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Complexes  Whose Boundaries Cannot Be Pushed Around 

Ethan D. Bloch* 

Bard College, Annandale-on-Hudson, NY 12504, USA 

Abstract. Let K " c  R" be a triangulated n-ball. Examples are given to show that 
unlike in the two-dimensional case, the following hold for all n >--3: (1) there are 
nonconvex K" with no convex simplexwise linear embeddings K" o R", even though 
there are strictly convex simplexwise linear embeddings aK" oR" ;  (2) there are 
convex K", with no spanning simplices, such that not every simplexwise linear 
embedding f :  OK" o R" with convex image can be extended to a simplexwise linear 
embedding of K"; (3) there are convex K" such that the space of simplexwise 
linear homeomorphisms of K ", fixed on OK", is not path connected. 

1. Introduction 

Let K n ~  R "  be a simplicial complex;  we use K"  to denote  both the simplicial 
complex  and its underlying topological  space. A map f :  K"  ~ R p is called simplex- 
wise linear (abbreviated SL) if f l i t  is an affine linear map for every simplex tr 
in K". Note  that an SL map  is determined by what it does to the vertices. From 
now on assume that  K "  is an n-ball in ~". Let L(K")= {SL homeomorph i sms  
K " ~  K "  fixing a K "  pointwise}. (We can also think of  L(K") as the space o f  all 
t r iangulations o f  an n-ball, with given boundary ,  that  are simplicially i somorphic  
to K".)  I f  n = 2, a number  o f  results are known about  L(K 2) and various spaces 
o f  SL embeddings  and near-embeddings  o f  K2; see [1]-[6] .  In dimensions three 
and higher very little is known.  One of  the few positive results is in [10], where 
it is proved that, for any n >-2, if K ~ has at most  two interior vertices, then 
L(K n) is contractible (even if K n is not  convex).  

On  the other  hand,  it is known that some two-dimensional  results do  not  hold 
in three dimensions.  For  example,  it is proved in [6] that  if K 2 is convex, then 
L ( K  2) is h o m e o m o r p h i c  to some Euclidean space; in particular,  it is contractible. 
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This result is shown to be false in three dimensions in [13], where the following 
theorem is proved. 

Theorem 1 (Starbird). For any 3-ball K3cR 3, there is a subdivision K '  o f  K 3 
such that L ( K ' )  is not connected. 

In particular, K 3 in the above theorem can be chosen to be strictly convex 
( K "  is strictly convex if it is convex, and for every simplex tr of OK", there is an 
( n -  1)-plane N of R" such that N c~ K"  = tr.) In Example 3 of  this paper  we 
show that such examples exist in all dimensions greater than two by proving the 
following theorem. (In our  example strict convexity is replaced by convexity; it 
would be of interest to know if there are strictly convex examples.) 

Theorem 2. For all n->3, there is a convex n-ball K"  such that L ( K " )  is not 
connected. 

This result essentially answers Question 6 of  [8]. For n = 3 our example is 
somewhat  different from Starbird's: our example uses linking, whereas Starbird's 
uses knots. Our result in three dimensions is not as strong as Starbird's. 

A much more elementary result which holds in two dimensions but fails in 
higher dimensions is the following theorem. Some terminology: we say that an 
embedding of 0K" is starlike, convex, or strictly convex if it bounds a starlike, 
convex, or strictly convex n-ball; a simplex in K "  which has all its vertices in 
OK", but is not itself in aK" ,  is called a spanning simplex. 

Theorem 3 (Bing and Starbird). Let  K 2 c R 2 be any 2-disk (not necessarily convex, 
starlike, etc.), and let f :  og2--> R 2 be an SL  embedding. Then either o f  the following 
two conditions implies that f c a n  be extended to an SL embedding K 2-> RE: 

(i) f ( O K  2) is starlike, and K 2 has no spanning 1-simplices. 
(ii) f ( O K  2) is strictly convex. 

