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Abstract. The dimension of a graph G = ( V, E) is the minimum number d such 
that there exists a representation x-~ Y¢ ~ R d (x E V) and a threshold t such that 
xy  c E iff .~37 _> t. We prove, that d ( G ) ~  n -  x ( G )  and d ( G ) < - n -  x/n where n = I VJ 
and x(G)  is the chromatic number of G; we present upper bounds for the dimension 
of graphs with a large girth and we show that the complement of a forest can be 
represented by unit vectors in R 6. We prove that d(G)=>~n for most graphs and 
that there are 3-regular graphs with d(G) - c log n/log log n. 

Introduction 

We consider  the geometr ic  d imension of  graphs in t roduced in [7]. Let G ~ ( V, E )  
be a finite graph  without  loops and multiple edges. The dimension d ( G )  o f  G is 
the min imum number  d such that G admits a representat ion in R d ;  a representa- 
tion consists o f  an assignment  x--> ~ ~ R d ( x  ~ V )  and a threshold t ~ R such that  
for  every couple  x, y c V, x ~ y, 

x y ~ E  iff ;)7 >- t, 

where :f)7 is the scalar p roduc t  o f  vectors ~, )7. 
In  [7] we also considered a related no t i on - - t he  spherical d imension sd (G)  o f  

a graph G, which is defined analogously but with an addit ional  condi t ion I1~11 = 1 
for all x c  V. Clearly, sd (G)->-d(G)  for every graph G. 

The not ion o f  spherical d imension is closely related to that o f  sphericity which 
was in t roduced in [4]. The sphericity is defined as the min imum number  d such 
that there exists an assignment x-- ,  ~ c R d and a threshold p -  0 such that 

x y ~ E  iff 11~-)711- P. 
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In [7] it is noted that 

sd(G)  - 1 -< sph(G)  -< sd(G)  

for every graph G. 
Let us list some bounds for d(G) ,  sd(G) ,  and sph(G):  

(1) d ( G ) ~  n - a ( G )  (n = ]V], a(G) is the size of a maximal independent set 
in G). 

(2) s p h ( G ) - - - n - t o ( G )  (where to(G) is the size of a maximal clique in G). 
(3) sd(G)-<-cd log(d) if the complement t~ of  G has maximum degree <-d. 
(4) d ( T ) ~  3 if T is a tree. 
(5) sph (T) -<~(k+  1)logklTJ if T is a tree with degree -<-k. 
(6) sph(T)  -< 108 iogl TI if T is a tree. 
(7) s p h ( F ) ~ 8 [ l o g l F [ ]  if F is a forest. 
(8) qn/Iogn<-sph(Qn)<-czn/logn where Q, is the graph of the n- 

dimensional cube. 
(9) s d ( G ) ~  cd 2 log n if G has maximum degree -<d. 

(10) sph(G~+G2+'" " + G m ) - < 2 ( n - 1 )  where n = m a x  V(G,). 
(11) d(L.J, G,) -< max d(Gi) + 1 where the Gi 's are disjoint. 
(12) d(GuKA)<-d(G)+I  where A c  V and KA is a clique on A. 
(13) sph(G)<12(2c-l)21oglGj for A.~in-> - c  (c->2) and ]GI> 

[ 1 2 ( 2 c -  1) 2 log]GI] 2, where Ami. is the minimal eigenvalue of G. 
(14) sph (L(G) )  < 108 log m where m = tEl and m > (108 log m) ~. 
(15) s p h ( G ) - l o g  ct(G)/(log(2r(G)+ 1)) where r (G)  is the radius of  G. 

For these and related further results see [1]-[4] and [7]. 
The aim of this paper  is to present some other upper and lower results for 

d(G) .  In Section 1 we prove that d ( G ) ~  n - x ( G )  where x(G) is the chromatic 
number of  G which, together with (1) above, yields d ( G ) -  < n -x /n .  In Section 2 
we consider the dimension of forests and graphs with a large girth. In Section 3 
we deal with lower bounds for d(G).  We prove that most of  the graphs on n 
vertices have d (G)  > - n~ 15 for sufficiently large n. We also prove that, contrary 
to (3) above, there are graphs G,  with maximum degree -<-3 but with d ( G , ) >  
log n/18 log log n. 

1. General Upper Bounds 

1.1. Theorem. For every graph on n vertices, 

d(G)<- n -X(G) .  

Proof 1. The set V of  vertices of  G = (V, E) with x ( G ) = X  can be written as 

V = K u Ak+l U Ak+2U " " " U Ax, 
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where K is a clique o f  size k, each A~ has size >-2, and A~ is a maximal independent  
set in the induced subgraph G~ on K w Ak+~ w "  • • w A ,  k + 1 <- i <- X. 

