY 10012, USA

Abstract. We show that, under reasonable assumptions, any collision-avoiding
motion-planning problem for a moving system with two degrees of freedom can be
solved in time O(A~(n) log 2 n), where n is the number of collision constraints
imposed on the system, s is a fixed parameter depending, e.g., on the maximum
algebraic degree of these constraints, and A~(n) is the (almost linear) maximum
length of (n, s) Davenport-Schinzel sequences. This follows from an upper bound
of O(A.~(n)) that we establish for the combinatorial complexity of a single connected
component of the space of all free placements of the moving system. Although our
study is motivated by motion planning, it is actually a study of topological, com-
binatorial, and algorithmic issues involving a single face in an arrangement of curves.
Our results thus extend beyond the area of motion planning, and have applications
in many other areas.

I. Introduction

Let B be a robot system having two degrees of freedom (a 2 - D O F system in

short), which is free to move in some two- or three-d imensional space amidst a
finite set of m pairwise openly dis joint obstacles O r , . . . , Ore, whose geometry is

* Work on this paper by the second author has been supported by Office of Naval Research Grant
N00014-82-K-0381, by National Science Foundation Grant No. NSF-DCR-83-20085, by grants from
the Digital Equipment Corporation, and the IBM Corporation. Work by the second and third authors
has also been supported by a research grant from the Joint Ramot-lsraeli Ministry of Industry
Foundation, and by a research grant from the NCRD--the Israeli National Council for Research
and Development.

492 L.J. Guibas, M. Sharir, and S. Sifrony

known to the system. The set of all placements of B is a 2-D parametric space
which we denote by AP (the space of "all placements"; intuitively we think of
AP as a locally Euclidean manifold which can be covered by a constant and
usually small number of patches, each homeomorphic to some simple planar
domain). The subset of AP containing all free placements of B (i.e., placements
in which B does not intersect U~'=~ O~, and no two subparts of B intersect one
another) is referred to as the free configuration space of B, and is denoted by FP
(the space of "free placements"); we also denote by BFP the (topological)
boundary of FP. The motion-planning problem for B is: given an initial placement
Z~ and a (desired) final placement Z2 of B, both belonging to FP, determine
whether there exists a collision-free continuous motion of B between these
placements, i.e., a continuous path from Zj to Z2 within FP (often we are willing
to "compromise" and require only that the path lie in FP u BFP). If so, we also
wish to plan such a motion. Since for such a motion to exist, the two given
placements must lie in the same connected component of FP (or of FP u BFP),
an equivalent formulation of the problem is to calculate a discrete combinatorial
representation of the decomposition of FP (or of its closure) into arcwise
connected components.

This is a relatively simple instance of the general motion-planning problem;
see below for a review of existing work on the problem.

In our case, the boundary BFP of the space FP can in general be defined by
a finite number n of collision constraints y ~ , . . . , y~, each of which is the locus
of placements of B at which contact is made between a specific subpart of B
and a specific subpart of some obstacle or between two specific subparts of B.
We assume, as is customary in motion planning, that these constraints are
connected and simple algebraic arcs of some small and fixed maximal degree d
(but the results obtained in this paper also hold under weaker assumptions--see
below).

With no real loss of generality, we assume the space AP of all system placements
to be planar. In general, the manifold AP can be more complex. For example,
for a planar "Stanford arm," namely a line segment free to slide through a fixed
point and also to rotate around it [FWY], AP is cylindrical; for a two-link planar
robot arm, AP is toroidal, etc. In these cases we "triangulate" AP, i.e., break it
into O(1) planar patches, apply our analysis in each patch separately, and then
glue the results together.

Let us form the arrangement A of the arcs y ~ , . . . , y,. This is the planar map
whose vertices are the endpoints of these arcs and all their intersection points,
whose edges are maximal connected subarcs of the yi's whose interiors do not
meet any other arc, and whose faces are the connected components of the
complement of U~=~ y~. By Bezout's theorem (see, e.g., p. 54 of [Ha]), the total
number o f vertices of A is O(d2n 2) = O(n2); it easily follows from Euler's formula
that the number of edges and faces of A is also O(n2).

The above considerations imply that each connected component of FP must
be a face o f A. The converse is not true in general, because some faces of A
might represent regions of forbidden placements of B. Nevertheless, once A is

On the General Motion-Planning Problem with Two Degrees of Freedom 493

available, we can obtain FP from it in a straightforward way, by pruning away
the forbidden faces. In particular, it follows that the combinatorial complexity
of FP is O(n2). Calculation of A can be accomplished by a standard line-sweeping
technique (as in [BO]), in time O ((n + p) log n), where p is the total number of
intersections between the curves yi, and is O(n 2) in the worst-case. An alternative
technique has been recently proposed in [EGP*]; it runs in slightly more than
quadratic time, and is mentioned below. Other related techniques are given in
[CE], [Cl], [Mul] , and [Mu2].

So far we have roughly quadratic-time methods for producing FP. Moreover,
these methods are close to optimal in the worst-case, because there are many
cases of motion-planning problems with two DOFs in which FP is actually of
quadratic size (see below). The key observation of this paper is that in most cases
we do not need to calculate the entire FP, but only its connected component C
containing the initial given placement Zo of B. Indeed, as long as B moves in a
collision-free manner from Zo (and is not artificially "lifted up" and "re-started"
in a position lying in a different component of FP), it will have to remain within
C. Our goal is thus to precalculate only the component C, rather than the entire
FP, and thereby achieve better performance.

Our first main result is that the combinatorial complexity of such a single
connected component C is only O(A~+2(n)), where s < - d 2 is the maximum number
of intersections of any two constraint curves y , y~. Here A,(n) denotes the
maximum length of (n, r) Davenport-Schinzel sequences, i.e., sequences composed
of n symbols, which do not contain equal adjacent elements and also do not
contain an alternating subsequence of two distinct symbols of length r + 2. It is
known [HS], [ASS] that At(n) is almost linear in n for any fixed r. More
specifically,

Al(n) = n; Az(n) = 2n - 1 (trivial).
A3(n) = O (n a (n)) , where a(n) is the functional inverse of Ackermann's

function, and thus grows extremely slowly [HS].
A4(n) = O (n . 2 "(")) [ASS].

A2~(n) = n. 2 °~'~"r-') for s > 2 [ASS].
Azs+l(n) = n. a (n) °(~'(')'-~) for s >---2 [ASS].

Ats(n) = n. 2 n('~"v-') for s > 2 [ASS].

Our result is actually a general topological property of arrangements of curves.
That is, a single face in such an arrangement of n arcs in the plane, any two of
which intersect in at most s points, has combinatorial complexity O(A,+2(n)).
This result has already been established in [PSS] for the special case of arrange-
ments of line segments, where s = 1 and the complexity of a single face is thus
O()L3(n)) = O(na(n)) . Our result extends a recent (somewhat simpler) result in
[SS5], showing that if the yi's are closed Jordan curves, then the complexity of
a single face of A is only O(A,(n)) .

Our second main result is an algorithm which, given a collection of n ares
~'1 ,3,,, and a point Zo not lying on any of them, calculates the face of the
arrangement of these arcs that contains Zo. Here we assume that any two ares

494 L.J. Guibas, M. Sharir, and S. Sifrony

7i, Y~ intersect in at most s points, and that any arc 3,, has at most t points of
vertical tangency (so that it can be broken up into at most t + 1 x-monotone
subarcs); here s and t are assumed to be small fixed constants. Moreover, we
assume a model of computation where certain primitive operations involving one
or two arcs take constant time; typical such operations are: finding the intersection
points of a pair of arcs, finding the points of vertical tangency of a given arc,
finding the intersections of an arc with a vertical line, etc. All these assumptions
are reasonable if the arcs yi are algebraic of low degree as assumed above. Under
these assumptions, our algorithm runs in O(As+2(n) log 2 n) time and O(A,+2(n))
space. Again, in the special case discussed in [PSS] (where the y~'s are line
segments arising as the Minkowski difference of the boundaries of two simple
polygons), another algorithm, of comparable complexity, has been presented.
Recently, Edelsbrunner et al. [EGS] have obtained an O(nct(n) log 2 n) algorithm
for calculating a single face in an arbitrary arrangement of line segments. We
extend the technique of [EGS] to handle arrangements of curved arcs. The
previous algorithm in [PSS] is based on ray shooting in simple polygons (see
[CG]). This technique can be applied only in very restricted circumstances (some
more of which are mentioned below and discussed in [Sil l in more detail); in
particular, it does not seem to generalize to curved arcs. The technique of [EGS]
is based on line sweeping, is conceptually simpler, and can be extended to
our case, although this generalization requires some additional analysis of the
intersection pattern of such arcs, which is developed below.

The special cases (in addition to that in [PSS]) in which the ray-shooting
technique can be applied include:

(a)

(b)

Translational motion of a simple polygon P with k sides amidst a collection
of n point-obstacles (imagine P translating on a board amidst a collection
of pins or pegs tacked to the board). Here we can calculate a connected
component of FP in time O(nk~(nk) log nk log n) (which is slightly better
than our general bound).
The case in which the forbidden subspaces induced by the problem
constraints are all polygonal, and their sides have only a fixed and small
number k of possible orientations. This would be the case, e.g., for
translational motion of a rectilinear simple polygon amidst a collection
of rectilinear obstacles. In this case we can calculate a single connected
component of FP in time O(nkoe(n) log n), which reduces to O(n log n)
in case of rectilinear regions, and which again is better than our general
bound.

However, as it turns out, these time bounds can also be obtained by an
appropriate fine-tuning of the recursion of the general algorithm given in this
paper. For this reason we omit here details concerning this alternative ray-shooting
technique.