This is Theorems 2.1 and 2.2 of  [1]. Note that part  (ii) of  the theorem is false 
if  "strictly convex" is replaced by "convex".  That this theorem fails in dimension 
three can he seen from the main example in [7], where a convex 3-ball in R 3 is 
given which cannot be SL re-embedded in R 3 as a strictly convex ball; a theorem 
of  Steinitz, however, implies that the boundary of  any triangulated 3-ball has a 
strictly convex SL embedding in R 3 (see Chapter  13 of [9]). In dimensions higher 
than three the examples of  [7], as well as those of  [12] (which have n + 4  vertices 
in dimension n), do not show that the analog of  Theorem 3 is false, since in 
these examples the boundary has no strictly convex SL embedding. However, in 
Example 1 we settle the higher-dimensional case by proving: 

Theorem 4. For all n >- 3, there is an n-ball K "  c R" with n + 4 vertices such that 
K n has no convex SL embedding in R", even though OK" has a strictly convex SL 
embedding in R'.  
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Note that our examples in the above theorem have the same number  of  vertices 
as in [12] (which is only for dimensions four and above); in dimension three our 
example has fewer vertices than in [7]. Since n + 4 is minimal for what is proved 
in [12], we ask: 

Question 1. Is n + 4  the minimal number of  vertices for the examples in 
Theorem 4? 

The above theorem shows that the higher-dimensional analog of  Theorem 3 
is false by starting with nonconvex n-balls; it might be conjectured that the analog 
holds if we start with convex n-balls. However, we prove: 

Theorem 5. 

(i) For all n >- 3, there are strictly convex n-balls K "  c R" with n + 3 vertices 
such that not every strictly convex SL  embedding f :  OK" ~ R" can be extended 
to an SL  embedding o f  K".  Moreover, n + 3 is the minimal number o f  vertices 
for  such an example. 

(ii) For all n >-3, there are convex n-balls K "  c R" with no spanning simpliees 
such that not every convex SL  embedding f :  OK"-~ R" can be extended to 
an S L  embedding o f  K ' .  

Part (i) of  Theorem 5 is Example 2, and part  (ii) is in Example 3. 

2. Example 1 

Some preliminaries. An /-plane IIi and a j -plane IU in R i+i+l are called skew if 
(1) II~c~ IV = O and (2) the i- and j-dimensional  subspaces of R ~+j+' parallel to 
IIi and H i intersect only at the origin. An /-simplex and a j-s implex in R ~+~+' 
are called skew if their affine spans are skew. 

Let ~ ,  r j c R ~+~+' be skew i- and j-simplices, respectively, and let t r*e  tr ~ and 
z* • zJ be arbitrary interior points. Let A~,, A~ • (tr*, ~-*) be any two distinct points 
such that A~ is closer to ~'*, and A~ is closer to tr*. It is easy to verify that the 
/-sphere S~ = (A,, * air) u tr and j-sphere S~ = (A, * az) u ~" are disjoint, and are 
linked, in R ~+j+l (where * denotes join). We call S~ and ST coned links. 

We now describe the examples of  Theorem 4. Let n >-3 be given, let the 
following be points in R " : E I = ( 1 , 0 , . . . , 0 ) ,  E 2 = ( 0 , 1 , 0 , . . . , 0 ) , . . . , E , - ~  = 
( 0 , . . . , 0 ,  1 , 0 ) , A = ( - 1 , - 1  . . . . .  - 1 , 0 ) ,  U = ( 0 , . . . , 0 ,  1) ,and D = ( 0 , . . . , 0 , - 1 ) .  
The following three facts can be verified straightforwardly using linear algebra: 

(1) The convex hull of  { E ~ , . . . ,  E ,_ , ,  A, U, D} has all n +2  of these points 
as vertices. 

(2) The 1-simplex t r = ( E , , U )  is skew to the ( n - 2 ) - s i m p l e x  r =  
(E2, •. •, E , - l ,  D). 

(3) The affine span o f ( E 3 , . . . ,  E ,_ , ,  A, U, D) is an (n - 1)-plane which separ- 
ates R" into two open half-spaces, with E, in one half-space and E2 in 
the other. 
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We construct aK". Take the boundary of  H = c o n v e x  hull of 
{ E l , . . . ,  En_l, A, U, D} with its natural triangulation, and add two vertices P 
and Q as follows. Let P be the barycenter of  the (n -1 ) - s imp lex  
(EL, E 3 , . . . ,  E,-1,  A, D), and let Q be the barycenter of the (n -1 ) - s imp lex  
(E2, E 3 , . . . ,  E,_~, A, U). Triangulate aK" by taking the natural triangulation of 
all, and starring on P and Q. Note that by pushing P and Q out very slightly, 
aK" is seen to have a strictly convex embedding in R". (In general we cannot 
budge a convex triangulation to get a strictly convex one, as seen in [7]; however, 
our aK" is so simple that we can do such a budge.) 