Indeed,  let A ~ w . . . w A  x be the decomposi t ion  o f  V corresponding  to a 
coloring o f  G such that Ia , I  <-IA21 < - . . .  ~ l&l. I f  A X is not maximal  independent  
in G x, we move suitable vertices of'A~ u .  • .  w Ax_~ to A~ to make it such. Then 
we proceed in the same way with Ax_~ , Ax_~ . . . .  , A~.  Thus if k +  1 is the least 
integer with IA~+~I >- 2 then K = A~ w • • • w Ak  is a clique o f  size k. 

2. Let [Ak+t[ = d + 1. Then Gk+~ can be represented in R d with a threshold 
t < 0. Indeed,  consider  the vertices ~0,. • . ,  ~d o f  the regular simplex in R d centered 
at the origin with 

:~,~ = -I (i # j ) ,  ~,2 = d. 

Let K = { x ~ , . . . , X k } , A ~ + ~ = { u o , . . . ,  Ua}. Put 

x , =  Z Zr ( i = l , . . . , k ) ,  
r e  I~ 

where 

and 

We have: 

I, = { r [ x , u , ~  E }  

fij = 2 d 2 ~  ( j  = 0 , . . . ,  d).  

(a) ~ : : = Z { ~ r L l r c  l , , s c  l ~ } > - - d  2. 

(b) a , ~ , = - 4 d 4 < - d  2 for i # j .  

(c) If  x, u j e  E then 

X,l/j = 2d 2 2 {ZrZj]r Eli} 

= 2d 3 + 2d ~ Y~ {G2)[r ¢ I, - {j}} >- 2 d  3 - 2d 3 = O. 

(d) If  xiuj ~ E then ~,fij = - 2 d 2 1 I d  < - d  2 for I~ # Q because o f  the maximality 
o f  A~+~. 

Thus vectors £ ,  t~ form a representat ion o f  Gk+t in R d with the threshold t = - d  2. 
3. Suppose  Gh can be represented in R d with a threshold t < 0 .  Then Gh+t 

can be represented in R d ~', where s + 1 = IAh+~l, with a negative threshold. Indeed,  
let x ~ , . . . , x , ,  be vertices o f  Gh and u 0 , . . . ,  u~ vertices o f  Ah+~. Let f f ~ , . . . , £ ,  
form the representat ion of  Gh in R a with a threshold t < 0. Thus there is t~ < t 
such that 

ff,:~->t if x ~ x j c E  and £igj-<tt if x ~ x j ~ E .  

Again, choose  vectors : ?o , . . . ,  :L in R ~ with 

Put 

~ = - 1 fo r  i : L ~ = s. 

r E  I t 

~j = (0, ~2j) • R ~÷' 

( i = 1  . . . . .  m), 

( j  = o , . . . ,  s ) ,  
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where I~ is defined as in 2 above and a > 0, e > 0 will be specified later. Then 
we have: 

(a) I f  xix i e E then 

x',~, = ~ ,  + 2 X ( e , ~ I r  ~ I ,  u ~ I s} >- t - ~2s2. 

(b) I f  xixj ~ E then 

~i~j<-t,+e 2 ~ e~<-e2s(s+l)+tl. 
~=o 

(c) I f  x~uj e E then 

= a e ~  + a e  ~ (z,~l r e I, - {j}} -> ores - aes  = 0. 

(d) I f  xiuj~ E then 

because the inclusion maximali ty o f  Ah+l in Gh+l forces ILl > 0. 
(e) fi, ffj = - a  2 for i ~ j .  

w e  are going to show that  a ,  e can be chosen such that vectors ~ ,  fi) form a 
representat ion o f  Gh+l with any threshold t '  where t t <7 t '<7 t < 0. Indeed,  first 
choose  e > 0 sufficiently small such that 

t - e 2 s 2 >  t' (see (a)), 

t ~ + e 2 s ( s + l ) < t  ' (see (b)). 

Then choose  a sufficiently large such that 

- a ~  < t' (see (d)),  

- o t 2 < t  ' (see (e)). 

4. It follows from 2 and  3 above that by induct ion G = G x can be represented 
in R a where 

d = ( I a k + , l -  1) + ( Iak+~l -  1 ) + ' ' '  + ( Ia ,~ l -  1) 

- - Iv -g l - (x -k )=n-x .  

This concludes  the p r o o f  o f  the theorem. [ ]  

1.2. Corollary.  For every graph G on n vertices, 

d(G)---  n - , ~ .  
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Proof. In  [6] the threshold dimension O(G) of  a graph G is in t roduced and 
shown to satisfy O(G)<- n - a ( G )  where a ( G )  is the size o f  a maximal  indepen- 
dent set in G. Following [7], d(G)<-O(G) for  every graph G. Thus d ( G )  < - 
n -  t~(G). As a ( G ) .  x (G)>-n ,  we have m a x ( a ( G ) ,  x(G))>-x/-ff, hence 

d ( G )  -< min(n - a( G), n - x ( G ) )  <- n -x/-n. [] 

2. Upper Bounds for Graphs Without Cycles 

2.1. Proposition. I f  G is a forest then d ( G ) < - 3 ;  the representation can be chosen 
to have a positive threshold. 

