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Abstract. The dimension of a graph G =(V, E) is the minimum number d such
that there exists a representation x-» X e R (x€ V) and a threshold ¢ such that
xy e E iff j =1 We prove that d(G)=n - x(G) and d(G)=n—+/n where n=1V]|
and x(G) is the chromatic number of GG; we present upper bounds for the dimension
of graphs with a large girth and we show that the complement of a forest can be
represented by unit vectors in R®. We prove that d(G)=1tsn for most graphs and
that there are 3-regular graphs with d(G) = ¢ log n/log log n.

Introduction

We consider the geometric dimension of graphs introduced in{7]. Let G=(V, E}
be a finite graph without loops and multiple edges. The dimension d(G) of G is
the minimum number d such that G admits a representation in R“; a representa-
tion consists of an assignment x> € R? (xe V) and a threshold € R such that
for every couple x, ye V, x # y,

xye E iff xp=t,

where %y is the scalar product of vectors X, j.

In [7] we also considered a related notion-—the spherical dimension sd(G) of
a graph G, which is defined analogously but with an additional condition ||| =1
for all x € V. Clearly, sd(G) =d(G) for every graph G.

The notion of spherical dimension is closely related to that of sphericity which
was introduced in [4]. The sphericity is defined as the minimum number d such
that there exists an assignment x - X € R¢ and a threshold p =0 such that

xyeE iff ||x-7|=p.
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In {7] it is noted that
sd{G)—1=sph(G)=sd{G)

for every graph G.
Let us list some bounds for d(G), sd((G), and sph(G):

(1) d(G)=n-a(G) (n=|V|, a(G) is the size of a maximal independent set
in G).
(2) sph(G)=n—w(G) (where w(G) is the size of a maximal clique in G).
(3) sd(G) = cd log(d) if the complement G of G has maximum degree =d.
(4) A(T)Y=3if Tis a tree.
(5) sph(T)=3(k+1)log.|T|if T is a tree with degree <k.
(6) sph(T) =108 log|T] if T is a tree.
(7) sph(F)=8[log|F|] if F is a forest.
(8) cyn/log n=sph{Q,)=c.n/logn where Q, is the graph of the n-
dimensional cube.
(9) sd(G)=cd?log n if G has maximum degree <d.
(10) sph(G,+ G,+- - -+ G,,)=2(n~1) where n =max V(G,).
(11) dJ, G.) =max d(G;)+1 where the G;’s are disjoint.
(12) (GuU K, )=d(G)+1 where A< V and K, is a clique on A.
(13) sph(G)<12(2c—1)*log|G| for Apm=-c¢ (c=2) and [G|>
[12(2¢ —1)* log| G|, where A, is the minimal eigenvalue of G.
(14) sph(L(G)) <108 log m where m =|E| and m> (108 log m)".
(15) sph(G)=log a(G)/(log(2r(G)+ 1)) where r(G) is the radius of G.

For these and related further results see (1]-[4] and [7].

The aim of this paper is to present some other upper and lower results for
d(G). In Section 1 we prove that d(G) = n— x(G) where x(G) is the chromatic
number of G which, together with (1) above, yields d(G)=<n —+/n. In Section 2
we consider the dimension of forests and graphs with a large girth. In Section 3
we deal with lower bounds for d(G). We prove that most of the graphs on n
vertices have d(G)=n/15 for sufficiently large n. We also prove that, contrary
to (3) above, there are graphs G, with maximum degree =3 but with d(G,,)>
iog n/18 log log n.