We now construct the triangulation of  K". First, we need to re-embed aK". 
Let the vertices E~ . . . . .  E,_j ,  A, U, D be as above. Let/3 be a line segment from 
an interior point of 0. to an interior point of  ~- (where 0. and ~" are defined in 
fact (2) above). Choose P'  and Q' on /3  so that P '  is very close to 0. and Q' is 
very close to ~'. It is not hard to see that fact (3) above implies that, with vertices 
E L , . . . ,  En_l, A, U, D, P',  and Q', aK" is still embedded. Consider a K " w  
(P '  * a~-)u (Q' • do.). By choice of  P' and Q', the coned links construction above 
implies that the 1-sphere (Q '*  atr)wo" is disjoint from, and links, the ( n - 2 ) -  
sphere (P'*a.f)w'r.  Unfortunately, a K " u ( P ' , a r ) w ( Q ' . a 0 . )  is not em- 
bedded, the problem being that Q'*a0. intersects the (n -1 ) - s implex  
(El ,  E 3 , . . .  , E,_1, D, P ' )  o f  OK n, and P ' *  d~" intersects the ( n -  1)-simplex 
(E2, E3, .  • •, E , -1 ,  U, Q')  ofaK" .  However, by budging P' off Q' * a0. (but staying 
in the affine span of P'  * at) ,  and then budging Q' off P '  * a~" (but staying in the 
affine span of Q' * a0.), we can make aK" w (P' • a.f) u (Q' • ,90-) embedded, while 

El 
Flg. ! 
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keeping (Q'  * o0-) w 0- disjoint from, and linked with, (P'  * at)  u r. Finally, we 
obtain a triangulation of K" by extending OK" w (P '  * 0r) w (Q' * 00-) to a triangu- 
lation of the bounded component of R " - 0 K  ", which can be done without 
subdividing OK" u (P '  * Or) w (Q' * 80-), and without adding any new vertices. 
Note that the given embedding of K" is not convex, and has exactly n + 4 vertices. 

To complete this example, it remains to show that there is no convex embedding 
of  K" in R"; assume otherwise, i.e., K"  has been re-embedded as a convex n-ball. 
Consider the affine span H of(E,  . . . .  , E,_, ,  A), an ( n - 1 )-plane. Then H c~ OK '~ = 
( A * O ( E , , . . . ,  E,_ , ) )u(E1 . . . .  , E,-1), which is an (n -2 ) - sphe re ,  and which 
separates OK". Observe that U and Q are in one component of OK" - ( I I  ~ OK n), 
whereas D and P are in the other component. H separates K" into two closed 
convex pieces, which only intersect in their boundaries; it is seen that E~, U, Q 
are all in one piece, and E 2 , . . . ,  E~_,, D, P are all in the other. It follows that 
( Q ' *  00-)u tr is contained in one of  these pieces, and ( P ' *  Or)~ r is contained 
in the other. This last fact implies that (Q' * 00-) u 0- and (P' * Or) u .c could not 
possibly be linked, contradicting the fact that these two spheres were linked in 
the original triangulation of K ' ,  and that linking is invariant under homeomorph- 
ism. Thus K" could not have been embedded as a convex ball. 

Figure 1 shows the example when n =3;  the complex has been rotated in R 3 
for ease of  drawing. 

3. Example 2 

We construct the example of Theorem 5(i). Consider R "-2 = R n-2 x {0} c R "-1 = 
R " - ' x  {0}c R n. Let o . -2  be an (n -2 ) - s implex  in 11~ "-2 with barycenter at the 
origin. Let L, R ~ R"- '  be L = ( 0 , . . . ,  0, -1 )  and R = (0 . . . . .  0, 1), and let M "-1 c 
• ' - '  be the simplicial complex M n- t  = ( L  * a0- " -2)  w ( R  * 0 ""-2) (where * denotes 
join). Let S , N ~ R "  be S = ( 0 , . . . , 0 , - 1 )  and N = ( 0 , . . . , 0 , - ½ ,  1). Finally, let 
K" be the triangulation of ( S * M " ' I ) w ( N * M  "-')  with n-simplices 
S * R * o  rn-2, N * R * o  ""-2, S N * 0 -  "-2, and S N * L * r l  n-3 for all ( n - 3 ) -  
simplices rl"-3ea0- "-2. (This is a triangulation since S N  passes through the 
interior of  L * tr"-2.) Clearly, K" is strictly convex and has n + 3 vertices. However, 

' 1), the strictly convex SL embedding f :  OK" ~ R" given by f ( N )  = ( 0 , . . . ,  O, ~, 
and f fixes all other vertices, cannot be extended to an SL embedding of K" 
(since f ( S N )  intersects the interior of  f ( R  * tr '-2)). See Fig. 2 for the three- 
dimensional case; although R 3 is a triangulated octahedron, K" is not in general 
a triangulated higher-dimensional octahedron. 