Some related results for the case of lines or line segments are given in [EGH 1"],
where, for example, it is shown how to preprocess a collection of n lines in
roughly O(n 3/2) randomized expected time and roughly linear space so that the

On the General Motion-Planning Problem with Two Degrees of Freedom 495

face in the arrangement of these lines containing any given query point can be
retrieved in time roughly O(n~/2+ k), where k is the size of the face.

As mentioned in the Abstract, we regard our topological and algorithmic
results as basic important properties of arrangements of curves in the plane. Our
results have recently been applied to various other problems. One application in
[EGP*] obtains a generalized "horizon theorem" for arrangements of curves,
and an incremental algorithm for constructing such arrangements in roughly
quadratic time. Another recent application in [AgS] obtains fast algorithms for
detecting intersections between two collections of arcs in the plane. Our results
have also been recently applied in [SSi] to obtain efficient coordinated motion-
planning algorithms for two independent systems with two degrees of freedom
each.

Related Work

In an initial series of papers Schwartz and Sharir [SS1]-[SS3], [SA], [SS4]
obtained polynomial-time motion-planning algorithms for the general algebraic
case and for several specific robot systems. The Schwartz-Sharir algorithms
involve decomposition of FP into finitely many simple connected cells and
construction of a connectivity graph CG representing adjacency of these cells in
FP. Several recent improvements of these initial results have been based on
generalized Voronoi diagrams JOY], [OSY1], [OSY2], [LS2], whereas others
involve optimized variants of the cell decomposition method [LSI]. Another
recent technique, due to Sifrony and Sharir [SIS], obtains a motion-planning
algorithm for the special case of a line segment (a "rod") translating and rotating
in a 2-D polygonal region by an explicit calculation of :he boundary of FP.

A special case of the 2-DOF motion-planning problem is that of planning a
purely translational motion for a planar object B amidst polygonal obstacles.
This problem has been studied in [OY] for the case where B is a disk, and in
[KS1], [KLPS], [BZ], and [LS2] for the case where B is a convex polygon. These
purely translational cases turn out to be more favorable than general 2-DOF
problems, in that the FP boundary in each of the above two cases contains only
O(n) vertices, and can be optimally calculated in O(n log n) time using general-
ized Voronoi diagrams (see JOY] and [LS2]). In general, however, the FP
boundary for 2-DOF motion-planning problems can contain l)(n 2) vertices (this
happens even in the purely translational case when the moving system is a
nonconvex polygon; see a remark in [KS1]).

Additional discussion of related results is given in Section 2.
The paper is organized as follows. In Section 2 we introduce the terminology

and derive a few initial observations about the problem structure. In Section 3
we analyze the combinatorial complexity of a single component of FP, or, more
generally, of a single face in an arrangement of curves. In Section 4 we present
an efficient algorithm for calculating a single such face, and in Section 5
we conclude with a discussion of several simple cases, extensions, and open
problems.

496 L.J. Guibas, M. Sharir, and S~ Sifrony

2. Terminology and Initial Analysis

We have already described in the Introduction the abstract representation that
we use for the general 2-DOF motion-planning problem. In most of what follows,
we assume that the space AP of all possible (not necessarily free) configurations
of the moving system B can be embedded in the Euclidean plane. The boundary
of the free configuration space FP is contained in the union of a collection F of
O(n) (algebraic) simple Jordan arcs Yl ~/,, where each Yi is the locus of
placements Z of B in which a specific subpart of B touches a specific part of
some obstacle, or two subparts of B touch one another. Consider the arrangement
A = A(F) of the curves 2,~ as defined in the Introduction. Let Zo~ FP be a given
initial placement of B. As above, our goal is to calculate the connected component
of FP containing Zo, i.e., the face of A containing Zo.

When A P cannot be globally embedded in the plane, e.g., when one degree
of freedom 0 is rotational and admits the full 2rr range of orientations, we
represent A P as the union of finitely many planar " p a t c h e s ' w i n the above
example, these would correspond to the subranges 0 -< 0 -< ~r and 7r - 0 ~ 2 r r - -and
apply the foregoing analysis to each of them separately. It is important to note
that the number of patches is independent of the geometric complexity of the
workspace of the system B, and depends only on the type of degrees of freedom
of B.

Example. To illustrate these concepts, consider the case of an arbitrary (not
necessarily simply connected) k-gon B translating in the plane amidst a collection
of polygonal obstacles having a total of m sides. Each placement of B can be
specified by the position Z of some fixed reference point inside B. There are
n = O(km) constraints defining FP, and they induce n constraint curves, where
each such curve yi is the locus of placements of B in which some specific corner
of B touches some obstacle edge, or some specific side of B touches some obstacle
corner. In this special case it is easily verified that each 3'~ is a line segment,
obtained as the Minkowski (vector) difference of the obstacle feature and the
feature of B making contact (see, e.g., [KLPS] for more details). Thus in this
setting, our problem is to calculate the face in an arrangement of n line segments,
which contains a given point Zo (see [EGS] and [EGHI*] ; a special case of this
problem has also been studied in [PSS]). Such a face is illustrated in Fig. 1.

Let F be the collection of the n constraint curves. We assume that these curves
are in general position, meaning that no three of them pass through the same
point, that no two are tangent to one another, and that no two of them overlap
(our analysis can be easily modified to handle degenerate configurations of this
kind). As noted, the arrangement A(F) consists of O(n 2) faces, edges, and vertices.

Before plunging into our analysis, let as digress for a moment to consider
several special cases of the problem in which the complexity of the entire space
FP (not just of a single component of it) is also small. To describe these cases,
suppose for a moment that each constraint curve yi is a closed Jordan curve,
and that it partitions the plane into two regions, so that one of them (which we

On the General Motion-Planning Problem with Two Degrees of Freedom 497

P

Fig. 1. A face in an arrangement of segments.

refer to as the interior of 3',, and denote by Ki) consists exclusively of forbidden
positions of B in which the corresponding constraint is not met, whereas in the
complementary region that constraint is satisfied. In this setting, the free configur-
ation space FP is just the complement of the union K of all the Ki's. I f the
maximum number of intersections s of any pair of curves in F is 2, then it was
shown in [KLPS] that the overall combinatorial complexity of K (as measured,
e.g., by the total number of intersections of the yi's which lie on a K) is at most
O(n). A recent result [EGH2*] considers the case in which each K~ is the region
enclosed between the x-axis and a Jordan arc 3'~ whose endpoints lie on the
x-axis, so that each pair of the arcs yi intersect in at most s = 3 points, and shows
that in this case the overall complexity of K is O(na(n)) . However, as soon
as s__.4, the complexity of K can become f~(n2). This complexity can arise in
actual 2-DOF motion-planning problems, e.g., that of a purely translational
planar motion of a nonconvex polygonal object, or that of a horizontal trans-
lational motion of a vertical line segment amidst polyhedral obstacles in
3-space. (It is clear, as also noted above, that the complexity of K is at most
O(sn 2) = O(n2).)

Thus, unless we face particularly favorable special cases, the complexity of
the entire FP, and thus the complexity of any algorithm that computes the entire
free configuration space, must be quadratic in the worst case. It is the purpose
of this paper to show that the combinatorial complexity of a single component
of FP is in general close to linear, and that calculation of such a component can
be accomplished in close to linear time.

Before closing this initial set of observations, we note that FP can be calculated
in close to quadratic time in the worst case:

Theorem 2.1. The free configuration space FP, or, more generally, the arrangement
A of the n constraint curves, can be calculated in O ((n + p) log n) = O(n 2 log n)
time, where p is the number of intersections between these curves.

The algorithm which calculates FP is a straightforward modification of standard
line-sweeping techniques (see [BO]), applied to the collection of constraint curves

498 L.J. Guibas, M. Sharir, and S. Sifrony

3';. We note that p may be substantially larger than the actual number q of these
intersections which lie on OFP. We leave it as an open problem whether FP can
be calculated in time O((n + q)log n) (or, in view of the results below, even in
time O((n+q) log 2 n)) where q is as above. Another open problem is whether
we can apply the topological sweeping technique of lEG] to obtain an algorithm
whose complexity does not involve the log n factor.

Remark. A recent result of [EGP*] gives an O(nA~+2(n)) algorithm for calculat-
ing the arrangement A(F) using an incremental construction technique, whose
analysis is based on the results obtained in this paper. For arrangements of
segments, it was shown in [CE] that they can be computed in time O(n log n + t),
where t is the number of intersections between the n given segments. Two other
papers [CI], [Mul] give randomized algorithms that construct an arrangement
of segments in an incremental fashion; their expected running time is also
O(n log n + t). See also [Mu2] for an extension of this technique to the case of arcs.

3. The Complexity of a Single Component of FP

In this section we obtain an almost-linear upper bound on the combinatorial
complexity of a single connected component of FP. Specifically, we show:

Theorem 3.1. Under the assumptions made in the preceding section, the com-
binatorial complexity of any single connected component of FP is at most O(A, +2(n)).

Proof. Let f be the given connected component , and let C be a connected
component of its boundary. It suffices to show that if k arcs of F appear along
C, then the number of subarcs of these arcs which constitute C is O(A~+2(k)).
Thus, without loss of generality, we may assume that all n arcs of F appear along
C. For each y; let u;, v~ be its endpoints. Let y~ (resp. yU) be the directed arc 3,,
oriented from u; to v; (resp. from vi to ui).

