Embeddings of Graphs in Euclidean Spaces

J. Reiterman, V. Rödl, and E. Šiňajová
Department of Mathematics FJFI, Technical University of Prague, Husova 5, 11000 Prague 1, Czechoslovakia

Abstract

The dimension of a graph $G=(V, E)$ is the minimum number d such that there exists a representation $x \rightarrow \bar{x} \in R^{d}(x \in V)$ and a threshold t such that $x y \in E$ iff $\bar{x} \bar{y} \geq t$. We prove that $\mathrm{d}(G) \leq n-\chi(G)$ and $\mathrm{d}(G) \leq n-\sqrt{n}$ where $n=|V|$ and $\chi(G)$ is the chromatic number of G; we present upper bounds for the dimension of graphs with a large girth and we show that the complement of a forest can be represented by unit vectors in R^{6}. We prove that $\mathrm{d}(G) \geq \frac{1}{15} n$ for most graphs and that there are 3 -regular graphs with $\mathrm{d}(G) \geq c \log n / \log \log n$.

Introduction

We consider the geometric dimension of graphs introduced in [7]. Let $G=(V, E)$ be a finite graph without loops and multiple edges. The dimension $\mathrm{d}(G)$ of G is the minimum number d such that G admits a representation in R^{d}; a representation consists of an assignment $x \rightarrow \bar{x} \in R^{d}(x \in V)$ and a threshold $t \in R$ such that for every couple $x, y \in V, x \neq y$,

$$
x y \in E \quad \text { iff } \quad \bar{x} \bar{y} \geq t
$$

where $\bar{x} \bar{y}$ is the scalar product of vectors \bar{x}, \bar{y}.
In [7] we also considered a related notion-the spherical dimension $\operatorname{sd}(G)$ of a graph G, which is defined analogously but with an additional condition $\|\bar{x}\|=1$ for all $x \in V$. Clearly, $\operatorname{sd}(G) \geq \mathrm{d}(G)$ for every graph G.

The notion of spherical dimension is closely related to that of sphericity which was introduced in [4]. The sphericity is defined as the minimum number d such that there exists an assignment $x \rightarrow \bar{x} \in R^{d}$ and a threshold $\rho \geq 0$ such that

$$
x y \in E \quad \text { iff } \quad\|\bar{x}-\bar{y}\| \leq \rho
$$

In [7] it is noted that

$$
\operatorname{sd}(G)-1 \leq \operatorname{sph}(G) \leq \operatorname{sd}(G)
$$

for every graph G.
Let us list some bounds for $\mathrm{d}(G), \operatorname{sd}(G)$, and $\operatorname{sph}(G)$:
(1) $\mathrm{d}(G) \leq n-\alpha(G)(n=|V|, \alpha(G)$ is the size of a maximal independent set in G).
(2) $\operatorname{sph}(G) \leq n-\omega(G)$ (where $\omega(G)$ is the size of a maximal clique in G).
(3) $\operatorname{sd}(G) \leq c d \log (d)$ if the complement \bar{G} of G has maximum degree $\leq d$.
(4) $\mathrm{d}(T) \leq 3$ if T is a tree.
(5) $\operatorname{sph}(T) \leq \frac{1}{2}(k+1) \log _{k}|T|$ if T is a tree with degree $\leq k$.
(6) $\operatorname{sph}(T) \leq 108 \log |T|$ if T is a tree.
(7) $\operatorname{sph}(F) \leq 8\lceil\log |F|\rceil$ if F is a forest.
(8) $c_{1} n / \log n \leq \operatorname{sph}\left(Q_{n}\right) \leq c_{2} n / \log n$ where Q_{n} is the graph of the n dimensional cube.
(9) $\operatorname{sd}(G) \leq c d^{2} \log n$ if G has maximum degree $\leq d$.
(10) $\operatorname{sph}\left(G_{1}+G_{2}+\cdots+G_{m}\right) \leq 2(n-1)$ where $n=\max V\left(G_{1}\right)$.
(11) $\mathrm{d}\left(\cup_{i} G_{t}\right) \leq \operatorname{max~} \mathrm{d}\left(G_{i}\right)+1$ where the G_{i} 's are disjoint.
(12) $\mathrm{d}\left(G \cup K_{A}\right) \leq \mathrm{d}(G)+1$ where $A \subset V$ and K_{A} is a clique on A.
(13) $\operatorname{sph}(G)<12(2 c-1)^{2} \log |G|$ for $\lambda_{\min } \geq-c \quad(c \geq 2)$ and $|G|>$ $\left[12(2 c-1)^{2} \log |G|\right]^{2}$, where $\lambda_{\min }$ is the minimal eigenvalue of G.
(14) $\operatorname{sph}(L(G))<108 \log m$ where $m=|E|$ and $m>(108 \log m)^{2}$.
(15) $\operatorname{sph}(G) \geq \log \alpha(G) /(\log (2 r(G)+1))$ where $\mathrm{r}(G)$ is the radius of G.