1. General Upper Bounds

1.1. Theorem. For every graph on n vertices,
d(G)=n-—x(G).
Proof. 1. The set V of vertices of G=(V, E) with x(G)= y can be written as

V:KUAk+]UAk+2U' ‘ 'UAX’
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where K is a clique of size k, each A, has size =2, and A, is a maximal independent
set in the induced subgraph G, on KU A, u---UA, k+l=sisy

Indeed, let A;u---UA, be the decomposition of V corresponding to a
coloring of G such that |A,|<|A,]=<- - =<|A,|. If A, is not maximal independent
in G,, we move suitable vertices of 'A, U - - U A,_; to A, to make it such. Then
we proceed in the same way with A, _,, A, ,,..., A;. Thus if k+1 is the least
integer with |A;,,|=2 then K=A,u- - -U A, is a clique of size k.

2. Let |Ay,\|=d+1. Then G, can be represented in R? with a threshold
t < 0. Indeed, consider the vertices Z,, . . ., Z;, of the regular simplex in R“ centered
at the origin with

zz=—1 (i#j), zZi=d
Let K=1{x;,..., %}, Ax1 =1y, ..., us}. Put

%=Y 3 (i=1,...,k),

rel,

where
I, ={rlxu, e E}
and
g,=2dz, (j=0,...,d).
We have:

(a) %% =Y {zzlrel,sel}=—d"
(b) 4,4, =—4d*<—d” for i #}.
(c) If x,u;€ E then
%, =2d’ Y {z,z|re I}
=2d*+2d’ Y {z,z,lrel,—{j}}=2d’-2d" =0.
(d) If xu; ¢ E then %i; = —2d°|I,| < —d’ for I, # & because of the maximality
of Ak+} .
Thus vectors X,, #, form a representation of Gy, in R“ with the threshold t = —d’.
3. Suppose G, can be represented in R with a threshold 1< 0. Then G,.,
can be represented in R?**, where s + 1 =|A, |, with a negative threshold. Indeed,
let x,,..., x,, be vertices of G, and u,, ..., u, vertices of A,.;. Let X,,..., X,
form the representation of G, in R? with a threshold < 0. Thus there is t, <t
such that
%=t if xx ¢ E and %X =t if x;x;¢ E.
Again, choose vectors Z,, ..., Z, in R’ with

zz, =1 for i#], Zi=s
Put
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where I, is defined as in 2 above and a >0, ¢ > 0 will be specified later. Then

we have:

{a) If x,x;€ E then
5% =%%+e’Y{zLlreLue[}=1-¢%%

(b) If x;x;¢ E then
EX=t,+e’ Y Zi=e’s(s+1)+1,.
r=0

(¢} If x;u;€ E then
f,=ae Y {Zzlre I}
=aez;+aey {z‘,fj|r€ L-{j}}= aes —aes =0.

(d) If x;u; ¢ E then
i, =—ae|l|=—ae

because the inclusion maximality of A, in G, forces |I]>0.
(e) il =—a’ for i #}].
vectors X;, 4; form a

We are going to show that a, £ can be chosen such that
representation of G,., with any threshold 1’ where ¢, <t <t<0. Indeed, first

choose £ > 0 sufficiently small such that
t—g?s?>1 (see (a)),

tL+els(s+1<r {see (b)).

Then choose a sufficiently large such that
(see (d)),

(see (e)).

—ae <t
—al<t

4, It follows from 2 and 3 above that by induction G = (G, can be represented

in R where
d =(|Ak+1|_1)+(1Ak+2|-1)+' ‘ '+(|Ax["l)

=|V-K|-(x-k)=n—x.

This concludes the proof of the theorem.

For every graph G on n vertices,

1.2. Corollary.
d(G)=n-vn.
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Proof. In [6] the threshold dimension 8{G) of a graph G is introduced and
shown to satisfy 8{G) = n — a(G) where a(G) is the size of a maximal indepen-
dent set in G. Following [7], d(G) = 8(G) for every graph G. Thus d(G)=
n—a(G). As a(G) - x(G)=n, we have max(a(G), x(G))=+n, hence