Proof. This is proved in [7] for G a tree; in more detail, for every e > 0, a tree 
G = (V, E)  can be represented in R 3 with the threshold t - -  1 such that vectors g 
representing vertices x ~ V satisfy 1 < ]]glt < 1 + e. Then diam{~]x ~ V}-~ 0. Thus,  
as the tree G is connected,  its representat ion can be found to be placed in an 
arbitrarily small ball with center on the unit sphere S in R 3. Now,  if G is a forest 
with componen ts  G I , . . . ,  G,,, then choose distinct points c l , . . . ,  Cm and balls 
Bi with centers ci, each with a radius r. Represent  G~ in B~; if r is small enough,  
this yields a representat ion o f  G in R 3 with the threshold t = 1. 

2.2. Proposition. I f  G is a forest that does not contain the tree To below as an 
induced subgraph then d ( G )  -< 2 where the representation in R 2 can be chosen to 
have a positive threshold t. 

Proof. In  fact, this is proved in [7] for G = ( V , E )  with t ' = l - e  ( 0 < e < l )  
where e can be arbitrarily small, and vectors ~ ~ R 2 represent ing vertices o f  V 
satisfy 1 -> t1~ II -> 1 - e. Thus the representat ion can be constructed with diam{glx 
V} arbitrarily small. Using the same argument  as in the preceding proposi t ion,  
this can be used to represent any forest wi thout  induced To in R 2 with a positive 
threshold (Fig. 1). 

2.3. Proposition. A graph G on n vertices can be represented in R d where: 

I. d - < ~ n + l  if G has a girth at least 7, 
I I .  d<-~n+] if G has a girth at least 6, 

I I I .  d : 3 -<5n+3 if G has a girth at least 5. 

Fig. I 

To 
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Remark. Proposition 2.3 yields linear upper bounds for d(G)  for G without 
short cycles, which, however, can be further improved (to appear in a subsequent 
paper). Using a probabilistic approach we can, for example, show an upper 
bound of  the form c~p(log n) ~ for any C4-free graph with edge density p. As it 
is well known that p -< x/-ff for any C4- free graph, this clearly~mproves Proposition 
2.3 for n >- n(c~, c2). To prove Proposition 2.3 we need the following. 

Lemma. Let a graph G = (V, E) contain a set C of  vertices spanning one of  the 
graphs C5, Ca, C7, C8, 1>7 such that each vertex in V -  C is adjacent to at most one 
of  the vertices o f  C. Let the induced subgraph G' o f  G on V -  C be represented in 
R a with a positive threshold. Then G can be represented in R d+2 with a positive 
threshold. 

eroof. 

Then 

Let C = { v o , . . . ,  vr-l} span Cr, 5-< r-<8. Put 

:~i = t cos  T ,  s i n - -  ( i = 0 , . . . ,  r - l ) .  

2zr 2~" -2 
z, =1, ~,~+, =COST>_COST> 0. 

~ - - - 0  for i # j + l m o d r ,  i # j .  

Let x ~ ~ ~ R a be a representation of  G'  in R a with a positive threshold t, without 
loss of generality, t = 1. Then, if a > C is sufficiently small, vectors 

~ = ( g ,  a~,)~ R ~+2 ( x E V - C , v ~ x ~ E ) ,  

X---- (3~, 0 )  E R a+2 ( x e V - C ,  v i x ~ E f o r n o i )  

form a representation of  G'  in R d÷2 with a threshold t', where 

2~ 
C O S - - <  t ' <  1. 

r 

Put 

~, = (8, ~,1~). 

Then, for sufficiently small a > O, 

1 27r 
M,+, = ~  cos T >  1, 

v'~--<O if i # j + l m o d r ,  i # j ,  

£ v i = l > t '  if x ~ V - C  is adjacent to v .  

27r 
~ -< cos - -  < t' if x ~ V -  C is not adjacent to v~. 

r 
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This proves that vectors ~ (x E V -  C) and ~ (i = 0 , . . . ,  r -  1) form a representa- 
tion of  G in R a÷z with the threshold t'. 

If  C spans PT, add a new vertex xo to G to be adjacent just to an endpoint 
of PT; the resulting graph G'  contains a copy of  (28 on C u {Xo} and hence G'  
can be represented in R d÷2 with a positive threshold by the preceding part of  
the proof. 