For these and related further results see [1]-[4] and [7].
The aim of this paper is to present some other upper and lower results for $\mathrm{d}(G)$. In Section 1 we prove that $\mathrm{d}(G) \leq n-\chi(G)$ where $\chi(G)$ is the chromatic number of G which, together with (1) above, yields $d(G) \leq n-\sqrt{n}$. In Section 2 we consider the dimension of forests and graphs with a large girth. In Section 3 we deal with lower bounds for $\mathrm{d}(G)$. We prove that most of the graphs on n vertices have $\mathrm{d}(G) \geq n / 15$ for sufficiently large n. We also prove that, contrary to (3) above, there are graphs G_{n} with maximum degree ≤ 3 but with $\mathrm{d}\left(G_{n}\right)>$ $\log n / 18 \log \log n$.

1. General Upper Bounds

1.1. Theorem. For every graph on n vertices,

$$
\mathrm{d}(G) \leq n-\chi(G)
$$

Proof. 1. The set V of vertices of $G=(V, E)$ with $\chi(G)=\chi$ can be written as

$$
V=K \cup A_{k+1} \cup A_{k+2} \cup \cdots \cup A_{x},
$$

where K is a clique of size k, each A_{i} has size ≥ 2, and A_{i} is a maximal independent set in the induced subgraph G_{i} on $K \cup A_{k+1} \cup \cdots \cup A_{i}, k+1 \leq i \leq \chi$.

Indeed, let $A_{1} \cup \cdots \cup A_{x}$ be the decomposition of V corresponding to a coloring of G such that $\left|A_{1}\right| \leq\left|A_{2}\right| \leq \cdots \leq\left|A_{\chi}\right|$. If A_{χ} is not maximal independent in G_{x}, we move suitable vertices of $A_{1} \cup \cdots \cup A_{x-1}$ to A_{x} to make it such. Then we proceed in the same way with $A_{x-1}, A_{x-2}, \ldots, A_{1}$. Thus if $k+1$ is the least integer with $\left|A_{k+1}\right| \geq 2$ then $K=A_{1} \cup \cdots \cup A_{k}$ is a clique of size k.
2. Let $\left|A_{k+1}\right|=d+1$. Then G_{k+1} can be represented in R^{d} with a threshold $t<0$. Indeed, consider the vertices $\bar{z}_{0}, \ldots, \bar{z}_{d}$ of the regular simplex in R^{d} centered at the origin with

$$
\bar{z}_{t} \bar{z}_{j}=-1 \quad(i \neq j), \quad \bar{z}_{t}^{2}=d .
$$

Let $K=\left\{x_{1}, \ldots, x_{k}\right\}, A_{k+1}=\left\{u_{0}, \ldots, u_{d}\right\}$. Put

$$
\bar{x}_{i}=\sum_{r \in I,} \bar{z}_{r} \quad(i=1, \ldots, k),
$$

where

$$
I_{t}=\left\{r \mid x_{i} u_{r} \in E\right\}
$$

and

$$
\bar{u}_{j}=2 d^{2} \bar{z}_{j} \quad(j=0, \ldots, d)
$$

We have:
(a) $\bar{x}_{1} \bar{x}_{3}=\sum\left\{\bar{z}_{r} \bar{z}_{s} \mid r \in I_{1}, s \in I_{j}\right\} \geq-d^{2}$.
(b) $\bar{u}_{1} \bar{u}_{j}=-4 d^{4}<-d^{2}$ for $i \neq j$.
(c) If $x, u_{j} \in E$ then

$$
\begin{aligned}
\bar{x}_{i} \bar{u}_{j} & =2 d^{2} \sum\left\{\bar{z}_{r} \bar{z}_{j} \mid r \in I_{i}\right\} \\
& =2 d^{3}+2 d^{2} \sum\left\{\bar{z}_{r_{z}} \bar{z}_{j} \mid r \in I_{i}-\{j\}\right\} \geq 2 d^{3}-2 d^{3}=0 .
\end{aligned}
$$