d(G)=min(n~a(G),n~x(G))=n—Vn. O

2. Upper Bounds for Graphs Without Cycles

2.1. Proposition. If G is a forest then d(G)<3; the representation can be chosen
to have a positive threshold.

Proof. This is proved in [7] for G a tree; in more detail, for every £ >0, a tree
G =(V, E) can be represented in R® with the threshold ¢ =1 such that vectors X
representing vertices x € V satisfy 1 <| %} <1+ ¢. Then diam{%|x € V} - 0. Thus,
as the tree (G is connected, its representation can be found to be placed in an
arbitrarily small ball with center on the unit sphere S in R®. Now, if G is a forest
with components G,, ..., G, then choose distinct points ¢y, ..., ¢, and balls
B, with centers c;, each with a radius r. Represent G; in B;; if r is small enough,
this yields a representation of G in R’ with the threshold 1= 1.

2.2. Proposition. If G is a forest that does not contain the tree T, below as an
induced subgraph then d(G)=2 where the representation in R* can be chosen to
have a positive threshold t.

Proof. 1In fact, this is proved in [7] for G=(V,E) with '=1-¢ (0<e<1)
where & can be arbitrarily small, and vectors X € R” representing vertices of V
satisfy 1 = || X|| = 1 - &. Thus the representation can be constructed with diam{%|x
V} arbitrarily small. Using the same argument as in the preceding proposition,
this can be used to represent any forest without induced T, in R’ with a positive
threshold (Fig. 1).

2.3. Proposition. A graph G on n vertices can be represented in R? where:

I. d=<Zn+1if G has a girth at least 7,
II. d <in+%if G has a girth at least 6,
III. d <%n+2if G has a girth at least 5.

T

Fig. 1
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Remark. Proposition 2.3 yields linear upper bounds for d(G) for G without
short cycles, which, however, can be further improved (to appear in a subsequent
paper). Using a probabilistic approach we can, for example, show an upper
bound of the form c,p(log n)® for any C,-free graph with edge density p. As it
is well known that p </n for any C,-free graph, this clearly improves Proposition
2.3 for n=n(c¢,, ¢;). To prove Proposition 2.3 we need the following.

Lemma. Let a graph G={(V, E) contain a set C of vertices spanning one of the
graphs Cs, Cq, C,, Cg, Py such that each vertex in V — C is adjacent to at most one
of the vertices of C. Let the induced subgraph G' of G on V — C be represented in
R? with a positive threshold. Then G can be represented in R**? with a positive
threshold.

Proof. Let C={v,,...,0,,} span C,, 5=r=8§. Put

27 2
'z'i=(cos—7rl, sin—T) (i=0,...,r—1).
r r

Then

=2 - 2w 2
zZi=1, z,-z,-+,=cos——-2cos—-5~>0.
r

%z,=0 for i#jtlmodr, i#j.

Let x > X € R“ be a representation of G’ in R with a positive threshold ¢, without
loss of generality, ¢ =1. Then, if a > C is sufficiently small, vectors

i=(% az)eR*? (xeV-C,vixcE),
x

=(% 0)e R*? (xe V-C,v;x¢ E for no i)

form a representation of G’ in R?*? with a threshold ¢', where

27,
cos—<t'<1.
r

5-‘ = (6, 5:'/‘1)-
Then, for sufficiently small a >0,

.~ 1 27
Dl =3 CO8 —>1,
a r

0:0,=<0 if i£jtlmodr, i#j,

X0, =1>1 if xeV-C is adjacent to v;,

o 27 . . .
Xv;=cos —<t' if xe V-C is not adjacent to v;.
r
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This proves that vectors X (x€ V—C) and ¢, (i =0, ..., r—1) form a representa-
tion of G in R%*? with the threshold 1'.

If C spans P,, add a new vertex X, to G to be adjacent just to an endpoint
of P;; the resulting graph G’ contains a copy of Cs on Cu{x,} and hence G’
can be represented in R“*? with a positive threshold by the preceding part of
the proof.