Proof of Proposition 2.3. We shall prove by induction on n that G has a 
representation in R d with a positive threshold where d is bounded by ~n + 1 or 
1 2 2 3 ~n +3 or 3n +3 in cases I, II, and III,  respectively. This is certainly true if n -< 3. 
Let n > 3. 

1 2 2 3 (a) Let G be a forest. Then d(G)<-3<-2n+l<-~n+~<-~n+3 if n>_7, see 2.1 
above. If  4_< n < 7  then d(G)<-2<-~n+~<-~n+l<-~n+~ by 2.2. 

(b) Let G = ( V, E) not be a forest. Let D be the shortest cycle in G of length 
k. If k > 8, choose C c D spanning P7; if k -< 8, let C = D. Due to the minimality 
of D, every vertex of the induced subgraph G'  on V -  C is adjacent to at most 
one vertex of C. If  k>-7 or k = 6  or k = 5  then G ' h a s  < - n - 7  or n - 6 o r  n - 5  
vertices, respectively. By the induction assumption, G can be represented in R d' 
where 

d '<_2(n-7) /7+l  

o r  

d' <_(n-6)/3+~ 

o r  

d'_< 2(n -5)/5+~, 

respectively, with a positive threshold. By the lemma, G can be represented in 
1 2 R a with a positive threshold where d - - d ' + 2 ,  hence d-<2n + 1, or d-<~n +3 or 

2 3 d -< 3n + 3, respectively. 

2.4. The following is an essential improvement of a result of  Frankl and Maehara 
[2] who proved 

sd(G)-< 8 log n 

if (~ is a forest. Let us remark that sd(G) is unbounded for trees. It was proved 
in [7] that 

sd(B,) _> c log n/ log log n, 

where B, is the "complete binary" tree on n = 2 s -  1 vertices with s levels. 

Proposition. I f  the complement G of G is a forest then 

sd(G)-<6. 
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Proof. Let G = ( V, E )  and  t~ be a forest. In  each componen t  K~ of  t~, choose 
a vertex r~ to be a root  o f  the tree K~. This defines decomposi t ion  o f  each K~ into 
levels. Also, neighbors  o f  each vertex x that is not  a root  consist o f  a father and 
of  a family o f  sons. Let V~ be the set o f  all vertices on odd levels (thus all roots 
r, are in V0 and V2 = V -  V2. Then V2 can be written as V2 = { x ~ , . . . ,  x~} in such 
a way  that sons of  each y e V~ form a segment o f  the form 

X j ,  X j +  1 ~ . . . , X k .  

Choose  reals a~, 

21r ( n - 1 ) I r <  
O <  0/1 < - - < ~  0 ~ 2 < - -  < • • , < ~  Ofn < ~" " 

n n n 

Fix a y ~  V~ with sons as above and with the father xr, define a complex 
polynomial  gy, 

x(z-exp( iTr(r-1)  [n ]] z-expt'"nJJ['rrr' ' exp(-irr(2r-l') 
We can verify that the coefficients o f  gy are o f  the form 

gy(Z)=C2+ClZ+CoZ2+~lZ3+~2z4, corR. 

Put b * = 2  Re c,, a * = 2  Im cl (i = 1,2), and d*o=Co. For  a real a, define f y ( a )  = 
gy(exp ia ) .  e x p ( - 2 i a ) .  Then 

f y ( a )  = c2 e -2i'~ + cl e -'~ + Co+ ~ e '~ + c2 e 2~ 

= do* + a*  sin a + b* cos a + a* sin 2a  + b* cos 2a. 

bl,a2,b*2)" (1, sina, cosa,  s in2a ,  Thus fy is real valued, f y ( a ) = ( d * , a * ,  * * 
cos 2a ) .  As the only roots  o f  gy are exp(i(~r(j  - 1 ) /n ) ) ,  exp(i(Trk/n)), exp(i(Tr(r - 
1 ) /n ) ) ,  exp(i(1rr/n)) we see that the only roots o f  f r  are r r ( j - l ) / n ,  ~rk/n, 
• r ( r -  1)/n, and  zrr/n. Hence fy has the same sign at a~, a j+ l , . . . ,  Ctk_~, ak, and 
a , ,  and the opposi te  sign at the other  ai 's.  Put 

e = - sgn f y (a r )~ / x /d*2+  a1"2+ b1'2+ a2"2+ b2 .2, 

hy = efy, d y = ed*, a~ = ea*,, b~ = eb? (i = 1, 2). 

Then hy(a~) < 0 for j < i -< k and  for i = r and hy(ai) > 0 otherwise. 
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Put 

Then 

- -  y y y 33 - (do, a~, b~, a~, b y, 2), 

~ = (1, sin a~, cos a,, sin 2a~, cos 2a~, -2 ) .  