To prove minimality, suppose N ~ c  R" is a strictly convex n-ball with n +2  
boundary vertices, and let f :  8N"  -* R ~ be a strictly convex SL embedding. We 
will show that there is a unique projective homeomorphism h: N ~  
convex hu l l ( f  (ON")) c R" which agrees w i t h f  on the vertices of ON". Let F:  N ~ 
R" be the unique SL map with F ( v ) =  h(v) for all vertices v of  N ' .  It can be 
checked that F is an embedding (see Lemma 4.4 of [6]), and, clearly, FION" = f ;  
hence N"  with n + 2  boundary vertices cannot satisfy the conditions of  the 
theorem. If  N"  has n + 2  vertices, with one in the interior, or if N ~ has n + 1 
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S 

Fig. 2 

vertices (all o f  which must  lie on the boundary) ,  h can be taken to be atfine 
linear, with similar conclusions.  This proves that  K "  has the minimal number  o f  
vertices. 

It remains to show that the projective homeomorph i sm h: N"-- ,  
convex h u l l ( f ( a N n ) ) c R "  exists. Since n + l  points determine an affine linear 
map  of  R n, and since compos ing  by such maps will not affect what  we are trying 
to show, we may assume without  loss o f  generality that a N "  has vertices ao = 
(0 . . . .  ,0) ,  a ~ = ( 1 , 0  . . . . .  0), a 2 = ( O , l , O , . . . , O ) , . . . , a n = ( O  . . . .  , 0 ,1 ) ,  and 
an+l = (cl ,  c2 . . . . .  c,), with Y.~=l c~ > 1, and  c~ > 0 for all i, and that  f ( a N  ~) has 
vertices a~ = (0, 0), ' - . .  ' = (0, 1, 0, 0), ' - • . . ,  a l - ( 1 ,  O, . , 0 ) ,  a 2 . . . .  . . . ,  a , - -  

. . . ,  ' . . . ,  ' " h  " (0, O, 1),anda,+1=(c~,c'2, c,) ,  wit Y.~=~cl>l, andc~>Ofora l l i ,  and 
also that f(a~) = al. 

Consider  R P  n as having homogeneous  coordinates  [x~, x 2 , . . . ,  x,+~] in the 
usual way. Let I : R n ~ R P  ~ be the s tandard embedding  I (x t , x2  . . . .  , x , ) =  
[ x ~ , x 2 , . . . , x , , 1 ] ;  points in the ( n - l ) - p l a n e  at oo in R P  n are those with 
homogeneous  coordinates  [x~, x 2 , . . . ,  x , ,  0]. Let A~, A'~ E R P "  be the points  given 
by  A~= I(a~) and  A~=I(a~) for  all 0 - < i - - < n + l .  Explicitly, A o = [ 0 , . . . , 0 ,  1], 
A,  = [ 1 , 0 , . . . , 0 ,  1], a 2 =  [0, 1, 0 , . . . , 0 ,  1] . . . .  , A ,  = [ 0 , . . . , 0 ,  1, 1], An+t = 
[c l ,  c 2 , . . . ,  cn, 1], and  ' - . A o -  [0 , . .  , 0, 1], A, = [ 1 , 0 , . . . , 0 ,  I],  A~=  
[0 ,1 ,0 ,  0 , 1 ] , . ,  ' - [ 0 ,  0 ,1 ,1 ] ,  A , + , = [ c ~ , c 2  . . . . .  c, ,  . . . ,  . .  A n -  . . . .  ' ' ' ' 1]. For  ease o f  
notat ion,  we identify N "  with I (N" ) .  