Without loss of generality, assume C is the exterior boundary component of
f Traverse C in counterclockwise direction (so that f lies to our left) and let
S = (s, , s2, • . . , st) be the circular sequence of oriented curves in F in the order
in which they appear along C (if C is unbounded, S is a linear rather than
circular sequence). More precisely, if during our traversal of C we encounter a
curve y; and follow it in the direction from u~ to v~ (resp. from v; to u~), then we
add y+ (resp. Yl) to S. As an example, if the endpoint ui of y~ is on C and is
not incident to any other arc, then traversing C past u; will add the pair of
elements y~-, y+ to S, and symmetrically for v;. See Fig. 2 for an illustration. Note
that in this example both sides of an arc y~ might belong to our connected
component ; in our original motion-planning application this usually was not the
case, because crossing a constraint curve generally means that the system is
passing from free to nonfree placements, but the generalized problem that we
study now allows for such two-sidedness.

On the General Motion-Planning Problem with Two Degrees of Freedom 499

Fig. 2. Traversing a face boundary and the resulting sequence S.

We use the following notation. We denote the oriented arcs of F as ¢~ , ¢2,.
For each ~:~ we denote by I~:,1 the nonoriented arc yj coinciding with ~. For the
purpose of the proof we transform each arc y~ into a very thin closed Jordan
curve 3'* by taking two nonintersecting copies of y~ lying very close to one
another, and by joining them at their endpoints. This will perturb the component
f slightly but, under our assumption on general position, it will not change the
combinatorial structure of the boundary of f, and in particular of C. Note that
this transformation allows a natural identification of one of the two sides of 3'*
with 3'~ and the other side with 3'i-.

We next need the following lemmas:

Lemma 3.2 (The Consistency Lelqma). The portions of each arc ~ appear in S
in a circular order which is consistent with their order along the oriented ~ ; that is,
there exists a starting point in S (which depends on ~i) such that if we read S in
circular order starting from that point, we encounter these portions in their order
along ~.

Proof. Let if, -r/ be two portions of ~:~ which appear consecutively along C in
this order (i.e., no other portion o f ~ appears along C between ~" and rt). Choose
two points x c ~" and y c rt and connect them by the portion a of C traversed
from x to y, and by another arc/3 within the interior of 1~:~1". Clearly, a and/3
do not intersect (except at their endpoints) and they are both contained in the
complement of (the interior of) f. Thus their union a w/3 is a closed Jordan curve
and f is fully contained either in its exterior or in its interior. We claim that any
point on ~:~ between l: and r/ is contained in the side of a u/3 which does not
contain f. Indeed, connect such a point z to x along an arc p that proceeds very
near ~i along the exterior of t~:~t* (see Fig. 3). Clearly, p and/3 are disjoint, and,
deforming a slightly as necessary, we can assume that p intersects a transversally
and exactly once, which is easily seen to imply our claim. This claim completes
the proof of the lemma. []

For each directed arc ~:i consider the linear sequence V~ of all appearances of
~:~ in S, arranged in the order they appear along ~:i. Let /z~ and u~ denote,
respectively, the index in S of the first and last elements of V~. Consider S =
(s~ , s,) as a linear, rather than circular, sequence (this step is not needed if

500 L.J. Guibas, M. Sharir, and S. Sifrony

lere

OR

P z

Fig. 3.

i here S C

Illustration of the proof of the consistency lemma.

C is unbounded) . For each arc ~:~, if/~i > vi we split the symbol ~:i into two distinct
symbols ~ , , ~:~2, and replace all appearances o f ~:i in S between the places p.~ and
t (resp. between 1 and v~) by ~:~ (resp. s¢;2). (Note that Lemma 3.2 implies that
we can actually split the arc ~:~ into two connected subarcs, so that all appearances
o f ~:~ in S* represent port ions o f the first subarc, whereas all appearances of ~:~2
represent port ions o f the second subarc.) This splitting produces a sequence S*,
o f the same length as S, composed of at most 4n symbols.

The assertion o f the theorem is then an immediate consequence o f the
following:

Lemma 3.3. S* is a (4n, s + 2) Davenport-Schinzel sequence.

Proof. Since it is clear that no two adjacent elements o f S* can be equal, it
remains to show that S* does not contain an alternating subsequence o f the form
~'. • • r/. • • ~'. • • r/. • • o f length s + 4. Assume to the contrary that S* does contain
such an alternation, and consider any four consecutive elements o f this alternation,
which, without loss o f generality, can be assumed to be ~7" • • r/. • • ~7" • • r/. Choose
points x, y e ~r and points z, w e r/ so that C passes through these points in the
order x, z, y, w. Cons ider the following five Jordan arcs:

flxy = an arc within the interior o f [~J* connect ing x to y;
/3~ = an arc within the interior o f]r/I* connect ing z to w;
f l= = the port ion o f C traversed in counterclockwise direction from x to z;
/3zy = the port ion o f C traversed in counterclockwise direction from z to y;
/3y,~ = the port ion o f C traversed in counterclockwise direction from y to w.

Note that/3=,/3~y,/3~w are pairwise nonintersecting and that they also do not
intersect/3xy,/3z~. We claim that fl~y a n d / 3 ~ must intersect one another. Assume

On the General Motion-Planning Problem with Two Degrees of Freedom 501

f

iw Byw

Deformed 1o

#xz /~zy #yw
~T ,r y~ q

\ I //
\ / k /

Bxy /gzw

Fig. 4. Illustration of the proof of Lemma 3.3,

the contrary, and consider the planar graph G composed of these five arcs as
edges. Clearly, G has three faces, and its edges all lie in the complement of the
interior of f. Thus f is fully contained in just one of these faces. Moreover, as
/3 = fl~z w/3...,, w flyw is traced from x to w, all points lying on the left side o f /3
sufficiently near it belong to f. By deforming the plane we may assume that
lies on the x-axis, with x, z, y, w appearing along it from left to right in this order,
that the portion of the upper halfplane sufficiently near ~ is contained in ~ that
the two arcs/Jx,, and/3~, emanate downward from the respective points y and z,
and that the portions of these arcs within sufficiently small neighborhoods of
these two respective points are just straight vertical segments; see Fig. 4.

Let a and b be two points in the relative interior of/3~,/3~.~, respectively, let
a', b' be two corresponding points lying below and very close to a, b, respectively.
By the properties of G, neither a' nor b' lies in the face of G containing f
Moreover, if a' and b' are chosen sufficiently near /3, the straight segment
connecting a' to b' will intersect each of/jxy,/jzw in exactly one point. This easily
implies that a ' and b' both lie in the same face ~ of G. Consider the closed
Jordan curve t3" traced as we move from a to a' along a short segment, from a'
to b' along a path that connects these points in ~, from b' to b along another
short segment, and finally from b to a along/3. It is easily checked that points
along /3~w slightly after z lie on one side of /3* and points on that curve just
before w lie on the other side of/3*. Thus/3~w has to intersect/3", which however
is impossible because /3* is contained within ~ w/~, which is openly disjoint
from/3~,.

This shows that each quadruple of consecutive elements in our alternation
induces at least one intersection point between the corresponding arcs /3~y c ~"
and/jzw c r/. Moreover, it is easily checked that for any pair of distinct quadruples
of this type, either the two corresponding subarcs of the form/3~y along ~ are

502 L.J. Guibas, M. Sharir, and S. Sifrony

disjoint, or the two subarcs fl~w along -q are disjoint. Thus all these intersections
must be distinct. Since the number of such quadruples is s + 4 - 3 = s + 1, we
obtain a contradict ion, which completes the p roof of the lemma, and thus also
o f the theorem. []

Remark. It has been proved recently in [SS5] that if the curves y, in F are closed
Jordan curves, or Jordan arcs unbounded in both directions, then the complexity
o f a single componen t o f A(F) is at most O(A~(n)).

Remark. Applying our theorem to the case where each % is a line segment, we
obtain an upper bound of O (A 3 (n)) = O(nc~(n)) on the complexity of a single
componen t of A(F). The results o f [WS] and [Sh] imply that this bound is tight
in the worst case. This special case of the theorem has already been established
in [PSS].

4. Calculating a Single Component in an Arrangement of Curves

In this section we show how to calculate a single componen t f in an arrangement
o f a collection F o f n Jordan arcs ~/1,. • -, ~/,, having the property that no pair
o f them intersect in more than s points. Our algorithm runs in time
O(As+2(n) log 2 n) and is thus close to linear. We assume a model o f computat ion
involving infinite-precision real arithmetic, in which s tandard operat ions involving
one or two curves in F are assumed to take constant time. Moreover, since our
technique is based on line sweeping, we assume that the shape o f each curve in
F is relatively simple and not too "wiggly." Specifically, we assume that each
curve in F has at most t points o f vertical tangency, for some fixed constant t,
so that we can break it into at most t + 1 Jordan arcs that are mono tone in the
x-direction. Thus, in the remainder of this section we assume each y ~ F to be
x -mono tone (this addit ional condit ion is satisfied in most applications; in par-
ticular, it holds for curves that are algebraic o f a fixed maximal degree). Also,
we assume that the curves o f F are in general position, so that each intersection
o f a pair o f these curves is either at a c o m m o n endpoint or is a transversal
intersection at a point in the relative interior o f both. We also assume that no
two intersection points or endpoints lie on the same vertical line, so as to simplify
the description o f our line-sweep algorithm (none o f these assumptions are
essential, and simple modifications of our algorithm will make it work also in
the presence o f degeneracies). Typical operat ions that are assumed to take
constant time are: (a) find the intersection points between a pair of curves in F;
(b) find the intersection between a vertical line and a curve in F.