(d) If $x_{i} u_{j} \notin E$ then $\bar{x}_{i} \bar{u}_{j}=-2 d^{2}\left|I_{i}\right|<-d^{2}$ for $I_{i} \neq \varnothing$ because of the maximality of A_{k+1}.
Thus vectors $\bar{x}_{1}, \tilde{u}_{j}$ form a representation of G_{k+1} in R^{d} with the threshold $t=-d^{2}$.
3. Suppose G_{h} can be represented in R^{d} with a threshold $t<0$. Then G_{h+1} can be represented in $R^{d+\varsigma}$, where $s+1=\left|A_{h+1}\right|$, with a negative threshold. Indeed, let x_{1}, \ldots, x_{m} be vertices of G_{h} and $u_{0}, \ldots, u_{\mathrm{s}}$ vertices of A_{h+1}. Let $\bar{x}_{1}, \ldots, \bar{x}_{m}$ form the representation of G_{h} in R^{d} with a threshold $t<0$. Thus there is $t_{1}<t$ such that

$$
\bar{x}_{t} \bar{x}_{l} \geq t \quad \text { if } x_{i} x_{j} \in E \quad \text { and } \quad \tilde{x}_{i} \bar{x}_{j} \leq t_{1} \quad \text { if } x_{i} x_{j} \notin E .
$$

Again, choose vectors $\bar{z}_{0}, \ldots, \bar{z}_{\mathrm{s}}$ in R^{5} with

$$
\bar{z}_{i} \bar{z}_{j}=-1 \quad \text { for } \quad i \neq j, \quad \bar{z}_{i}^{2}=s
$$

Put

$$
\begin{aligned}
& \tilde{x}_{i}=\left(\bar{x}_{i}, \varepsilon \sum_{r \in I_{i}} z_{r}\right) \in R^{d+s} \quad(i=1, \ldots, m) \\
& \tilde{u}_{j}=\left(\overline{0}, \alpha \bar{z}_{j}\right) \in R^{d+s} \quad(j=0, \ldots, s)
\end{aligned}
$$

where I_{i} is defined as in 2 above and $\alpha>0, \varepsilon>0$ will be specified later. Then we have:
(a) If $x_{i} x_{j} \in E$ then

$$
\tilde{x}_{i} \tilde{x}_{j}=\bar{x}_{i} \bar{x}_{j}+\varepsilon^{2} \sum\left\{\bar{z}_{r} \bar{z}_{u} \mid r \in I_{i}, u \in I_{j}\right\} \geq t-\varepsilon^{2} s^{2}
$$

(b) If $x_{i} x_{j} \notin E$ then

$$
\tilde{x}_{i} \tilde{x}_{j} \leq t_{1}+\varepsilon^{2} \sum_{r=0}^{s} \bar{z}_{r}^{2} \leq \varepsilon^{2} s(s+1)+t_{1}
$$

(c) If $x_{i} u_{j} \in E$ then

$$
\begin{aligned}
\tilde{x}_{i} \tilde{u}_{j} & =\alpha \varepsilon \sum\left\{\bar{z}_{r} \bar{z}_{j} \mid r \in I_{i}\right\} \\
& =\alpha \varepsilon \bar{z}_{j}^{2}+\alpha \varepsilon \sum\left\{\bar{z}_{r} \bar{z}_{j} \mid r \in I_{i}-\{j\}\right\} \geq \alpha \varepsilon s-\alpha \varepsilon s=0 .
\end{aligned}
$$

(d) If $x_{i} u_{j} \notin E$ then

$$
\tilde{x}_{i} \tilde{u}_{j}=-\alpha \varepsilon\left|I_{i}\right| \leq-\alpha \varepsilon
$$

because the inclusion maximality of A_{h+1} in G_{h+1} forces $\left|I_{i}\right|>0$.
(e) $\tilde{u}_{i} \tilde{u}_{j}=-\alpha^{2}$ for $i \neq j$.