~ = h y ( a i ) - 4 < - 4  for j_<_i<_k, i=r ,  i.e., for x t y e E ,  

~37 = h y ( c t , ) - 4 >  - 4  otherwise, 

g ~ > - 1 + 4 > - 4  for all i,j, 

tl~,ll = IIYll = 4 ~ .  

Using the same construct ion for all y e V~, we also see that, for  y~, y~ ~ V~, 

)7~ 33: > - 3 + 4 >  - 4 .  

Thus we have a representat ion o f  G in R 6 by vectors with the same norm x/ff 
and with the threshold t = - 4  which concludes the proof.  []  

3. Lower Bounds 

3.1. We shall prove that  most  graphs on n vertices have dimension >-n/15-1 .  
However,  the only graphs o f  that  d imension we explicitly know are those contain- 
ing K,r for  r >  n/15 [7]. 

Theorem. Let t, be the total number of  graphs G on n >- 38 vertices. Then at least 
( 1 - 1 / n ) t n  of them have 

d ( G ) > _ n / 1 5 - 1 .  

Proof. 1. Let G~, G2, • • •, G,~ be a list o f  all graphs on the set V = {xl , .  • . ,  xn} 
of  vertices where d(G1) --- d(G:)-<-- • - -< d(G, ,) .  Let r = [ t , / nJ ,  d = d(G~+l)+ I. 
Then G ~ , . . . ,  Gr can be represented in R d with the threshold 1; in fact, if 
x~ ~ g~ c R d-~ is a representat ion in R a-~ with a threshold t < 1 (or t-> 1) then 
x~ -~ (g~, x/1 ' '± t) or  (x~ ~ ( ~ / t ,  0), resp.) is a representat ion in R a with the threshold 
1. Also, using small changes o f  coordinates we can modify  the representations 
in such a way that xixj > 1 rather than g~j  --- 1 if x~xj is an edge, and that  vectors 
g~ . . . .  , ga representing vertices x ~ , . . . ,  Xd are linearly independent .  Finally, if 
£~ = ( £ ~  . . . . .  X,d)e R d is the vector o f  coordinates o f  x~ with respect to the 
or thonormai  basis obtained from the base g ~ , . . . ,  ~d by the G r a m m - S c h m i d t  
or thonormalizat ion process,  then g~gj=x'~£j; moreover ,  obviously £~,~÷~= 
x'~.~+2 . . . . .  X~d = 0  for i =  1 , . . . ,  d - 1 .  To summarize  our  considerat ion,  we 
have representat ions x~ ~ £~  o f  graphs G = G ~ , . . . ,  Gr in R a such that  

£ ~ £ ~  > 1 if x~xj is an edge in G, 

£~£ff  < 1 if x~xj is a nonedge  in G, 
~G x 0 = 0  if l< - i< j<-d .  
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2. Define polynomials Po (1 <- i <j-< n) in (nd - (d(d - 1)/2)) variables X l l  , 

X21 , X22 , X31 , X32 ~ X33 , . . . ,  X d l ~ . . . ,  Xdd ~ X d + l , 1 , . . . ,  X d + l . d , . . . ,  X n l ~ . . .  , Xnd by 

d 

Po (x .  ~).~ = E X,kXjk -- 1 
k = l  

(where Xik = 0 if 1 --< i < k <-- d and analogously for Xjk). Then for ~o = (x,~),.~'° R N 
(where N = n d - ( d ( d  - 1)/2)) we have 

p~(£c)  > 0 if xixj is an edge in G, 

P g ( £ c ) < 0  ifx~x) is a nonedge in G. 

3. Following a result of Warren [5], given arbitrary polynomials P ~ , . . . ,  PM 
on N variables of  degree -< D where M -> N, the total number of  sign sequences 
( sgnP~(x ) , . . . , sgnPM(x ) )  that consist of terms +1, -1  does not exceed 
( 4 e D M / N )  N. 

4. Let us apply this estimate to our polynomials P0 ; as distinct graphs G ~ G'  
induce distinct sign sequences of Po at ~ and :~c,, we have 

r <- ( 4 e D M / N )  N. 

n) and N = n d - ( d ( d - 1 ) / 2 ) .  Hence Here r=2(~)/n, D = 2 ,  M =  2 ' 

( ( 2 ) / ) N < (  4e IN  
r<_ 8e N - \ N / n 2 ]  , 

N n d - ( d ( d - 1 ) / 2 )  (0,1) ' 
r~/"2<-14e, Y where y - n 2 -  n2 

\ Y /  

In r<  a ln(4e/y ) 

n 2  - - 7 "  
(,) 