The algorithm that we seek thus receives as input a collection F of n Jordan
arcs (or closed curves) with the above properties, and a point x not lying on any
o f these curves. Its output is a discrete representat ion of the connected component
f o f the ar rangement A(F) containing x. The representat ion that we use is the
collection o f the connected components o f the boundary o f f, each given as a
circular list o f subarcs and vertices appear ing along that boundary component

On the General Motion-Planning Problem with Two Degrees of Freedom 503

in counterclockwise order. The algorithm extends the technique in [EGS] for the
calculation of a component (actually of many components simultaneously) in an
arrangement of line segments.

The high-level description of our algorithm is quite simple. We use the follow-
ing divide-and-conquer technique. We split F into two subcollections F, , F2 of
roughly n/2 curves each, calculate recursively the components f~,f2 of
A(F~), A(F2), respectively, that contain x, and then "merge" these two com-
ponents to obtain the desired component f. Note t h a t f is the connected component
of f~ c~f2 containing x. However, it is generally too expensive to calculate this
intersection in its entirety, and then select the component containing x, because
the boundaries of f~ and f2 might intersect in many (quadratically many in the
worst case) points that do not belong to the boundary of f , and we cannot afford
to find all of them.

The set-up for the merge step is as follows. We are given two connected (but
not necessarily simply connected) regions in the plane, which we denote respec-
tively as the red region R and the blue region B. Both regions contain the point
x in their interior, and our task is to calculate the connected component f of
R c~ B which contains x. The boundaries of R and B are composed of (maximal
connected) portions of the given curves in F, each of which are denoted in what
follows as an "arc" (or "subarc") .

For technical reasons that are explained below, we extend this task as follows.
Let P be the set containing x and all endpoints of curves of F which lie on the
boundary of either R or B. Clearly, P contains at most 2n + 1 points. For each
w e P let fw denote the connected component of R c~ B which contains w (these
components are not necessarily distinct). Our task is now to calculate all these
components (but produce each distinct component just once, even if it contains
several points of P). We refer to this task as the red-blue merge. (The algorithm
given below actually works in more general i ty--R and B can be the union of
several connected regions, and P can be an arbitrary (finite) collection of points,
as long as it contains all the endpoints of the curves in F which lie inside B, R
as above.) We call the resulting components fw purple regions, as each of them is
covered by both the red and the blue region. An illustration of this merge is
shown in Fig. 5.

The major technical result on which our algorithm relies is that the overall
complexity of these purple regions is small, so that it is not expensive to produce
all of them. This is a consequence of the following extension of the combination
lemma of [EGS]; it yields a somewhat weaker bound than that obtained in [EGS],
but it suffices for our purpose.

4.1. The Combination Lemma for Arrangements of Curves

The combination lemma that we establish in this subsection is somewhat stronger
than the version needed for our red-blue merge. We first introduce a few notations.
Let R~ , R,, be a collection of m distinct faces in an arrangement of a collection
F~ o f " r e d " Jordan arcs, and let B1, • • . , Bn be a similar collection of faces in an

504 L .J . Guibas , M. Sharir, and S. Sifrony

\
\
\
\

!
/

/

Fig. 5. The r ed -b lue merge.

arrangement of a set Fb of "blue" Jordan arcs (again, each pair of arcs from
Fr u Fb are assumed to intersect in at most some fixed number s of points). Let
P = { P l , - - - , Pk} be a collection of points so that each p~ c P belongs to one red
face R,,, and to one blue face Bn,. Let E~ be the connected component of R,,. c~ B,,
containing p~ (i.e., E~ is the face of the combined arrangement ofFr u Fb containing
p~). Then we have:

Lemma 4.1 (The Combination Lemma for Arrangements of Curves). The total
complexity of all the regions E~ is O(r + b + k), where r and b are the total number
o f arcs composing the boundaries o f the red regions and the blue regions, respectively.

The first step in the proof is, as in [EGS], to consider the special case of a
single red face R, a single blue face B, and a single point p belonging to B c~ R.
Let E be the connected component of B n R containing p. Let u (resp. v) denote
the number of connected components of OR (resp. OB), and let r (resp. b) denote
total complexity, i.e., number of subarcs of the original curves along the boundary,
of R (resp. B). We assume that the red and blue arrangements are in general
position so as to avoid degeneracies in the structure of R, B, and E, such as
tangencies or points of triple intersection of curves along their boundaries. This
assumption is made for the sake of exposition; a more refined version of the
analysis given below can handle these degeneracies.

[,emma 4.2. Under the nondegeneracy assumptions, the complexity o r E is at most
(s + 3)(b + r + 2u + 2v - 4t), where t is the number o f connected components of oE.

Proof We first describe the general outline of the proof, and then fill in the
details of each step. We analyze each component ~ of the boundary of E
separately, by tracing the sequence of red arcs and the sequence of blue arcs in
the Qrder they appear along ~. In step (1) below, an extension of the "consistency
lemma" (Lemma 3.2) shows that the sequence of red arcs along ~ is consistent
with the sequences of red arcs along each component of the boundary of R, and

On the General Motion-Planning Problem with Two Degrees of Freedom 505

similarly for the blue sequence. We notice that a single red arc from R can be
repeated several times along ~. However, in step (3) we argue that these repetitions
must be interspersed with blue arcs which "advance" along the boundary of B.
Although it is possible for a single red arc to be interspersed with a single blue
arc for a while, after at most s +3 alternations at least one of them has to be
replaced by another, as in the proof of Lemma 3.3. Another complication that
can arise is that ~ may visit several components of the boundary of R or of B,
so that some of them are visited more than once. We show in step (2) that the
duplication of arcs along ~ that may result from this effect is only linear in the
number of components. Altogether these arguments imply that the complexity
of E is linear in the input size, as asserted in the lemma.

To begin the proof, let us fix a single component sr of aE, and assume, without
loss of generality, that it is the exterior component. Trace ~ in, say, counterclock-
wise direction (with E lying to the left), and let S = S(= (s~ , . . . , Sq) be the
(circular) sequence of the subarcs of aR, aB as they appear along ~'. Clearly, the
sum of the lengths of S s, over all connected portions ¢ of aE, is the complexity
of E.

The proof consists of the following steps:
(1) Let a be a subarc of, say, aR which appears along ¢. Let a l , a2 be two

connected portions of a c~ ¢ consecutive along a, such that when a is traversed
with R lying to its left, al precedes a2. It follows from Lemma 3.2 that a~ and
a2 are also adjacent along ~', in the strong sense that the portion of ¢ between
a~ and a2 does not intersect the connected component of aR containing a.

We use the notation "the portion of S between si and sj" to mean the
subsequence (si+l , sj_~) if i < j , or the subsequence (si+l, •. •, Sq, s ~ , . . . , sj_~)
i f j < i. The property stated above then amounts to saying that if si = s t are two
consecutive appearances of some red arc a in S, with the first appe, arance
preceding the second one along a, then either the portion of S between s~ and
sj consists of blue arcs exclusively, or, if it contains red arcs at all, they must all
belong to other components of oR.

(2) Let S (r) be the (circular) subsequence of S obtained by deleting from S
all the blue subarcs, and let S(r) be the sequence obtained from S (r) by further
deleting, from left to right, each element which becomes equal to the element
immediately preceding it. The sequences S ~b) and gcb) are defined symmetrically
for the blue parts of S. See Fig. 6.

We claim that g(r) is of length at most r~+2u~-2, where u s is the number of
distinct connected components of OR appearing along ~', and r s is the total number
of red subarcs composing these u s components.

(Note that)"su¢ = u, and ~s rs = r, since no component of OR can appear along
two distinct components of dE.)

To prove the claim, assume a is a red subarc appearing more than once in
S(~). By (1), all elements of S(~) lying between two consecutive appearances
~I~), gJr) of a (arranged in this order along a) must belong to other components
of OR. We charge the second appearance of a to the component of oR containing
glr+)~. Let o "(r) be the (circular) sequence of the connected components of OR in
the order they appear along ~ (so that no two adjacent elements of tr (r) are equal).

506 L.J. Guibas, M. Sharir, and S. Sifrony

/ ° \

! i

J~
i /

I

S = (" . . a c t a a a [3 a b g d e ~ J & ~ , q g f ~ e d g b ~ c . . ,)

S (r) = (. . . a a a a b d e f s g ~ e d b c . . .)

"~o (. . . a ~ e] ~ e a ~ , e . . •)

r{=7 u ~ = 3 1$ "¢°l=r{+2u{-2=11

Fig. 6. The sequences S, S (~), and St~

As in the proof of the Combination Lemma of [EGS], it is fairly easy to show
that cr ~r) is a circular (us, 2)-Davenport-Schinzel sequence (i.e., it is composed
of uc symbols, no two adjacent elements of it are equal, and it does not contain
a subeycle of the form (a . • • b. • • a . • • b)). Hence its length is at most 2u~-2
(see [ES] for a proof that proceeds by induction on the number of symbols).
Moreover, it is easily checked that the charging scheme described above never
charges an element of or ~r) more than once. Hence the total number of duplications
of elements in g~r) is at most 2u~-2 , from which the claim follows.

In a fully symmetric manner, it follows that the length of ~b) is at most
b~+2vc-2 , where vg, be are defined analogously as the number of connected
components of OB appearing along ~, and the number of blue subarcs composing
these components.