We are going to show that α, ε can be chosen such that vectors $\tilde{x}_{i}, \tilde{u}_{j}$ form a representation of G_{h+1} with any threshold t^{\prime} where $t_{1}<t^{\prime}<t<0$. Indeed, first choose $\varepsilon>0$ sufficiently small such that

$$
\begin{aligned}
t-\varepsilon^{2} s^{2}>t^{\prime} & (\text { see }(\mathrm{a})) \\
t_{1}+\varepsilon^{2} s(s+1)<t^{\prime} & (\text { see }(\mathrm{b}))
\end{aligned}
$$

Then choose α sufficiently large such that

$$
\begin{array}{ll}
-\alpha \varepsilon<t^{\prime} & (\text { see }(\mathrm{d})) \\
-\alpha^{2}<t^{\prime} & (\operatorname{see}(\mathrm{e}))
\end{array}
$$

4. It follows from 2 and 3 above that by induction $G=G_{x}$ can be represented in R^{d} where

$$
\begin{aligned}
d & =\left(\left|A_{k+1}\right|-1\right)+\left(\left|A_{k+2}\right|-1\right)+\cdots+\left(\left|A_{\chi}\right|-1\right) \\
& =|V-K|-(\chi-k)=n-\chi .
\end{aligned}
$$

This concludes the proof of the theorem.
1.2. Corollary. For every graph G on n vertices,

$$
\mathrm{d}(G) \leq n-\sqrt{n}
$$

Proof. In [6] the threshold dimension $\theta(G)$ of a graph G is introduced and shown to satisfy $\theta(G) \leq n-\alpha(G)$ where $\alpha(G)$ is the size of a maximal independent set in G. Following [7], $\mathrm{d}(G) \leq \theta(G)$ for every graph G. Thus $\mathrm{d}(G) \leq$ $n-\alpha(G)$. As $\alpha(G) \cdot \chi(G) \geq n$, we have $\max (\alpha(G), \chi(G)) \geq \sqrt{n}$, hence

$$
\mathrm{d}(G) \leq \min (n-\alpha(G), n-\chi(G)) \leq n-\sqrt{n} .
$$

2. Upper Bounds for Graphs Without Cycles

2.1. Proposition. If G is a forest then $\mathrm{d}(G) \leq 3$; the representation can be chosen to have a positive threshold.

Proof. This is proved in [7] for G a tree; in more detail, for every $\varepsilon>0$, a tree $G=(V, E)$ can be represented in R^{3} with the threshold $t=1$ such that vectors \bar{x} representing vertices $x \in V$ satisfy $1<\|\bar{x}\|<1+\varepsilon$. Then $\operatorname{diam}\{\bar{x} \mid x \in V\} \rightarrow 0$. Thus, as the tree G is connected, its representation can be found to be placed in an arbitrarily small ball with center on the unit sphere S in R^{3}. Now, if G is a forest with components G_{1}, \ldots, G_{m}, then choose distinct points c_{1}, \ldots, c_{m} and balls B_{i} with centers c_{i}, each with a radius r. Represent G_{i} in B_{i}; if r is small enough, this yields a representation of G in R^{3} with the threshold $t=1$.
2.2. Proposition. If G is a forest that does not contain the tree T_{0} below as an induced subgraph then $\mathrm{d}(G) \leq 2$ where the representation in R^{2} can be chosen to have a positive threshold t.

Proof. In fact, this is proved in [7] for $G=(V, E)$ with $t^{\prime}=1-\varepsilon(0<\varepsilon<1)$ where ε can be arbitrarily small, and vectors $\bar{x} \in R^{2}$.representing vertices of V satisfy $1 \geq\|\bar{x}\| \geq 1-\varepsilon$. Thus the representation can be constructed with diam $\{\bar{x} \mid x \in$ V arbitrarily small. Using the same argument as in the preceding proposition, this can be used to represent any forest without induced T_{0} in R^{2} with a positive threshold (Fig. 1).
2.3. Proposition. A graph G on n vertices can be represented in R^{d} where:
I. $d \leq \frac{2}{7} n+1$ if G has a girth at least 7 ,
II. $d \leq \frac{1}{3} n+\frac{2}{3}$ if G has a girth at least 6 ,
III. $d \leq \frac{2}{5} n+\frac{3}{5}$ if G has a girth at least 5 .