Proof of Proposition 2.3. We shall prove by induction on n that G has a
representation in R with a positive threshold where d is bounded by in+1 or
in+3 or #n+1in cases I, 11, and 111, respectively. This is certainly true if n=<3.
Let n>3.

(a) Let G be a forest. Then d(G)=3=in+1<in+i<in+iif n=7, see 2.1
above. If 4= n<7 then d(G)=2=in+i=in+1=in+iby2.2.

{b) Let G=(V, E) not be a forest. Let D be the shortest cycle in G of length
k. If k> 8, choose C = D spanning P, if k<8, let C = D. Due to the minimality
of D, every vertex of the induced subgraph G’ on V—C is adjacent to at most
one vertex of C. If k=7 or k=6 or k=25 then G' has <=n—7 or n—6 or n—5
vertices, respectively. By the induction assumption, G can be represented in R*
where

d'=2(n-7)/7+1
or
d'=(n—-6)/3+3
or
d'=2(n—-5)/5+%,
respectively, with a positive threshold. By the lemma, G can be represented in

R? with a positive threshold where d =d'+2, hence d <2n+1, or d<!n+2or
d=2n+1, respectively.

24. The followingis an essential improvement of a result of Frankl and Maehara
[2] who proved

sd(G)=8logn

if G is a forest. Let us remark that sd(G) is unbounded for trees. It was proved
in [7] that

sd(B,)=clogn/loglogn,
where B, is the “complete binary” tree on n=2°—1 vertices with s levels.
Proposition. If the complement G of G is a forest then

sd(G)=6.
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Proof. Let G=(V, E) and G be a forest. In each component K; of G, choose
a vertex r; to be a root of the tree K,. This defines decomposition of each K| into
levels. Also, neighbors of each vertex x that is not a root consist of a father and
of a family of sons. Let V, be the set of all vertices on odd levels (thus all roots
riare in V;) and V,= V—V,. Then V, can be written as V,={x,,..., x,} in such
a way that sons of each y € V, form a segment of the form

x}" xj+la vy X
Choose reals «a;,

<(n—-1)7r

T 2
O<ag;<—<a,<—<"- - <, <.
n n

Fix a ye V, with sons as above and with the father x,, define a complex
polynomial g,,

g, (z)= (z —exp(i——-—-w(jn- 1)))(Z —exp(i%q)) exp(—i—-—-—”(j;: —~ 1))
X (z -—exp(i w(rﬂ»- 1)>>(z —exp(i%f)) exp(~i1r~(—2;—n:~l-l).

We can verify that the coefficients of g, are of the form

g (2)=c+eztcoz’ + 6,27+ 625, cE R

Put b*=2Rec;, a¥=2Imc¢ (i=1,2), and d¥ = ¢,. For a real a, define f,(a)=
g,(exp ia) - exp(—2ia). Then

fla)=c e +c e + e+ e e+ e

=d¥+ a¥sin a+b¥ cos a+a¥ sin 2a + b¥ cos 2a.

Thus f, is real valued, f,(a)=(d§,af, b}, af, b¥) (1,sina,cos a, sin2a,
cos 2a). As the only roots of g, are exp(i(m(j — 1)/ n)), exp{i{wk/n)), exp(i(7(r—
1)/n)), exp(i(mrr/n)) we see that the only roots of f, are w(j—1)/n, wk/n,
m(r—1)/n, and 7r/n. Hence f, has the same sign at a;, @&,,..., @1, 0%, and
a,, and the opposite sign at the other a;’s. Put

€= —sgnfy(a,)«/g/\/di)"z+ aF+b¥+ a¥’+ b¥?,

h,=¢f,, di=edf, al=¢ea¥, b}=zsbf (i=1,2).