We have 

ln r ( l n 2 ) ( 2 ) - l n n  ln2  In2 Inn In2 1 

n 2 n 2 2 2n n 2 -- 2 85.9 

for n -> 38. The numerical solution of the equation y ln(4e/y) - (In 2))2+ 1/85.9 = 
0 on (0, 1) is y-'- 1/15.26175, and the function y ln(4e/y)  is increasing on (0, 1). 
Hence (*) implies y-> 1/15.262 for n->38. Putting x =  d / n  we have 

d l [ d \ 2  1 [ d \  _ ½ x : + l x < x _ ~ x 2 + 7 ~ x  
Y : n - - 2 ~ n )  +~n~n)  = x 
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for n-> 38. Thus 

1 
7 7  - -  l x 2  ~_~ 

vgx 15.262" 

A numerical solution then gives x > 1/14.95 > ~ ,  hence d > n~ 15. Then d ( G ) >  
n / 1 5 - 1  for all G = Gr+l, G r + 2 , . . . ,  Gt. which concludes the proof. [] 

Remark. The constant ~ can be improved for large n but not to ~ using our 
method. 

3.2. In [7] we proved that if the complement t~ of  a graph G has degree bounded 
by d then d ( G ) -  2d log(8d), independently of  the number of  vertices of  G. We 
show that this is not the case if G has bounded degree: 

Theorem. I f  n is sufficiently large then there exists a bipartite 3-regular graph G 
on 2n vertices with 

log n 
d(G)>-- 

18 log log n 

To prove the theorem we state two auxiliary lemmas. 

[,emma 1. For sufficiently large n there exists a bipartite graph G = ( V, E)  on 2n 
vertices such that: 

(i) G is 3-regular. 
(ii) For every partition V = A w  B, ]At = IBI = n there exists a matching M, 

IMI = cn >- n/34 with e having one endpoint in A and another in B for every 
e ~ M .  

(iii) G does not contain induced cycles of  length <2to where to=~ log n. 

Proof. We will proceed by random construction. Let V = X u Y and IXI = I YI = 
n. Let ~rt, ~r2, ¢r3: X-~ Y be three random bijections, each taken with probability 
l / n !  independently of  the choice of  the others. Let G = (V, E)  be the " random 
graph" with edge set E = {{x, w,(x)}; x ~ X, i = 1, 2, 3}. Thus the probability of  a 
particular graph G equals p g ( G ) / ( n  !)3 where pg(G)  denotes the number  of ways 
that G can be written as a union (not necessarily disjoint) of  three perfect 
matchings. 

Claim 1. Denote by p. the probability that G is 3-regular. Then 

lira p. >- 1/e 3. 
n .- ,oo 
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Proof. The permutat ion ~r~ can be chosen in n! ways. I f  ~-~ is fixed, then n! 
( 1 - 1/1 ! + 1/2 ! . . . .  + ( -  1 ) " / n  !) o f  permutat ions 7r2 has the proper ty  that ~r2(x) 
~r~(x) for all x e X, i.e., that edges x ~ ( x )  (x ~ X, i = 1, 2) form a 2-regular graph 
H. I f  ~r2 is such a permutat ion,  consider the n × n matrix ( a o ) ~ x j ~ r  where 

a~j=0 if ij is an edge o f  H, 

av = 1/ ( n - 2 ) otherwise. 

Then Y ~ x a i j  = 1 for every j c  Y and Y.j~va~j = 1 for every i ~ X .  
Hence (a~j) is a doub ly  stochastic matrix. By [8] and [9], for  the permanent  

P = ~ al~r(1)a2,r(2) " " " a,~(n) 

of  (a o) we have P>-n! /n" .  On the other  hand,  P =  q ( 1 / ( n - 2 ) ) "  where q is the 
number  o f  nonzero  summands  in P. As the nonzero  summands  clearly correspond 
to these 7r such that ~'~, 7r2, ~r induce a 3-regular graph,  it follows q>- 
n!/(1 -2/n)". 

Hence the number  o f  triples ~rl, ¢r2, 7r3 inducing a 3-regular graph is -> n [ n ! 
( l - l / l ! +  1/2! . . . .  + ( - 1 ) " / n ! ) n !  ( 1 - 2 / n ) " .  Then 

( 1 1 ( - 1 ) ~ ( 1 _ 2 ~ "  1/e  3 
p n -  > 1 - ~ . + ~  . . . .  + n! / \  n /  

which concludes  the p r o o f  of  Claim 1. [] 

Claim 2. Denote by q. the probability that G satisfies (ii) with c = ~3. Then q. -> 1 
for  n ~ .  

Proof. Let V = A u B be a fixed partition, IAI = {R{ = , ,  a = Ix ~ AI, b = IX - A1, 
and a>-b. Then b = J Y n a l ,  a = J Y - a l ,  and a + b = n .  Set c=~3 ,  

We have 

S~ = {(x, y)Jx ~ X n Y, y ~ Y -  A, 7r,(x) = y}. 