Fig. 1

Remark. Proposition 2.3 yields linear upper bounds for $\mathrm{d}(G)$ for G without short cycles, which, however, can be further improved (to appear in a subsequent paper). Using a probabilistic approach we can, for example, show an upper bound of the form $c_{1} \rho(\log n)^{c_{2}}$ for any C_{4}-free graph with edge density ρ. As it is well known that $\rho \leq \sqrt{n}$ for any C_{4}-free graph, this clearly improves Proposition 2.3 for $n \geq n\left(c_{1}, c_{2}\right)$. To prove Proposition 2.3 we need the following.

Lemma. Let a graph $G=(V, E)$ contain a set C of vertices spanning one of the graphs $C_{5}, C_{6}, C_{7}, C_{8}, P_{7}$ such that each vertex in $V-C$ is adjacent to at most one of the vertices of C. Let the induced subgraph G^{\prime} of G on $V-C$ be represented in R^{d} with a positive threshold. Then G can be represented in R^{d+2} with a positive threshold.

Proof. Let $C=\left\{v_{0}, \ldots, v_{r-1}\right\}$ span $C_{r}, 5 \leq r \leq 8$. Put

$$
\bar{z}_{i}=\left(\cos \frac{2 \pi i}{r}, \sin \frac{2 \pi i}{r}\right) \quad(i=0, \ldots, r-1)
$$

Then

$$
\begin{array}{ll}
\bar{z}_{i}^{2}=1, & \bar{z}_{i} \bar{z}_{i+1}=\cos \frac{2 \pi}{r} \geq \cos \frac{2 \pi}{5}>0 . \\
\bar{z}_{i} \bar{z}_{j} \leq 0 & \text { for } \quad i \neq j \pm 1 \bmod r, \quad i \neq j .
\end{array}
$$

Let $x \rightarrow \bar{x} \in R^{d}$ be a representation of G^{\prime} in R^{d} with a positive threshold t, without loss of generality, $t=1$. Then, if $\alpha>C$ is sufficiently small, vectors

$$
\begin{aligned}
& \tilde{x}=\left(\bar{x}, \alpha \bar{z}_{i}\right) \in R^{d+2} \quad\left(x \in V-C, v_{i} x \in E\right), \\
& \tilde{x}=(\bar{x}, \overline{0}) \in R^{d+2} \quad\left(x \in V-C, v_{i} x \notin E \text { for no } i\right)
\end{aligned}
$$

form a representation of G^{\prime} in R^{d+2} with a threshold t^{\prime}, where

$$
\cos \frac{2 \pi}{r}<t^{\prime}<1
$$

Put

$$
\tilde{v}_{i}=\left(\overline{0}, \bar{z}_{i} / \alpha\right) .
$$

Then, for sufficiently small $\alpha>0$,

$$
\begin{aligned}
\tilde{v}_{i} \tilde{v}_{i+1} & =\frac{1}{\alpha^{2}} \cos \frac{2 \pi}{r}>1, \\
\tilde{v}_{i} \tilde{v}_{j} & \leq 0 \quad \text { if } \quad i \neq j \pm 1 \bmod r, \quad i \neq j, \\
\tilde{x} \tilde{v}_{i} & =1>t^{\prime} \quad \text { if } \quad x \in V-C \quad \text { is adjacent to } v_{i} \\
\tilde{x}_{j} & \leq \cos \frac{2 \pi}{r}<t^{\prime} \quad \text { if } \quad x \in V-C \quad \text { is not adjacent to } v_{j} .
\end{aligned}
$$

This proves that vectors $\tilde{x}(x \in V-C)$ and $\tilde{v}_{i}(i=0, \ldots, r-1)$ form a representation of G in R^{d+2} with the threshold t^{\prime}.

If C spans P_{7}, add a new vertex x_{0} to G to be adjacent just to an endpoint of P_{7}; the resulting graph G^{\prime} contains a copy of C_{8} on $C \cup\left\{x_{0}\right\}$ and hence G^{\prime} can be represented in R^{d+2} with a positive threshold by the preceding part of the proof.