Then h,(a;)<0 for j<i<k and for i=r and h,(a;)> 0 otherwise.
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Put
(dg, ai, b1, a3, b3,2),
X; = (1, sin a;, cos a,, sin 2¢;, cos 2¢;, —2).
Then
X7=h(a;)-4<-4 for j=isk i=r ie,for xyekE,
h

%l =7 =v7.
Using the same construction for all ye€ V,, we also see that, for y,, y,e V,,
Fi 72> =3+4> -4,

Thus we have a representation of G in R® by vectors with the same norm v7
and with the threshold ¢ = —4 which concludes the proof. (]

3. Lower Bounds

3.1. We shall prove that most graphs on n vertices have dimension =zn/15-1.
However, the only graphs of that dimension we explicitly know are those contain-
ing K,, for r>n/15{7].

Theorem. Let t, be the total number of graphs G on n =38 vertices. Then at least
(1—-1/n)1, of them have

d(G)=n/15-1.

Proof. 1. Let G,, G,,..., G, be alist of all graphs on the set V={x,,...,x,}
of vertices where d(G,)=d(G,)=---=d(G,). Let r=|t./n], d =d(G,; ) +1.
Then G,,..., G, can be represented in R with the threshold 1; in fact, if
x;> % € R*" is a representation in R*™" with a threshold t <1 (or t=1) then
x; > (%, V1—1) or {x;- (%;/1,0), resp.) is a representation in R? with the threshold
1. Also, using small changes of coordinates we can modify the representations
in such a way that X;% > 1 rather than £,%; = 1 if x;x; is an edge, and that vectors
Xy,..., X4 representing vertices x,,..., Xy are linearly independent. Finally, if
X =(%y,...,%aq)€ R? is the vector of coordinates of x; with respect to the
orthonormal basis obtained from the base %,,...,%; by the Gramm-Schmidt
orthonormalization process, then XX =XX;; moreover, obviously X;;,,=
Xi4a=---=%X4=0 for i=1,...,d—1. To summarize our consideration, we
have representations x; » X° of graphs G=G,,..., G, in R? such that

ZXC>1 if xx; is an edge in G,
¥7%7<1 if x;x; is a nonedge in G,

¥§=0 if 1=si<j=d
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2. Define polynomials P; (1=i<j=n) in (nd ~(d(d —1)/2)) variables x,,,
X1y X2y X315 X325 X335 e+ oy Xdts-vrs Xday Xat1,1a-v0» Xdttds s Xn1se -+ Xng DY
d

Pij(xuu)u,u =y XX — 1
k=1

(where x; =0if 1 =i < k= d and analogously for x; ). Then for X¢ =(%3,),, € R"
{where N=nd —(d{(d —1)/2)) we have

Py(¥°)>0 if x,x; is an edge in G,

P;(x°)<0 if x,x; is a nonedge in G.

3. Following a result of Warren [5], given arbitrary polynomials P, ..., Py
on N variables of degree =D where M = N, the total number of sign sequences
(sgn P\(x),...,sgn Py(x)) that consist of terms +1, —1 does not exceed
(4eDM/ NN,

4. Let us apply this estimate to our polynomials P,, ; as distinct graphs G # G’
induce distinct sign sequences of P; at %9 and ¥, we have

r=(4eDM/N)N.

Here r=2%/n, D=2, M = (;’) and N = nd — (d(d —1)/2). Hence

=(xe(5)/ ) =(7)

:  [de\” N nd-(d d 1)/2)
= <;e) where y == nd — ( )/2) €(0,1),
Inr
75})]"(48/”- (*)
We have

{1 2)(n)—lnn
Inr n 2 In2 In2 _l_r}_g_l In2 1

n? n? 2 2n n? 2——2—_§5_.§

for n = 38. The numerical solution of the equation y in(4e/y)—(In2})2+1/85.9 =
0 on (0,1) is y=1/15.26175, and the function y In(4e/y) is increasing on (0, 1).
Hence (x) implies y =1/15.262 for n=38. Putting x =d/n we have

d 1f{d\* 1/(d L. 1 f2 1
y=——={- " +-2; o =X 3% +5;xsx«§x + 35X
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for n=38. Thus
1

77 1.2
76X —3X° =

15.262°

A numerical solution then gives x =1/14.95> s, hence d > n/15. Then d(G) >
n/15-1 for all G = G,,,, G,.,, ..., G, which concludes the proof. O

Remark. The constant ;5 can be improved for large n but not to {5 using our
method.