Prob{jS~l < cn} <_ o<_j<~, j a - j  O) 

The r ight-hand side is nonzero  only if b - a - j  for  some j, i.e., only if a - cn <- b 
which yields 

a - t ( n / 2 ) ( 1  + c ) j .  (2) 
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The right-hand, side of (1) may be further bounded from above by 

Y~ ( j )2  ( a ) 2  ([(n/2)(1+c)]~2 

o~-j<c, -~ [cn] <\  [cn] ] <__2_,~)+~log,, 

where ~ ( c ) = 2 c l o g c + ½ ( 1 - c ) l o g ( ( 1 - c ) / 2 ) - ] ( l + c ) l o g ( ( l + c ) / 2 )  and K is 
independent of n. As ~o(~3)>~, 

Prob {Is,al < cn} <- 2 

for sufficiently large n. Then Prob{ISal < cnli = 1,  2, 3} <-2 -2". The number of all 

partitions in question is ( 2n). Thus the probability that lS~a, < cn ( i = l, 2, 3 ) for 

[2n\ 2, 
some of them is -<~ n )2 -  ~0 .  [] 

C l a i m  3. Denote by r, the probability that G has the following property: after 
deleting <-x/-ff edges from G, the graph "G minus deleted edges" does not contain 
any cycle of length <-2to where t0=~log n. Then r, ---0.99 holds for sufficiently 
large n. 

Proof Fix a set C of 2t pairs xy (x ~ X, y ~ Y) forming a cycle, where t - to. 
We will estimate the probability r,(C) that G contains C as a cycle. Let 7q, 
~r2, ~r3 be bijections inducing G = ( V, E) and let E~ be the set of edges induced 
by ~ri (i = 1, 2, 3). Set M~ = C c~ Ei ; clearly, Mi is a matching. By [10, p. 129] we 
have 22'+2 ways to split C into three matchings M~,M2, M3. For each of 
them we have a = ( n - t l ) ! ( n - t 2 ) ! ( n - t 3 ) !  triples ~'1, ~r2, ~r3 with E~nC= 
M~ (i = 1, 2, 3), where [Mi[ = t~ (i = 1, 2, 3). 

Hence 

r,(C) < - (22'+2) • Max ( n -  tl)! ( n -  t2)! ( n -  t3)!< 22 '+~ 
(n !)3 - -  n 2 t  

for sufficiently large n (as t~ << x/if). The number of cycles of length 2t formed by 
pairs xy, x c X, y ~ Y, is 

T. 

Thus the expected number of cycles of length -<2to contained in G is at most 

2 2t+l 
~ <  

,~,o t 100" 
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Hence we infer that the probability ---0.99, G contains at most v/-ff cycles of length 
-<2to. Choosing an edge from each of these cycles we get the required set of edges. 

Now we are ready to finish the proof of  the lemma. Due to Claims 1-3, for 
sufficiently large n there exists a bipartite graph G = (V, E)  on 2n vertices that 
is 3-regular, has the partition property (ii), and only <--,/n. 2to of  its edges is 
contained in induced cycles of  length -<2to. 

We modify G to get a new graph satisfying (i)-(iii) of the lemma. Consider 
an edge xy of  G that is contained in a cycle C of  length -<2to. Choose another 
edge x'y'  such that the distance from x to x' in G is >-2t0+ 1 and that x'y' is 
contained in no cycle of  length <-2t0; such x'y' does exist, for at most ~n log n 
vertices are contained in cycles of length -<2to and at most 3(22~o+1-1) • x/-ff 
vertices x ' #  x are joined with x by a path of length ---2t0+ 1. Delete edges xy, 
x'y'  from G and add xy', yx' to G. This does destroy the cycle C but does not 
create any new cycle of  length -<2t0; moreover, the resulting graph remains 
3-regular. Repeating this procedure at most x/-ff times (once for each short cycle) 
we get a 3-regular graph without cycles of length <-2to. Also, the new graph 
satisfies property (ii) with tMI->~3n-x/if, i.e., IMt-> n/34 for sufficiently large n. 

Lemma 2. The graph G = ( V , E )  from Lemma 1 has the following property: for 
every function f :  V ~ R there is an induced subtree T of G such that: 

(i) diam T<-2to. 
(ii) [Ll>-n 1/t7, where L is the set of  leaves ofT.  

(iii) f ( x )>- f ( y )  whenever x is a leaf and y is a nonleaf in T. 

Proof. For every x ~ V, let Lx be the set of  all vertices of V where the distance 
from x is tl = [to/2J - 1. As G does not contain cycles of length -<2to and G is 
3-regular, Lx has cardinality 

S = 3.2 ',-1 < v/ft. 