Proof of Proposition 2.3. We shall prove by induction on n that G has a representation in R^{d} with a positive threshold where d is bounded by $\frac{2}{7} n+1$ or $\frac{1}{3} n+\frac{2}{3}$ or $\frac{2}{5} n+\frac{3}{5}$ in cases I, II, and III, respectively. This is certainly true if $n \leq 3$. Let $n>3$.
(a) Let G be a forest. Then $\mathrm{d}(G) \leq 3 \leq \frac{2}{7} n+1 \leq \frac{1}{3} n+\frac{2}{3} \leq \frac{2}{5} n+\frac{3}{5}$ if $n \geq 7$, see 2.1 above. If $4 \leq n<7$ then $\mathrm{d}(G) \leq 2 \leq \frac{1}{3} n+\frac{2}{3} \leq \frac{2}{7} n+1 \leq \frac{2}{5} n+\frac{3}{5}$ by 2.2 .
(b) Let $G=(V, E)$ not be a forest. Let D be the shortest cycle in G of length k. If $k>8$, choose $C \subset D$ spanning P_{7}; if $k \leq 8$, let $C=D$. Due to the minimality of D, every vertex of the induced subgraph G^{\prime} on $V-C$ is adjacent to at most one vertex of C. If $k \geq 7$ or $k=6$ or $k=5$ then G^{\prime} has $\leq n-7$ or $n-6$ or $n-5$ vertices, respectively. By the induction assumption, G can be represented in $R^{d^{\prime}}$ where

$$
d^{\prime} \leq 2(n-7) / 7+1
$$

or

$$
d^{\prime} \leq(n-6) / 3+\frac{2}{3}
$$

or

$$
d^{\prime} \leq 2(n-5) / 5+\frac{3}{5}
$$

respectively, with a positive threshold. By the lemma, G can be represented in R^{d} with a positive threshold where $d=d^{\prime}+2$, hence $d \leq \frac{2}{7} n+1$, or $d \leq \frac{1}{3} n+\frac{2}{3}$ or $d \leq \frac{2}{5} n+\frac{3}{5}$, respectively.
2.4. The following is an essential improvement of a result of Frankl and Maehara [2] who proved

$$
\operatorname{sd}(G) \leq 8 \log n
$$

if \bar{G} is a forest. Let us remark that $\operatorname{sd}(G)$ is unbounded for trees. It was proved in [7] that

$$
\operatorname{sd}\left(B_{n}\right) \geq c \log n / \log \log n
$$

where B_{n} is the "complete binary" tree on $n=2^{s}-1$ vertices with s levels.
Proposition. If the complement \bar{G} of G is a forest then

$$
\operatorname{sd}(G) \leq 6
$$

Proof. Let $G=(V, E)$ and \bar{G} be a forest. In each component K_{i} of \bar{G}, choose a vertex r_{i} to be a root of the tree K_{i}. This defines decomposition of each K_{i} into levels. Also, neighbors of each vertex x that is not a root consist of a father and of a family of sons. Let V_{1} be the set of all vertices on odd levels (thus all roots r_{i} are in V_{1}) and $V_{2}=V-V_{1}$. Then V_{2} can be written as $V_{2}=\left\{x_{1}, \ldots, x_{n}\right\}$ in such a way that sons of each $y \in V_{1}$ form a segment of the form

$$
x_{j}, x_{j+1}, \ldots, x_{k}
$$

Choose reals α_{i},

$$
0<\alpha_{1}<\frac{\pi}{n}<\alpha_{2}<\frac{2 \pi}{n}<\cdots<\frac{(n-1) \pi}{n}<\alpha_{n}<\pi .
$$

Fix a $y \in V_{1}$ with sons as above and with the father x_{r}, define a complex polynomial g_{y},

$$
\begin{aligned}
g_{y}(z)= & \left(z-\exp \left(i \frac{\pi(j-1)}{n}\right)\right)\left(z-\exp \left(i \frac{k \pi}{n}\right)\right) \exp \left(-i \frac{\pi(j+k-1)}{2 n}\right) \\
& \times\left(z-\exp \left(i \frac{\pi(r-1)}{n}\right)\right)\left(z-\exp \left(i \frac{\pi r}{n}\right)\right) \exp \left(-i \frac{\pi(2 r-1)}{2 n}\right) .
\end{aligned}
$$

We can verify that the coefficients of g_{y} are of the form

$$
g_{y}(z)=c_{2}+c_{1} z+c_{0} z^{2}+\bar{c}_{1} z^{3}+\bar{c}_{2} z^{4}, \quad c_{0} \in R .
$$