(3) We now have to account for duplications of adjacent elements in S ~r~, S Ibm,
which have been erased in ~r) , ~cb), respectively. Consider S ~ . It consists of
(maximal) runs, where each run is a contiguous subsequence of identical elements,
and is represented as a single element in S~). (Figure 6 shows two such nontrivial
runs--(aaaa) and (gg).) Let p be a run in S ~) of the single subarc a having
length/. We use the following charging scheme. For each element s~ "~ of p, other
than the first element, we examine the portion ~ of S ~b) which appears in S
between s~_)~ and s~ ~). If it consists of more than one element, then they must all
be distinct, and we charge one token to the (element of g~b) corresponding to
the) second element of this portion. For example, in Fig. 6, the portion of S ~b~
between the two appearances of g is (Oq), so we charge the duplication of g to

On the General Motion-Planning Problem with Two Degrees of Freedom 507

the corresponding element rl o f ~(b~. Otherwise 6 consists o f a single element
(b) If s~ ~ :~ _(b) si . T ~j_~, then again we charge one token to the corresponding element

of g(bt Otherwise no charge is made. In Fig. 6, the run (a a a a) has the following
portions o f S (b) between its e l e m e n t s ~ (a) , (at), and (/3). Thus the third element
of this run does not cause any charge to be made; the fourth element charges/3
(in g~b)), and the second element charges a (assuming a does not appear again
on dE before its displayed portion). We use a symmetric charging scheme to the
runs o f S (b~.

Consider now the full sequence S. An element o f S is said to be charged if it
is a charged element in either S(*~ or ~tb). It is easy to check that no element of
S(') or o f ~q(h) is charged more than once, so the total number o f tokens charged
is at most

I g(~'l + IS(b)l ~ r~ + b e + 2u~ + 2v~ - 4.

Consider a port ion S* of S between two consecutive charged elements si and sj.
Assume that this port ion contains more than one element in some run, and assume
that the r ightmost such duplicat ion occurs within a run o f some arc a in, say,
S (r). (In Fig. 6, consider the port ion S* = (a a a) .) Let Sk, = Sk2 = a be this r ightmost
duplication. Since no charge was made within S*, there must occur a single blue
arc a between Sk, and Sk2, which furthermore is not the first in a run of S (b). Let
st, = st2 = a be the two consecutive occurrences o f a within its run in S (b) so that
12 = k l + 1 . I f s~, also lies within S*, then again we must have l~ = k~ - 1, so that
there is a single appearance o f a between these two appearances o f a, and this
appearance is also not the first in its run. Cont inuing backward in this manner,
it is easily verified that either the first element o f the run o f a or the first element
of the run o f a must lie outside (i.e., before) S*, and that a and a are the only
elements being dupl icated in consecutive places in S (r) or in S (b) within S*. Now,
as in Lemma 3.3, the max imum number o f alternations o f the arcs a and a along

is s + 3, so that at most s + 2 alternations can occur within S*.
In other words, we have shown that the excess o f S ~r) and S (b) over ~q~r~ and

~(b~, between any two adjacent charged elements, is at most s + 2 . Since
the number o f charged elements is at most r ~ + b ~ + 2 u ¢ + 2 v ~ - 4 , it follows
that the total length o f S is at most (s + 3) (r ~ + b ¢ + 2 u ~ + 2 v ¢ - 4) . Summing
over all componen t s ~ o f OE, we obtain that its total complexi ty is at most
(s + 3) (r + b + 2u + 2 v - 4t) , as asserted. []

Remark. Compar ing our analysis with that of the Combina t ion Lemma of [EGS] ,
we see that our b o u n d is not the best possible, at least for the case o f straight
segments. It would be nice to sharpen our bound , if possible. However , our
result implies that the complexi ty o f E is O (r + b) , which is sufficient for our
purposes.

Proof o f the Combina t ion L e m m a . The p roof is a fairly straightforward (and
SOmewhat simplified) adapta t ion o f the p roof o f the combinat ion lemma for line
segments given in lEGS] . For the sake o f completeness we describe the modified

508 L.J. Guibas, M. Sharir, and S. Sifrony

proof with some detail. Fix a blue face B = B j which contains k i of the given
points, say P l , . . . , Pk,. Let ~'l , ~1~ be the distinct connected components of
8B. For each of these points p~ let E~ denote the connected component of B c~ R,,
which contains Pi, as defined above. Traverse each ~,~ and partition it into
connected portions 8 so that each such portion intersects the boundary of only
a single region Ei (and so that two adjacent portions intersect distinct such
regions); note that in general the endpoints o f the portions 8 are not uniquely
defined. We define a plane embedding of a planar graph G as follows. The
vertices of G are the points p i , . . . , Pk, and additional l~ points ql , qt,, so that
qi lies inside the connected component Hi of R 2 - B whose common boundary
with B is ~i- For each portion 8 lying on some ~,, and intersecting some OEi, we
add the edge (q,,,,p~) to G, and draw it by taking an arbitrary point in /~ c~OEi
and connect it to p~ within E~ and to qm within Hm. The connectedness of each
E~ and each Hm implies, as in [EGS], that we can draw all edges of G so that
they do not cross one another. It follows from the definition of the portions 8
that in this embedding of G each face is bounded by at least three edges (note
that G can have multiple edges between a pair of vertices). Thus by Euler's
formula the number of edges in G, and thus the number of portions 8, is at mo~t
3(kj +/s). Figure 7, borrowed from [EGS], illustrates these arguments for the case
of segments.

We next define, for each p~, a modified "b lue- red" region B* containing p~
as follows. I f R = R,, does not intersect OB at all, then we take B* = R. Otherwise
we start at some point z on OB nOE~, and traverse the portion B of OB containing
z (as defined in the preceding paragraph), with B lying to the left, until its last

i / "X "" 5 : :

/- \ ; .~. , ~ : ~ .~ ./ ,, /',
I , . ' . , ' ,

/ ~'* / /1 |

-- / , , £ } .-.',.,

Fig. 7. Bounding the number of boundary portions using planarity.

On the General Motion-Planning Problem with Two Degrees of Freedom 509

Fig. 8. A "'blue-red" region B*.

intersection with OE~. Then we turn along OR into B and follow OR until its next
intersection with OB. Since this intersection necessarily lies in aE~, we have landed
on another portion S' ofaB which intersects aE~, and we follow 8' in the direction
which keeps B to our left, until its last intersection with OE~, and continue this
way until we get back to the starting point z. This yields one component of the
boundary of the desired blue-red region B*. I f in this process we have not
encountered all portions 8 of OB intersecting aE~, we pick another starting point
on one of the portions we have missed, and repeat the tracing from that point.
Finally, we add as components of aB* all components of aR which bound Ei
but which are not intersected by aB at all (and are thus contained in the interior
of B). Tracing all components of the boundary of OB* in this way yields a
well-defined connected region bounded between these boundaries. Figure 8 shows
an example of such a blue-red region.

It is easily checked that B* contains Ei and is contained in B. We define, in
a completely symmetric manner, a modified " red-b lue" region R* around each
pi. It follows that the connected component of B* n R* which contains p~ is
exactly E , Moreover, assuming that no two points p , pj give rise to the same
intersection face E, it is easy to check that aB* n Ej = OR* n Ej = O for any i # j .
In other words, no arc of B* or of R* can appear on the boundary of another
E~ (with Ej lying on the same side of that arc).

We are now in a position to apply Lemma 4.2. Let

b~ = the number of blue arcs of B*,
r~ = the number of red arcs of R*,
ui = the number of connected components of OB*, and
v~ = the number of connected components of OR*.

By construction, all such components actually appear along aE~. Since each arc
of OE~ is either a portion of a blue arc of B* or a portion of a red arc of R*, a
slight modification of the proof of Lemma 4.2 (in which we only need to account
for duplications of blue arcs of B* and of red arcs of R*) implies that the
COmplexity of E~ is at most O(b~ + r~ + u~ + v~). Summing these inequalities over

510 L .J . Guibas , M. Sharir, and S. Sifrony

all points p,-, we conclude that the overall complexity of the regions Ei is at most

To bound Y.i hi, consider all blue-red regions B* contained in one original blue
region Bj. Then ~p, cB, bi is bounded by the number of arcs of Bj plus a term
proportional to the number of subarcs 8 into which aB) is partitioned. By the
preceding argument, this additional term is O(k~ + !i) where k~ is the number of
points p~ in B~, and lj is the number of connected components of OBj. We thus
obtain, summing over all blue faces Bj,

~ b i=O kj+ .
i I j = l

But ~ kj = k, and the total number of components of the blue faces is clearly
bounded by their total complexity b. Hence

b, = O(b+ k). (ii)
i

Repeating this counting for the red faces we obtain

r, = O(r+ k). (iii)
i

Finally, ~ u~ (and ~ v~) can be bounded in a similar manner, noting that for
each original blue face B~, the sum)~p,~B, u~ is bounded by lj plus the number of
subarcs 6 along OBj, so that

• j i j = l

and similarly

~. v, = O(r+ k). (v)
i

[3 Combining inequalities (i)-(v) completes the proof of the lemma.

4.2. The Red-Blue Merge

We now continue the description of our red-blue merge. Let ~r be the total
number of vertices in the purple regions. The combination lemma, Lemma 4.1,
implies that zr = O (b + r + n) = O(b+r) .

To facilitate our merge, we require certain information to be precomputed
and available for each collection. Specifically, we require that the red region R
be subdivided into x-monotone subregions by drawing vertical rays up and down
from each point w in P n R, till they meet an edge of R (we call the resulting
vertical segment through w the red vertical divider at w, and denote it by p(W)).
It is easily checked that this does produce a decomposition of R as desired. See

On the General Motion-Planning Problem with Two Degrees of Freedom 511

p(w)

/

Fig. 9. Vertical dividers.

Fig. 9 for an illustration. Similar partitioning is required for the blue region,
using blue vertical dividers (denoted as /3(w)), thereby obtaining a similar
collection of blue x-monotone subregions.

These monotone decompositions of the red and blue regions are easy to obtain
using a straightforward vertical line sweeping, in time O((b + r) log(b + r)). Note
that a particular monotone subregion may terminate on the left or the right either
because of a point of P, or because of a locally x-extremal vertex of the correspond-
ing region. Our algorithm will produce a similar partitioning of the purple regions
into monotone subregions, which we call the purple subregions.