Write V as V = { v l , . . . ,  v2.} where f(vl)>-f(v2)>- . .  • >--f(v2.). Choose j such 
that for P = { v l , . . . ,  vj} and for B =l._Jx~. Lx we have 

and put A =  V - B .  Choose A ' c A ,  B ' m B  with IA'l=l~'l=n. By Lemma 1, 
condition (ii), there exists a matching M joining A' with B' with [Ml>-s~n. Let 
AI be the set of  vertices x in A' such that xy ~ M for some y c B. As IB' - BI <,/-ff 
we have A1 > ~n  - x/'ff and for A2 = A -  A1 we have IA21 - IAI- IA , l -  n + 
34 ~n  for sufficiently large n. 

(a) We claim that there exists x0e A such that 
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Indeed,  otherwise ILx ~ A~i > 34 ~5S for every x ~ A. Denote  by N the number  o f  
pairs (x, y)  with x ~ A, y ~ A~, and y e L~ (equivalently, x ~ Ly). Then,  on one 
hand,  

N =  E IL~A~I>tAI~S>--~" g3nS 
x ~ A  

and,  on the other  hand,  

N = E ILv ~ a <- tA:IS <- ~nS,  ~ "  
y ~ A  2 

a contradict ion.  
(b) Let L ~ o - A 2 = ( x l , . . . , x m } ,  m>-S/35.  For every i ~ { 1 , . . . ,  rn}, we have a 

path P~ of  length t~ from Xo to x~ and a path Q~ of  length ~ h + 1 from x~ to some 
z~ c P (the existence of  Q~ follows by the definition of  B if x; ~ B; if x~ ~ A~ we 
use an M-edge  x~v with y ~ B and a path o f  length = t~ from y to a vertex in P).  
As the x / s  are pairwise distinct and G does not contain cycles o f  length 2to ~ - 
4 h + 2 ,  the z,'s are pairwise distinct, too, and the union of  P~'s and Q~'s is an 
induced subtree T of  G. Assuming, in addit ion,  that  z~ is the only P-vertex 
on Q ,  the tree T satisfies (iii) due to the definition o f  P. We have diam T<- 
4 h + 2 - < 2 t o  and ILi=m~-SI35=]321'ot2j-z~2(ll17)l°gn=n 1/17 for sufficiently 

large n. []  

Proof of  the Theorem. Let G = (V, E)  be the 3-regular bipartite graph on 2n 
vertices f rom Lemma 2; let x-~ ~ (x ~ V) be its representat ion in R a with t = 1. 
Set f ( x )  = ]]xl[ for x e  V. Let T be the induced subtree of  Lemma 2. Thus we have 
3 , > 0  such that H~]]-> 3, or  ]]~]]-< y if x is a leaf or  a nonleaf  in T, respectively. 
Let Xo be a nonleaf  such that the distance from Xo to each of  the leaves is at most  
to. For  every leaf x, let f~ and g~ be vertices on the path from Xo to x where the 
distance from x is 1 and 2, respectively. 

Let Lt be a maximal  set o f  leaves with the proper ty  

x, y c L 1 ,  x # y  implies g x ~ g y  and gxgy~E.  

I f  follows easily f rom the 3-regularity o f  G and the maximali ty o f  Ll that  
ILl/8 -~ n' / '7t8.  For every x ~ L, set ; = a ~ +  (1 - a)gx where a ~ (0, 1) is 

chosen so that  II;[l = Y; such a does exist because lixll = l l~lI-  y for  a = 0  and 
it£it = ]igxil <- y for ~ = 1; for  x c  L~ set .~=~. Then for  x, y e  L~, x # y ,  

.~j7 = [a.~ + (1 - a)l~x l i f t .9 + (1 -¢7)~j , ]  < 1, 

; L  = [<~,z + (1 - <~ )~ ]L - - -  1. 

For every x ~ LI ,  let Kx be the ball with center £ and radius r =x /23 ' 2 -2 /2 .  We 
have for x, y e L1 

I I ; - ; 11  = ( ; ~ -  2 ;~  + Y~) ' j ~>  (23' ~ -  2) '/~ = 2r. 
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Hence the balls Kx are pairwise disjoint. On the other hand, if Xo, x t , .  • •, x, = x 
is a path from Xo to x c L, then 

(Xi--2X~X~+I+X~+I) --<-(2y --2)1/2=2r, 

hence balls Kx are contained in the ball with center Xo and radius -<(2to+ 1)r. Then 

It,I Vdr d <- VaE(2to+ 1)r] d, 

where Vd is the volume of the unit ball in R d. It follows 

nl/17/8~--- ( 2 t o +  l )d ,  

and thus 

log(n1~17~8) ~ log n - 3  log n 
d E  ~ 

log(2to+ 1) - l o g ( l o g  n ) - 2  18 log(log n) 

for sufficiently large n. [] 
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