Because o f  the strict convexity o f  a N "  and f ( O N ' )  (considered as subsets o f  
Rn), it follows that no n + 1 vertices o f  the A~ or o f  the AI lie in an (n - 1)-plane. 
A theorem of  Projective Geomet ry  (often referred to as the fundamenta l  theorem 
o f  the subject) then implies that there is a projective homeomorph i sm h: R P n ~  
R P  n such that h(A~) = A~ for  all i. N "  contains no points at oo, and if we show 
that  n ( N ' )  c~ oo = O,  then the restriction h I N " :  N n --, R" will be the desired map.  

It  can be checked that the (n + 1) x (n + 1) matrix M representing h: R P  n ~ R P  n 
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in homogeneous  coordinates is given by 

x2 0 

M =  0 h~ 

A I - A  0 A 2 - - A  0 • . . A n - A  0 A 0 

where hi=c'~/c~ for l~i<_n, and h o = ( 1 - ~ = ~  c ; ) / ( l - ~ 7 = ,  c~), Note  that the 
condit ions on the c~ and cl ensure that h i > 0  for O<-j<-n. A point in R P  ~ is at 
co iff its (n + 1)st homogeneous  coordinate is 0. Hence,  i f x  = (x~, x2, • . . ,  x,)  ~ R ~, 
then h(x) is at oo iff the vector MX has ( n +  1)st homogeneous  coordinate  0, 
where X = [xt ,  x 2 , . . . ,  x, ,  1]. This condit ion yields the equation 

(AI - Ao)Xl + '  • • + (A. - Ao)X. + Ao = O, 

i.e., ( x , , . . . ,  x~) • ( h i - ; t o , . . . ,  h ~ - h o ) = - A o ,  which is an ( n -  1)-plane in R ". It 
will thus suffice to show that this plane does not intersect N ~. However,  it is easy 
to check that  ao" (At - ho . . . .  , A, - ho) = 0, a~- (h~ - ho, • • •, A, - ho) = h~ - ho for  
1 <--- i----- n, and a,+l • (A i - h o , . . . ,  An - ho) = 1 - ho, all o f  which are greater than 
-Ao.  Hence the vertices o f  N n all tie on the same side of  the (n - 1)-plane, and 
by convexity all o f  N ~ misses this plane. This concludes the p roof  that the map  
h exists as desired. 

4. Example 3 

Let T, c R" be a snubbed regular n-simplex, which is the complex that is left 
after we slice off (with ( n - 1 ) - p l a n e s )  ne ighborhoods  of  all the vertices o f  a 
regular n-simplex in R"; let Q, c R "  be a snubbed regular n-cube, defined 
similarly. T, has 2n + 2 (n - 1)-faces, of  which n + 1 are (n - 1)-simplices, and 
n + 1 are something else; Q, has 2" + 2n (n - 1)-faces, o f  which 2 n are (n - 1)- 
simplices, and 2n are something else. We use Nn to denote  either T~ or  Q,.  

Cons ider  N~_~ c R " - '  = R n-~ × {0} c R", with N~_, situated so that the origin 
O o f  R" is the center o f  gravity o f  N ,_ , .  Our  example K"  is a tr iangulation o f  
N ~ _ , x [ - 1 ,  1 ] c R  n. Choose  e > 0  to be some very small number.  For  each 
(n - 2 ) - f a c e  tr o f  Nn- , ,  let o-* denote  the center  o f  gravity o f  tr. Define the hook 
for ~ to be the tr iangular l -sphere H~ = (tr* × [ - e ,  e]) w (tr* x { -e ,  e}) * O. Let 
S,-2 be the boundary  o f  an ( n -  1)-simplex which lies in the interior o f  N,,_~, 
and which contains O in its interior. Note  that S,-2 links each of  the hooks H~. 
Finally, let K "  be a t r iangulat ion o f  N n _ , x [ - 1 ,  1] which does not subdivide 
S,-2 or  any of  the H,~. Clearly, K ~ is convex, and can be chosen so as not to 
have any spanning simplices. 