Put $b_{i}^{*}=2 \operatorname{Re} c_{i}, a_{i}^{*}=2 \operatorname{Im} c_{i}(i=1,2)$, and $d_{0}^{*}=c_{0}$. For a real α, define $f_{y}(\alpha)=$ $g_{y}(\exp i \alpha) \cdot \exp (-2 i \alpha)$. Then

$$
\begin{aligned}
f_{y}(\alpha) & =c_{2} e^{-2 i \alpha}+c_{1} e^{-i \alpha}+c_{0}+\bar{c}_{1} e^{i \alpha}+\bar{c}_{2} e^{2 i \alpha} \\
& =d_{0}^{*}+a_{1}^{*} \sin \alpha+b_{1}^{*} \cos \alpha+a_{2}^{*} \sin 2 \alpha+b_{2}^{*} \cos 2 \alpha
\end{aligned}
$$

Thus f_{y} is real valued, $f_{y}(\alpha)=\left(d_{0}^{*}, a_{1}^{*}, b_{1}^{*}, a_{2}^{*}, b_{2}^{*}\right) \cdot(1, \sin \alpha, \cos \alpha, \sin 2 \alpha$, $\cos 2 \alpha)$. As the only roots of $g_{y} \operatorname{are} \exp (i(\pi(j-1) / n)), \exp (i(\pi k / n)), \exp (i(\pi(r-$ $1) / n)$), $\exp (\mathrm{i}(\pi r / n))$ we see that the only roots of f_{y} are $\pi(j-1) / n, \pi k / n$, $\pi(r-1) / n$, and $\pi r / n$. Hence f_{y} has the same sign at $\alpha_{j}, \alpha_{j+1}, \ldots, \alpha_{k-1}, \alpha_{k}$, and α_{r}, and the opposite sign at the other α_{i} 's. Put

$$
\begin{gathered}
\varepsilon=-\operatorname{sgn} f_{y}\left(\alpha_{r}\right) \sqrt{3} / \sqrt{d_{0}^{* 2}+a_{1}^{* 2}+b_{1}^{* 2}+a_{2}^{* 2}+b_{2}^{* 2}}, \\
h_{y}=\varepsilon f_{y}, \quad d_{0}^{y}=\varepsilon d_{0}^{*}, \quad a_{i}^{y}=\varepsilon a_{i}^{*}, \quad b_{i}^{y}=\varepsilon b_{i}^{*} \quad(i=1,2) .
\end{gathered}
$$

Then $h_{y}\left(\alpha_{i}\right)<0$ for $j \leq i \leq k$ and for $i=r$ and $h_{y}\left(\alpha_{i}\right)>0$ otherwise.

Put

$$
\begin{aligned}
& \bar{y}=\left(d_{0}^{y}, a_{1}^{y}, b_{1}^{y}, a_{2}^{y}, b_{2}^{y}, 2\right) \\
& \bar{x}_{i}=\left(1, \sin \alpha_{i}, \cos \alpha_{i}, \sin 2 \alpha_{i}, \cos 2 \alpha_{i},-2\right)
\end{aligned}
$$

Then

$$
\begin{aligned}
\bar{x}_{i} \bar{y} & =h_{y}\left(\alpha_{i}\right)-4<-4 \quad \text { for } \quad j \leq i \leq k, \quad i=r, \quad \text { i.e., for } \quad x_{i} y \in E, \\
\bar{x}_{i} \bar{y} & =h_{y}\left(\alpha_{1}\right)-4>-4 \quad \text { otherwise, } \\
\bar{x}_{i} \bar{x}_{j} & >-1+4>-4 \quad \text { for all } i, j, \\
\left\|\bar{x}_{i}\right\| & =\|\bar{y}\|=\sqrt{7} .
\end{aligned}
$$

Using the same construction for all $y \in V_{1}$, we also see that, for $y_{1}, y_{2} \in V_{1}$,

$$
\bar{y}_{1} \bar{y}_{2}>-3+4>-4 .
$$

Thus we have a representation of G in R^{6} by vectors with the same norm $\sqrt{7}$ and with the threshold $t=-4$ which concludes the proof.

3. Lower Bounds

3.1. We shall prove that most graphs on n vertices have dimension $\geq n / 15-1$. However, the only graphs of that dimension we explicitly know are those containing $K_{r r}$ for $r>n / 15$ [7].