3.2. In[7] we proved that if the complement G of a graph G has degree bounded
by d then d(G)=2d log(84d), independently of the number of vertices of G. We
show that this is not the case if G has bounded degree:

Theorem. If n is sufficiently large then there exists a bipartite 3-regular graph G
on 2n vertices with

log n
dG)=z——".
(G) 18 loglog n

To prove the theorem we state two auxiliary lemmas.

Lemma 1. For sufficiently large n there exists a bipartite graph G=(V, E) on 2n
vertices such that:

(i) G is 3-regular.
(ii) For every partition V=Au B, |A|=|B|=n there exists a matching M,
|M| = cn=n/34 with e having one endpoint in A and another in B for every
ec M.
(iii) G does not contain induced cycles of length <2t, where ty=1%log n.

Proof. We will proceed by random construction. Let V=X u Y and | X|=|Y|=
n. Let @y, m,, m3: X > Y be three random bijections, each taken with probability
1/n! independently of the choice of the others. Let G=(V, E) be the “random
graph” with edge set E ={{x, m;(x)}; x€ X, i =1, 2, 3}. Thus the probability of a
particular graph G equals pg(G)/(n!)® where pg(G) denotes the number of ways
that G can be written as a union (not necessarily disjoint) of three perfect
matchings.

Claim 1. Denote by p,, the probability that G is 3-regular. Then

lim p,=1/¢.

n->o0
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Proof. The permutation 7, can be chosen in n! ways. If =, is fixed, then n!
(1—-1/11+1/21—- -+ {(=1)"/n!) of permutations m, has the property that m,{x) #
(x) for all xe X, i.e., that edges xm(x) (xe€ X, i=1, 2) form a 2-regular graph
H. If 7, is such a permutation, consider the n X n matrix (a;);.x jcy Where

a; =0 if ij is an edge of H,

a;=1/(n—-2) otherwise.

Then 3,.xa;=1forevery je Y and };.ya; =1 for every ie X.
Hence (a;) is a doubly stochastic matrix. By [8] and [9], for the permanent

P= ¥ Ay r(1)A27m(2) * " " Dnaeim)
e S,

of (a;) we have P=n!/n". On the other hand, P = q(1/(n—2))" where g is the
number of nonzero summands in P. As the nonzero summands clearly correspond
to these = such that m,, m,, 7 induce a 3-regular graph, it follows g=
nl/(1-2/n)".

Hence the number of triples m,, m,, 73 inducing a 3-regular graph is =n! n!

(1-1/1141/21=- -+ (=1)"/nY)n! (1 -2/n)". Then
1 1 (—1)" 2\" 3
p"2(1—1!+§'!~"'+ oy )(l-—n) >1/e
which concludes the proof of Claim 1. [

Claim 2. Denote by g, the probability that G satisfies (ii) with ¢ =35. Then q, > 1
Jor n-> 0,

Proof. Let V=Au B be a fixed pattition, |A|=|B|=n,a=|Xn A|, b=|X - A|,
and a=b. Then b=|YnA|, a=|Y~A| and a+b=n. Set c=+,

St={(xyxeXnY,ye Y- A, m(x)=y}.