The ( n - 2 ) - f a c e s  ~r o f  N,_~ are in two categories: those that are ( n - 2 ) -  
simplices, and those which are not. Let aN~"_-~ 3~ denote  the ( n - 3 ) - s k e l e t o n  of  
ONe_,. Because each set t r x [ - 1 ,  1] is a flat ( n - 1 ) - b a l l  in R ~, s tandard  PL 
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techniques imply that OK" could have been triangulated finely enough, without 
subdividing any of the t r*x  [ - e ,  e], so that there is an SL map f :  OK"~ R" with 
the following properties: 

(1) f takes OK" homeomorphical ly onto itself. 
(2) f f i x e s  0N~."_]3)x [ - 1 ,  1] and N._I x { - 1 ,  1}. 
(3) I f  tr is an ( n - 2 ) - f a c e  of N._I which is an ( n - 2 ) - s i m p l e x ,  then 

f ( c r*x[ - e , e ] )=o '*x[p -e ,p+e]  for some e < p < l - e .  
(4) I f  cr is an ( n - 2 ) - f a c e  of N.-1 which is not an ( n - 2 ) - s i m p l e x ,  then 

f ( c r * x [ - e ,  e ] ) = t r * x [ - p - e , - p + e ]  for p as in (3). 

The map f is a convex SL embedding of  OK". The question is, can f be 
extended to an SL embedding of  K " ?  The deciding issue is the following: can 
f (O) be defined in a way such that f(S.-2) can be located so as to still link all 
the f ( H ~ ) ?  I f f ( O )  can be so chosen, then a fine enough triangulation of K "  will 
allow f to be extended to all of  K" ;  on the other hand, since an embedding 
preserves linking, if no such f (O) existed, then f could not be extended to an 
SL embedding K". 

Whether f (O) can be chosen as above depends on whether N._,  = 7"._, or 
N.-1 = Q.-1. In either case, we first note that for f ( O )  to be as required, it must 
have the nth coordinate greater than p in absolute value (where p is as in 
conditions (3) and (4) above). This is true because f(S._2) must lie in an 
( n -  1)-plane in R", and if the nth coordinate o f f ( O )  is less than or equal to p 
in absolute value, there is no (n - D-plane which intersects all the f(H~). Figure 
3 shows the case for n = 3, using N2 = T2 (which is a hexagon). 

In the case N._I  = Q._~, it is in fact seen that the number of  hooks, and their 
locations, do not a l l owf (O)  to be defined as required even with the nth coordinate 
greater than p in absolute value. Thus f cannot be extended to an SL embedding 
of K",  yielding the example of  Theorem 5(ii). 

In the case N._,  = T._, ,  it is seen that for appropriate  choices of  the number 

fC~" "l-c, El)" ~[ 

I 

f t 

Fig. 3 

\ 

t 

[ / ~ t ( a t  s) 
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p, there are choices o f f ( O )  as required. For appropriate choices of p (obtained 
by the Intermediate Value Theorem, by examining what happens for p very close 
to e, and p very close to I - e ) ,  it is seen that f ( O )  may be chosen so that the 
following holds: f (S ,-2)  can be located so as to link all the hooks f (H~),  where 
f (S,-2)  links f(H,~) at a vertex of f (S ,_2)  if tr is an ( n -  2)-simplex, and f (S , -2 )  
links f(H~,) at a barycenter of an ( n - 2 ) - f a c e  of f (S,-2)  if o- is not an ( n -  
2)-simplex. By symmetry, there must be choices o f f ( O )  with the nth coordinate 
greater than p, as well as with the nth coordinate less than -p .  Let F~, F2: K"  ~ R n 
be SL embeddings extending f such that F,(O) has the nth coordinate greater 
than p, and F2(O) has the nth coordinate less than p. Note that F~ and F2 are 
actually maps K"  ~ K n. The map F2 o F~-I: K "  --> K "  is an SL homeomorphism 
fixing OK ~ pointwise, i.e., F2 o F~ ~ ~ L(FI(K")) ,  in the notation of the introduc- 
tion. We observe that L(F1(K")) is not connected, since there can be no path 
from F2oF? ~ to the identity map id~Fl(K") .  Note that F2oF?~(O)<-p,  
whereas id(O)>p;  the Intermediate Value Theorem then implies that, for any 
path from F2o F~ ~ to id, at some point the image of O must have the nth 
coordinate equal to 0, an impossibility. Hence L ( G ( K " ) )  is the example of  
Theorem 2. 

Question 2. What conditions on K n ensure that the analog of Bing and Starbird's 
theorem (Theorem 3 of the Introduction) holds? One guess is that for any K n, 
the result would hold for the second barycentric subdivision of  K ~. 

It should be noted that if we consider SL maps of 8K" which have nonconvex 
images, the situation is much more complicated, since it is complicated even in 
two dimensions; see [2] and [11]. 
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