We calculate the purple subregions by sweeping with a straight line. Notice
that purple subregions start or end at x-coordinates associated with either a point
of P, or with an x-extremum of the red or blue region, or with a red-blue
intersection. In a left-to-right sweep we discover the portion of each purple
subregion that is to the right of the leftmost point in P giving rise to it. Then
afterward, in a right-to-left sweep, we get the portion of each purple subregion
to the left of the rightmost point in P giving rise to it. Together, the two sweeps
discover all the purple subregions.

Our algorithm will thus also attempt to construct purple regions incident to
each blue or red endpoint (provided that the endpoint is also contained in the
opposite-colored region--otherwise no such purple region is to be generated),
even though such a purple region might not belong to the desired purple com-
ponent f= fx . That is, some of these purple subregions might be disconnected
from f (see Fig. 5 for an example). Intuitively, the reason for calculating these
extra purple subregions is that we do not know a priori the shape o f fx , which
may be very "wiggly." If we use only the point x to "trigger" the generation of
purple subregions, we may need to sweep back and forth many times until we
obtain the entire fx. However, using all endpoints of the red and blue arcs as
triggering events is easily seen to yield, in just two sweeps as above, all the
subregions of which fx is composed, and, as noted, perhaps a few extra subregions

512 L.J. Guibas, M. Sharir, and S. Sifrony

as well. However, we will be able to detect all spurious subregions at the end of
the algorithm, as follows. Consider the graph whose nodes are the final purple
subregions, and whose edges connect pairs of purple regions adjacent along some
vertical divider. Then a simple breadth-first search on this graph, starting from
the purple subregion that contains x, will yield the desired component f ; all the
unreachable purple subregions will simply be discarded. (Note also that the size
of the additional "fake" purple regions is at most O(b + r) as follows easily from
Lemma 4.1.)

We describe below only the left-to-right sweeping step; the right-to-left is
symmetric. We start this sweep by constructing a priority queue, ordered by
x-coordinate, which contains all the vertices appearing along the boundaries of
the given red and blue regions, together with the point x. We sweep over the red
and blue subregions separately, and at the same time will also sweep over the
purple subregions, and detect (portions of) them as we sweep. We speak of
the red, blue, and purple planes, respectively. The purpose of these separate
sweeps is to avoid having to process "uninteresting" red-blue intersections, i.e.,
intersections which do not occur along the boundary of a purple region.

Every time we encounter a point p of P, we start one or two new purple
subregions in the purple plane. At such an event we create, for each new purple
region, two new purple "scouts": the upper scout and the lower scout. It is the
job of these two scouts to walk along the upper and lower boundaries of the new
purple regions, respectively. We describe the behavior of the upper scout u of
one such region; the lower scouts behave symmetrically. See Fig. 10,

The upper scout u starts on a red or blue arc, as determined by the closest of
the upper endpoints of the vertical dividers p(p),/3(p). The scout u moves right
along that arc following the sweep line, but it needs to watch out for certain
events that might influence the upper purple boundary of its region. Without loss
of generality, we assume that u currently sits on a red arc. Figure 11 illustrates
some aspects of the watching process.

The scout u has first to look up to the nearest blue arc/3 (note that since u
is "purple," the entire vertical segment between u and/3 must be contained in

o

y
j J

Fig. 10. Introduction of scouts.

On the General Motion-Planning Problem with Two Degrees of Freedom 513

U ~ O u

x

idle

/ /

/

/

I

(a)

V

V

u starts watching P

v starts watching

(b)

U

J

u

v starts watching [3

(c)

Fig. II .

u starts watching B

u - becomes idle

(d)

Several instances of the watching process.

514 L.J. Guibas, M. Sharir, and S. Sifrony

B). The reason is that the blue boundary above u might at some future point
drop below the red boundary the scout is currently following. If this were to
occur, then u would have to follow the blue boundary, because now it delimits
the purple subregion. However, there might be another scout v already watching
that blue arc/3 from below. In that case only the highest of u and v needs to
watch/3 from below: the other scout can rest, since it is certain that the higher
scout is "protect ing" it from/3. See Fig. 1 l(a). In more technical detail, watching
a blue arc /3 means timt u has to determine whether the arc p it lies on and 13
intersect to the right of the sweep line, and, if so, add the leftmost such intersection
as an event into the priority queue of the sweep (each of these operations, except
for the priority queue insertion, is assumed to take constant time in our model
of computation). In addition, if the sweeping process reaches the right endpoint
of either p or/3, which is not an endpoint of the whole curve (from F) containing
that arc, u has to retest for a potential intersection between the new pair of arcs,
and, if it exists, add the leftmost such intersection to the queue. When such a
red-blue intersection is eventually swept across, u has to move to the blue arc
t3, and to begin to watch the red boundary above it (starting with p). See Fig.
l l (b) . (Note that the blue boundary above u, or the red boundary it currently
follows, may also change discontinuously if the sweep reaches the endpoint of
the corresponding full curve. When this happens, one of the things we have to
do is to check whether the watching assignment of some purple scout has to
change, and to inform the scout of this change. See below for more details.)

The scout u has also to look down to its lower partner and check for their
(ieftmost) possible intersection (to the right of the sweepline), because when the
two of them come together the current purple subregion must end. This, of course,
might happen earlier, if another point of P is encountered between these
scouts.

The key propert:¢ here is that each blue or red arc is watched (at any given
time) by at most one upper scout and at most one lower scout, who sit on arcs
of the opposite color. But these assignments of who watches over whom can
change.

One way that can happen is that a purple region can end because its two
purple scouts come together. This will occur, for instance, when the rightmost
vertex of a red subregion lies inside a blue subregion. In this event, the two
purple scouts of that purple subregion are eliminated. However, some transfer
o f watching responsibility may now be indicated. I f the upper scout u was
watching a blue arc/3, then we must consult the next upper purple scout down
from u, say v. I f v is currently idle, because the next higher blue arc above v is
the same arc/3 watched by u, then u transfers to v the responsibility of watching
ft. See Fig. l l (c) . I f v is already watching another blue arc, then we leave it
undisturbed, as its blue arc must be below/3.

Another way the two purple partner scouts can come together is when a purple
region ends at a red-blue crossing. Any transfers of watching responsibility that
need to happen now can be dealt in an entirely analogous way. I f a purple region
ends because another point p of P appears between the scouts, then again the

On the General Motion-Planning Problem with Two Degrees of Freedom 515

two scouts are eliminated, but in this case they will generally be replaced by new
scouts spawned by p.

The reassignment of watching responsibility that occurs when we sweep
through a point p of P is, in more detail, as follows. At this time zero, one or
two new purple subregions are created. Assume for simplicity that only one new
subregion arises, and let u be its top scout. This scout u finds the opposite-colored
arc e it has to watch by searching through the list of arcs of that color currently
intersecting the sweepline (and represented as a balanced binary tree). But then
u also has to consult the upper purple scout u* (resp. u-) lying directly above
u (resp. below u). If u + is watching the same e (more precisely, if u + lies below
e), then u remains idle. Otherwise u begins to watch e and checks whether u-
is also watching e, in which case u- becomes idle. See Fig. l l (d) . Similar but
somewhat modified actions are taken when two new purple regions are spawned
at p.

In further detail, suppose p is an endpoint of a red original curve; then we
check whether p also lies in the blue region B. If so, we start one or two new
purple regions incident to p (and lying to its right), and proceed with scout
creation and watching reassignments as above; otherwise no new purple region
is to be generated at p. In either case, if the vertical divider p(p) extends both
up and down from p (i.e., p is a point of "vertical tangency" on the boundary
of its region), then some red boundaries currently watched by a purple scout
may change discontinuously. For example, if the two red arcs e~, e 2 incident to
p extend to the right of p (with e~ lying below e2), then we search through the
list of purple regions along the sweepline to find the upper scout u lying directly
below p, and, if it lies on a blue arc, tell u to start watching e~, unless it is
watching a red arc lying below p. If u lies on a red arc, then if it is idle we leave
it undisturbed; if it is watching a blue arc lying below p we again leave it
undisturbed; however, if u watches a blue arc/3 above p, then it is easily checked
that p must also lie within the blue region B, and consequently two new purple
regions will be created at p, new purple scouts will be spawned along 81, e2, and
the (upper) scout along el will relieve u from the responsibility of watching fl,
as explained above. Similar or symmetric actions are taken in all the other
subcases.

Finally, some transfer of watching may be required at a red-blue crossing
lying, say, on the top boundary of some purple region. Suppose the corresponding
top purple scout u was lying on a red arc p just before the intersection, and
afterward it moves along a blue arc/3. As noted above, u now has to start watching
p, but we also need to check whether the top purple scout v lying directly below
u has to change the arc it is watching, or become idle. Details are similar to the
cases considered above, and can be easily worked out by the reader.

Our scout watching scheme is designed in such a way that when a boundary
of some purple subregion begins to traverse a new arc, only a constant number
of scouts have to be told about it. This implies that handling such an event
requires only a constant number of operations, including tree searches and priority
queue updates, and thus takes only logarithmic time.

516 L.J. Guibas, M. Sharir, and S. Sifrony

Note that this procedure not only produces the purple regions, but also their
x-monotone decompositions into purple subregions, which will be handy for
further processing. However, some preprocessing might still be required before
subsequent merges (call them purple-violet) can be performed. This is because
an endpoint p of some purple original curve may also lie within the violet region,
in which case we will need to find the violet vertical divider at p, and this
information in general is neither part of the "purple" data nor part of the "violet"
data, and can be obtained only by combining information from these two
collections prior to their merge.