2 ()
osj<en \J/\A—]
(a + b) ’
a
The right-hand side is nonzero only if b=a—j for some j, i.e,onlyif a—cn=<b
which yields

We have

Prob{|S{| < cn} =<

(1)

a=|{(n/2)(1+c)]. (2)
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The right-hand side of (1) may be further bounded from above by

(0)2 ( a )2 (L(n/2)<1+cn)2
>\,
o=j<en \J = [C?ﬂ « {Cﬂ} < pnelc)+Klogn

() @ (atieal) |

where ¢(c)=2clogc+3(1—c¢)log((1=¢)/2)—3(1+c)log((1+¢)/2) and K is
independent of n. As ¢(55) >3,

Prob {|S] < en} = 2-@/n

for sufficiently large n. Then Prob{|S}| <ecn|i=1,2, 3}=272". The number of all
2
partitions in question is ( :). Thus the probability that |S <en (i=1,2,3) for

2
some of them is s( n")Z‘z" -0, O

Claim 3. Denote by r, the probability that G has the following property: after
deleting <v/'n edges from G, the graph “G minus deleted edges” does not contain
any cycle of length <2t, where t,=glogn. Then r,=0.99 holds for sufficiently
large n.

Proof. Fix a set C of 2t pairs xy {(xe X, ye Y) forming a cycle, where 1< t,;.
We will estimate the probability r,(C) that G contains C as a cycle. Let my,
7,, 73 be bijections inducing G =(V, E) and let E; be the set of edges induced
by m; (i=1,2,3). Set M, =C n E,; clearly, M, is a matching. By [10, p. 129] we
have 2*'+2 ways to split C into three matchings M,, M,, M;. For each of
them we have a=(n—1)!(n—1)! (n—1;)! triples m;, m,, m; with EnC=
M, (i=1,2,3), where |[M;|=1, (i=1,2,3).
Hence

(n—t){(n—-1)! (n—~t3)!<22“'l

2¢
r"(c)S (2 +2) . Max (n!)S - n2!

for sufficiently large n (as ;< v/n). The number of cycles of length 2t formed by

pairs xy, xe X, ye Y, is
2 2t
n n
tit-1)is—.
(7) r-mn=

Thus the expected number of cycles of length =21¢, contained in G is at most

Z 22t+1<£
< ¢ 100
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Hence we infer that the probability =0.99, G contains at most v'n cycles of length
=2t,. Choosing an edge from each of these cycles we get the required set of edges.

Now we are ready to finish the proof of the lemma. Due to Claims 1-3, for
sufficiently large n there exists a bipartite graph G={(V, E) on 2n vertices that
is 3-regular, has the partition property (ii), and only =<vn - 2t, of its edges is
contained in induced cycles of length =2¢,.

We modify G to get a new graph satisfying (i)-(iii) of the lemma. Consider
an edge xy of G that is contained in a cycle C of length =2t,. Choose another
edge x'y’ such that the distance from x to x’' in G is =2#,+1 and that x'y’ is
contained in no cycle of length =2t,; such x’y’ does exist, for at most §n log n
vertices are contained in cycles of length =2, and at most 3(2*%"'—1)-vn
vertices x’' # x are joined with x by a path of length =2#,+1. Delete edges xy,
x'y’ from G and add xy’, yx’ to G. This does destroy the cycle C but does not
create any new cycle of length =2¢,; moreover, the resulting graph remains
3-regular. Repeating this procedure at most vn times (once for each short cycle)
we get a 3-regular graph without cycles of length =2¢,. Also, the new graph
satisfies property (ii) with |M|=3n—+n, i.e., |M|=n/34 for sufficiently large n.

Lemma 2. The graph G =(V, E)} from Lemma 1 has the following property: for
every function f: V- R there is an induced subtree T of G such that:

(1) diam T =<21,.
(ii) |L|=n""", where L is the set of leaves of T.
(iii) f(x)=f(y) whenever x is a leaf and y is a nonleaf in T.

Proof. For every xe V, let L, be the set of all vertices of V where the distance
from x is t,= |[t,/2] —1. As G does not contain cycles of length =2t, and G is
3-regular, L, has cardinality

§=32"<Vn.