Let us now analyze the complexity of this process. The purple scouts simply
trace the boundaries of the purple regions. Each such scout needs to schedule
into the priority queue possible intersection events between the arc it is currently
sitting on, and the arc it is watching (including the possible intersection between
the current top and bottom arcs of the same purple subregion). Note that new
events are scheduled when we sweep either through a point in P, through a blue
vertex, through a red vertex, or through a red-blue crossing (which is a vertex
of a purple subregion). Moreover, at each such point only a constant number of
new events are scheduled. Thus the total number of events ever scheduled is
proportional to the total input and output size, which, by Lemma 4.1, is O(b + r).
Thus each event costs O(log(b+r)) time to insert into (and delete from) the
priority queue. The additional operations of our procedure involve updating the
red, blue, and purple lists along the sweepline, of creating and eliminating scouts
(i.e., purple subregions), and of reassigning watching responsibilities. It is plain
that we need to perform only O(b+r) such operations, and that each can be
carried out in O(log(b + r)) time (because the maximum size of the red, blue,
and purple lists along the sweepline is at most O(b + r)). The final step of detecting
"true" purple subregions (those that are connected to the "anchor" point x),
and of eliminating the other subregions, can be done by a simple graph searching
(as explained earlier) in time linear in the number of purple subregions produced
by the algorithm, i.e., in O(b+r) time. Thus our procedure runs in overall
time O((b + r) log(b + r)). Moreover, in our application each of the regions
R and B is a single connected component in an arrangement of n/2 Jordan arcs
(or curves), each pair of which intersect in at most s points. We have thus
shown:

Theorem 4.3. Given two connected "red" and "blue" regions R, B, both containing
a given point x, whose boundaries are composed respectively of r and b subarcs of
some collection of Jordan arcs (or curves), no pair of which intersecting at more
than s = O(1) points, we can calculate the connected component f of the intersection
R n B which contains x, in time O((r+ b) log(r+ b)), under the assumptions made
at the beginning of the section concerning the given curves and the model of
computation.

The time bounds given above are for the merge step of our algorithm. Using
Theorem 3.1, we thus obtain, by straightforward calculation.

On the General Motion-Planning Problem with Two Degrees of Freedom 517

Theorem 4.4. Given a collection F of n Jordan arcs (or curves), having the property
that no pair of them intersect in more than s points, and also satisfying the conditions
made above, we can calculate the connected component of A(F) containing a specified
point x, in time O(A~+2(n) log 2 n) (or in time O(A~(n) log 2 n) for closed Jordan
curves).

Remarks. (1) This result follows and extends the previous algorithm given in
[EGS] for the case of line segments. It shows that the red-blue merge is a versatile
technique of a purely topological nature, which can be applied to fairly general
classes of curves.

(2) Our version of the combination lemma (Lemma 4.1) is weaker than the
corresponding lemmas for lines or for line segments, as given in [EGS], in that
the bound it produces involves the red and blue complexities r, b with coefficients
greater than 1 (namely, s+3) . This does not allow us to apply the lemma in a
repeated recursive fashion (as has been done in [EGS]) to obtain sharp upper
bounds on the complexity of many connected components in an arrangement
A(F) as above. However, assuming that a sharp bound on this complexity can
be obtained by other means, our red-blue merge can be easily extended to obtain
an algorithm for calculating m such components, each specified by a given point
within it, in time comparable with their total worst-case complexity. Recently,
[CEG*] have obtained sharp upper bounds for the complexity of m faces in
arrangements of n circles, or of n unit circles, or of n pseudolines (i.e., x-monotone
unbounded arcs, each pair of which intersects at most once). Using their bounds,
we can obtain the following results (we omit details of the solutions of the
resulting divide-and-conquer recurrences, which are based on random sampling
of the given collection of curves, and are very similar to those obtained in [EGS]).

Corollary 4.5.

(a) We can calculate m distinct faces in an arrangement of n unit circles in
(randomized) time O(m2/3-~ n2/3+2~ log n + n log 2 n) for any 8 > O.

(b) We can calculate m distinct faces in an arrangement of n arbitrary circles
in (randomized) time O(m3/5-~ n4/5+2n log n + n log 2 n) for any 8 > O.

(c) We can calculate m distinct faces in an arrangement of n pseudolines (under
an appropriate model of computation) in (randomized) time
O(m2/3-g n 2/3+2~ log n + n log 2 n) for any 8 > O.

(3) Concerning lower bounds, it is easy to establish an f l(n log n) bound by
reducing from sorting. We do not know of any larger lower bound. In particular,
we pose it as an open problem whether a component of A(F) can be computed
in time O(A~+2(n) log n). We note that an algorithm with such complexity exists
for the calculation of the lower envelope of the arcs in F [At], [HS].

(4) If the collection F consists of n closed Jordan curves, then we can use
our red-blue merge to calculate a single component of A(F) in time
O(as(n) log 2 n), making use of the bound obtained in [SS5], as mentioned at
the end of Section 3. In the special case s = 2, a simple adaptation of the algorithm
in [KLPS] yields an algorithm with that complexity.

518 L.J. Guibas, M. Sharir, and S. Sifrony

(5) Returning to the original motion-planning problem, the above procedure
will yield a single connected component of FP, provided this component is fully
contained in a single planar patch of the entire parametric space AP. If AP is
not planar, and the desired component C which contains the initial placement
Z "spills" over into more than one patch, we obtain C using the following
technique. Let AP~,. . . , APq be the planar patches which compose AP, and
assume that Z lies in AP1. We first calculate the component Co in AP~ containing
Z. If Co does not reach the boundary of AP~, then C = Co. Otherwise, we also
calculate all the unbounded components in each of the patches AP~. Assuming
that the number of patches is constant, and that each of the constraint curves is
broken into a constant number of connected subarcs, each lying within a single
patch, it is easily checked that the total complexity of all unbounded components
of the patches is O(As÷2(n)), and that they can all be calculated in time
O(hs+2(n) log 2 n), using the above algorithm. The desired component C is easily
seen to be the union of Co with certain portions of the unbounded components
within the patches. More precisely, as Co reaches the boundary of APt, C extends
into another patch, necessarily as a portion of the unbounded component within
that patch; similar "propagat ion" of C into further patches continues until the
whole of C is obtained. Clearly this tracing of C can be accomplished within
the above time bound.

Let us discuss a few applications of our results to some specific motion-planning
problems. As a first example, consider a line segment B = PQ free to rotate in
three dimensions about its endpoint P which is fixed at the origin. The motion
of B clearly has two degrees of freedom, and, assuming the obstacles that B has
to avoid are all polyhedral (with a total of n edges), we easily check that any
pair of constraint curves intersect in at most s = 1 point. Thus the complexity of
a single component of FP is O(na(n)), and can be calculated in time
O(not(n) log 2 n). (Note that in this case AP can be represented as the surface
of a sphere in three dimensions, or, alternatively, as the union of two planar
patches.)

As a second example, let B be a two-link arm PQR moving in the plane
(amidst polygonal obstacles) with the point P fixed at the origin. Here AP can
be represented by a torus, or by a union of four planar patches. By using tan(0J2),
tan(02/2) as the system parameters, it is easily checked that each constraint curve
is algebraic of (at most) fourth degree. Moreover, it can be shown that each pair
of constraint curves intersect in at most s = 2 points (on a single patch). It follows
that the complexity of a single component of FP is O () t a (n)) , and that it can be
calculated in time O(A4(n) log 2 n).

As a final example, consider the problem of coordinated motion planning for
two "planar Stanford arms" [FWY], [SSi], where each arm is a straight segment
PiQi free to translate through a fixed point Ci and also rotate about that point,
for i = 1, 2. We consider a special case of coordinated motion, in which the two
endpoints Q~, Q2 must be in contact with each other throughout the motion. This
problem has been studied in [FWY], who gave an O(n 2 log n) algorithm (where

On the General Motion-Planning Problem with Two Degrees of Freedom 519

n is the total number of obstacle corners and edges). A recent result in [SSi]
shows that the desired free space can be taken to be a single component in the
intersection of the two 2-D configuration spaces of the two separate arms. Since
each of these spaces has O(n) complexity [FWY], [SSi], a single application of
our red-blue merge yields the desired space in time O(n log n).

5. Conclusion

The results obtained in this paper provide a satisfactory solution to the general
motion-planning problem with two degrees of freedom. The problem is in a much
more confused state, however, when we consider problems with three degrees of
freedom. There, under assumptions similar to those made above, the complexity
of the entire FP is O (n 3) in general, although there are certain favorable cases
in which the complexity reduces to quadratic or near-quadratic. For example,
for a line segment moving in the plane amidst polygonal obstacles, the complexity
of FP is O(n 2) [LS2], [SIS]. For a convex k-gon moving in a similar environment,
the complexity of FP is O(knA6(kn)) [KS2]. (See also [Si2] for a few other
favorable instances of this sort.) However, for a nonconvex (e.g., an L-shaped)
polygon, the complexity of FP can be f~(n3), as is easily checked. As above, we
would like to conjecture that a single connected component of FP, which is all
we really need to compute, will have smaller, e.g., near-quadratic, complexity.
However, this appears to be a much harder problem, and is largely open. Some
progress was recently made on this problem for the special case in which the
surface patches bounding FP are n triangles in 3-space. It was shown in [PSI
that the complexity of a single component of their complement is at most
O(n3-1/49). This was improved in [AS] to O(n7/30l(n) 2/3 log 4/3 n) , where this
also bounds the total complexity of all nonconvex components. Another simplified
case is where instead of calculating the boundary of a component of the comple-
ment of the given constraint surfaces, we only want to calculate their upper or
lower envelope, i.e., the portions of these surfaces seen from a point at infinity
in the direction of the positive or negative z-axis. For triangles, it was shown in
[PS] that the complexity of their upper envelope is O(n2a(n)), and that this
bound is worst-case optimal. However, for arbitrary surfaces, even in this restric-
ted problem subcubic upper bounds are not known, except for a few special
cases noted in [SS5].