Write V as V={v,,..., v:,} where f(v;)=f(v;)=" "= f(v,,). Choose j such
that for P={v,,..., v} and for B=J,cp L, we have

n—vn=|Bl=n

and put A=V —B. Choose A'c A, B'> B with |A’|=|B|=n. By Lemma 1,
condition (ii), there exists a matching M joining A’ with B’ with |M|=3n. Let
A, be the set of vertices x in A’ such that xy € M for some y € B. As |B'— B|<vn
we have A, =%n—+/n and for A,=A— A, we have |A,]=|A|-|A||=En+2Vn=
3n for sufficiently large n.

(a) We claim that there exists xy€ A such that

S
ion b Az’ = gg.
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Indeed, otherwise |L, N A,|>3:S for every xe A. Denote by N the number of
pairs (x, y) with x€ A, y€ A,, and ye¢ L, (equivalently, xe L,). Then, on one
hand,

N=Y |[L.nA,)|>|ABiS =3ns

xeA

and, on the other hand,

N= Y |L,nA=<|A|S=3nS,
yeA;
a contradiction.

(b) Let L, —A,={x;,...,Xn}, m=5/35. For every i€ {1,..., m}, we havea
path P; of length ¢, from X, to x; and a path Q; of length <¢,+1 from Xx; to some
z;€ P (the existence of @, follows by the definition of B if x; € B; if x;€ A, we
use an M-edge x;y with y € B and a path of length = ¢, from y to a vertex in P).
As the x;’s are pairwise distinct and G does not contain cycles of length 2¢,=
41,+2, the z’s are pairwise distinct, too, and the union of P’s and Q;’s is an
induced subtree T of (. Assuming, in addition, that z, is the only P-vertex
on Q,, the tree T satisfies (iii) due to the definition of P. We have diam T =
41,+2=2t, and |L|=m=§/35=3210/2"2= 0/ Dloen . pU17 ¢40 qufficiently
large n. O

Proof of the Theorem. Let G =(V, E) be the 3-regular bipartite graph on 2n
vertices from Lemma 2; let x> X (x € V) be its representation in R? with t=1.
Set f(x) = ||x}| for xe V. Let T be the induced subtree of Lemma 2. Thus we have
v>0 such that ||%]| =y or |£} =y if x is a leaf or a nonleaf in T, respectively.
Let x, be a nonleaf such that the distance from x, to each of the leaves is at most
t,. For every leaf x, let f, and g, be vertices on the path from x; to x where the
distance from x is 1 and 2, respectively.
Let L, be a maximal set of leaves with the property

x,yeL,, x#y implies g.#g, and g.g €E
If follows easily from the 3-regularity of G and the maximality of L, that
|Ly|=|L|/8=n"""/8. For every xe L, set X=ax+(1—a)g, where a€{0,1) is

chosen so that |X]] = y; such a does exist because ||X]|=]|X]|=y for a =0 and
Il =lg)l=yfora=1;forxe L, set X=% Then for x,ye L,, x#y,

F=[af+(1-a)gIB7+(1-B)g <1,
i =lag+(1~a)g]f=1.

For every x e L, let K, be the ball with center X and radius r=+ 292 —2/2. We
have for x, ye L,

”f—“f” = (£2_2£i+y2)1/2> (2,)’2_2)1/2:2’.
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Hence the balls K, are pairwise disjoint. On the other hand, if x,, x,,...,x,=x
is a path from x, to xe L, then

1% = B = (R = 25,50+ £20) V2= (292~ 2) 2= 2,
hence balls K, are contained in the ball with center x, and radius < (2, + 1)r. Then
|L|Vyrd < V[(2t+ 1)r]4,
where V, is the volume of the unit ball in R It follows

n''7/8< (2t,+1)%,

and thus
1/17 XL -
Zlog(n /8)2 5 logn—3 - logn
log(2t,+1) log(logn)—2 18log(logn)
for sufficiently large n. O
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