References

[ASS] P. Agarwal, M. Sharir, and P. Shor, Sharp upper and lower bounds for the length of
general Davenport-Schinzel sequences, Tech. Rept. 332, Comput. Science Dept., Courant
Institute, New York, 1987. (To appear in J. Combin. Theory Set. A.)

[AgS] P. Agarwal and M. Sharir, Red-blue intersection detection algorithms, with applications
to motion planning and collision detection, Proc. 4th ACM Syrup. on Computational
Geometry, 1988, pp. 70-80.

520 L.J. Guibas, M. Sharir, and S. Sifrony

[AS]

[At]

[BO]

[BZ]

ICE]

[CG]

[c1]

[CEG*]

[EG]

[EGHI*]

[EGH2*]

[EGP*]

[EGS]

[ES]

[FWY]

[HS]

[Ha]
[KSI]

[KS2]

[KLPS]

[LS1]

[LS2]

[Mul]

B. Aronov and M. Sharir, Triangles in space, or: Building (and analyzing) castles in the
air, Proc. 4th A C M Syrup. on Computational Geometry, 1988, pp. 381-391. (Also to appear
in Combinatorica.)
M. Atallah, Dynamic computational geometry, Proc. 24th IEEE Symp. on Foundations
of Computer Science, 1983, pp. 92-99. Also in Comput. Math~ AppL !1 (1985), pp. 1171-
1181.
J. L. Bentley and T. Ottmann, Algorithm for reporting and counting geometric intersec-
tions, IEEE Trans. Comput. 28 (1979), pp. 643-647.
B. Bhattacharya and J. Zorbas, Solving the two-dimensional findpath problem using a
line-triangle representation of the robot, J. Algorithms 9 (1988), pp. 449-469.
B. Chazelle and H. Edelsbrunner, An optimal algorithm for intersecting line segments
in the plane, Proc. 29th IEEE Syrup. on Foundations of Computer Science, 1988, pp. 590-600.
B. Chazelle and L. Guibas, Visibility and intersection problems in plane geometry, Proc.
1st ACM Symp. on Computational Geometry, 1985, pp. 135-146.
K. Clarkson, Applications of random sampling in computational geometry, I I, Proc. 4th
A C M Symp. on Computational Geometry, 1988, pp. 1-11.
K. Clarkson, H. Edelsbrunner, L. Guibas, M. Sharir, and E. Welzl, Combinatorial
complexity bounds for arrangements of curves and surfaces, Proc. 29th IEEE Syrup. on
Foundations of Computer Science, 1988, pp. 568-579.
H. Edelsbrunner and L. Guibas, Topologically sweeping an arrangement, Proc. 18th ACM
Symposium on Theory of Computing, 1986, pp. 389-403.
H. Edelsbrunner, L. Guibas, J. Hershberger, R. Seidel, M. Sharir, J. Snoeyink, and
E. Welzl, Implicitly representing arrangements of lines or segments, Discrete Comput.
Geom. (1989), this issue, pp. 433-436.
H. Edelsbrunner, L. Guibas, J. Hershberger, J. Pach, R. Pollack, R. Seidel, M. Sharir,
and J. Snoeyink, On arrangements of Jordan arcs with three intersections per pair, Proc.
4th A C M Syrup. on Computational Geometry, 1988, pp. 258-265.
H. Edelsbrunner, L. Guibas, J. Pach, R. Pollack, R. Seidel, and M. Sharir, Arrangements
of arcs in the plane: Topology, combinatorics, and algorithms, Proc. 15th Int. Colloq. on
Automata, Languages and Programming, 1988, pp. 214-229.
H. Edelsbrunner, L. Guibas, and M. Sharir, The complexity of many faces in arrangements
of lines or of segments, Proc. 4th A C M Syrup. on Computational Geometry, 1988, pp. 44-55.
H. Edelsbrunner and M. Sharir, The maximum number of ways to stab n disjoint convex
sets in the plane is 2 n - 2 , Tech. Rept. 281, Comput. Sci. Dept., Courant Institute, New
York, 1987 (to appear in Discrete Comput. Geom.).
S. Fortune, G. Wilfong, and C. Yap, Coordinated motion of two robot arms, Proc. IEEE
Conf. on Robotics and Automation, 1986, pp. 1216-1223.
S. Hart and M. Sharir, Nonlinearity of Davenport-Schinzel sequences and of generalized
path compression schemes, Combinatorica 6 (1986), pp. 151-177.
R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York., 1977.
K. Kedem and M. Sharir, Efficient algorithm for planning translational collision-free
motion of a convex polygonal object in 2-dimensional space amidst polygonal obstacles,
Proc. 1st A C M Syrup. on Computational Geometry, 1985, pp. 75-80.
K. Kedem and M. Sharir, An efficient motion-planning algorithm for a convex polygonal
object in two-dimensional polygonal space, to appear in Discrete Comput. Geom.
K. Kedem, R. Livne, J. Path, and M. Sharir, On the union of Jordan regions and
collision-free translational motion amidst polygonal obstacles, Discrete Comput. Geom.
1 (1986), pp. 59-71.
D. Leven and M. Sharir, An efficient and simple motion-planning algorithm for a ladder
moving in two-dimensional space amidst polygonal barriers, J. Algorithms 8 (1987),
pp. 192-215.
D. Leven and M. Sharir, Planning a purely translational motion of a convex object in
two-dimensional space using generalized Voronoi diagrams, Discrete Comput. Geom. 2
(1987), pp. 9-31.
K. Mulmuley, A fast planar partition algorithm, 1, Proc. 29th IEEE Syrup. on Foundatwns
o f Computer Science, 1988, pp. 590-600.

On the General Motion-Planning Problem with Two Degrees of Freedom 521

[Mu2] K. Mutmutey, A fast planar partition algorithm, II, Proc. 5th ACMSymp. on Computational
Geometry, 1989, pp. 33-43.

[OSY1] C. O'Dfinlaing, M. Sharir, and C. Yap, Generalized Voronoi diagrams for a ladder: I.
Topological considerations, Comm. Pure AppL Math. 39 (1986), pp. 423-483.

[OSY2] C. O'Dfinlaing, M. Sharir, and C. Yap, Generalized Voronoi diagrams for a ladder: II.
Efficient construction of the diagram, Algorithmica 2 (1987), pp. 29-57.

[OY] C. 6'Dtlnlaing and C. Yap, A "retraction" method for planning the motion of a disc, J.
Algorithms 6 (1985), pp. 104-111.

[PSI J. Pach and M. Sharir, The upper envelope of piecewise linear functions and the boundary
of a region enclosed by convex plates: combinatorial analysis, Discrete Comput. Geom.
4 (1989), pp. 291-309,

[PSS] R. Pollack, M. Sharir, and S. Sifrony, Separating two simple polygons by a sequence of
translations, Discrete Comput. Geom. 3 (1988), pp. 123-136.

[SS1] J. T. Schwartz and M. Sharir, On the piano movers' problem: I. The case of a rigid
polygonal body moving amidst polygonal barriers, Comm. Pure Appl. Math. 36 (1983),
pp. 345-398.

[SS2] J. T. Schwartz and M. Sharir, On the piano movers' problem: II. General techniques for
calculating topological properties of real algebraic manifolds, Adv. in Appl. Math. 4
(1983), pp. 298-351.

[SS3] J. T. Schwartz and M. Sharir, On the piano movers' problem: III. Coordinating the
motion of several independent bodies: The special case of circular bodies moving amidst
polygonal barriers, lnternat. J. Robotics Res. 2 (1983) (3), pp. 46-75.

[SS4] J. T. Schwartz and M. Sharir, On the piano movers' problem: V. The case of a rod moving
in 3-D space amidst polyhedral obstacles, Comm. Pure AppL Math. 37 (1984), pp. 815-848.

[SS5] J. T. Schwartz and M. Sharir, On the two-dimensional Davenport-Schinzel problem,
Tech. Rept. 193 (revised), Comput. Sci. Dept., Courant Institute, New York, t987. (To
appear in J. Symbolic Computation.)

[SA] M. Sharir and E. Ariel-Sheffi, On the piano movers' problem: IV. Various decomposable
two-dimensional motion-planning problems, Comm. PureAppL Math. 37 (1984), pp. 479-
493.

[SSi] M. Sharir and S. Sifrony, Coordinated motion planning for two independent robots,
Proc. 4th A C M Syrup. on Computational Geometry, 1988, pp. 319-328.

[Sh] P. Shor, Geometric realizations of superlinear Davenport-Schinzel sequences, in prepar-
ation.

[Sil] S. Sifrony, Efficient algorithms for motion-planning problems in robotics, Ph.D. Disserta-
tion, Tel Aviv University, 1989.

[Si2] S. Sifrony, Efficient algorithms for motion planning of certain spatial 3-DOF manipulator
arms, manuscript, 1989.

[SIS] S. Sifrony and M. Sharir, A new efficient motion-planning algorithm for a rod in 2-D
polygonal space, Algorithmica 2 (1987), pp. 367-402.

[WS] A. Wiernik and M. Sharir, Planar realization of nonlinear Davenport-Schinzel sequences
by segments, Discrete Comput. Geom. 3 (1988), pp. 15-47.

Received July 25, 1988, and in revised form March 22, 1989.