Theorem. Let t_{n} be the total number of graphs G on $n \geq 38$ vertices. Then at least $(1-1 / n) t_{n}$ of them have

$$
d(G) \geq n / 15-1
$$

Proof. 1. Let $G_{1}, G_{2}, \ldots, G_{t_{n}}$ be a list of all graphs on the set $V=\left\{x_{1}, \ldots, x_{n}\right\}$ of vertices where $\mathrm{d}\left(G_{1}\right) \leq \mathrm{d}\left(G_{2}\right) \leq \cdots \leq \mathrm{d}\left(G_{t_{n}}\right)$. Let $r=\left\lfloor t_{n} / n\right\rfloor, d=\mathrm{d}\left(G_{r+1}\right)+1$. Then G_{1}, \ldots, G_{r} can be represented in R^{d} with the threshold 1 ; in fact, if $x_{i} \rightarrow \bar{x}_{i} \in R^{d-1}$ is a representation in R^{d-1} with a threshold $t<1$ (or $t \geq 1$) then $x_{i} \rightarrow\left(\bar{x}_{i}, \sqrt{1-t}\right)$ or $\left(x_{i} \rightarrow\left(\bar{x}_{i} / t, 0\right)\right.$, resp. $)$ is a representation in R^{d} with the threshold 1. Also, using small changes of coordinates we can modify the representations in such a way that $\bar{x}_{i} \bar{x}_{j}>1$ rather than $\bar{x}_{i} \bar{x}_{j} \geq 1$ if $x_{i} x_{j}$ is an edge, and that vectors $\bar{x}_{1}, \ldots, \bar{x}_{d}$ representing vertices x_{1}, \ldots, x_{d} are linearly independent. Finally, if $\tilde{x}_{i}=\left(\tilde{x}_{i 1}, \ldots, \tilde{x}_{i d}\right) \in R^{d}$ is the vector of coordinates of x_{i} with respect to the orthonormal basis obtained from the base $\bar{x}_{1}, \ldots, \bar{x}_{d}$ by the Gramm-Schmidt orthonormalization process, then $\bar{x}_{i} \bar{x}_{j}=\tilde{x}_{i} \tilde{x}_{j}$; moreover, obviously $\tilde{x}_{i, i+1}=$ $\tilde{x}_{i, i+2}=\cdots=\tilde{x}_{i d}=0$ for $i=1, \ldots, d-1$. To summarize our consideration, we have representations $x_{i} \rightarrow \tilde{x}_{i}^{G}$ of graphs $G=G_{1}, \ldots, G_{r}$ in R^{d} such that

$$
\begin{aligned}
\tilde{x}_{i}^{G} \tilde{x}_{j}^{G}>1 & \text { if } x_{i} x_{j} \text { is an edge in } G \\
\tilde{x}_{i}^{G} \tilde{x}_{j}^{G}<1 & \text { if } x_{i} x_{j} \text { is a nonedge in } G \\
\tilde{x}_{i j}^{G}=0 & \text { if } 1 \leq i<j \leq d .
\end{aligned}
$$

2. Define polynomials $P_{i j}(1 \leq i<j \leq n)$ in ($n d-(d(d-1) / 2)$) variables x_{11}, $x_{21}, x_{22}, x_{31}, x_{32}, x_{33}, \ldots, x_{d 1}, \ldots, x_{d d}, x_{d+1,1}, \ldots, x_{d+1, d}, \ldots, x_{n 1}, \ldots, x_{n d}$ by

$$
P_{i j}\left(x_{u v}\right)_{u, v}=\sum_{k=1}^{d} x_{i k} x_{j k}-1
$$

(where $x_{i k}=0$ if $1 \leq i<k \leq d$ and analogously for $x_{j k}$). Then for $\tilde{x}^{G}=\left(\tilde{x}_{u v}^{G}\right)_{u, v} \in R^{N}$ (where $N=n d-(d(d-1) / 2)$) we have

$$
\begin{array}{ll}
P_{i j}\left(\tilde{x}^{G}\right)>0 & \text { if } x_{i} x_{j} \text { is an edge in } G \\
P_{i j}\left(\tilde{x}^{G}\right)<0 & \text { if } x_{i} x_{j} \text { is a nonedge in } G .
\end{array}
$$

3. Following a result of Warren [5], given arbitrary polynomials P_{1}, \ldots, P_{M} on N variables of degree $\leq D$ where $M \geq N$, the total number of sign sequences $\left(\operatorname{sgn} P_{1}(x), \ldots, \operatorname{sgn} P_{M}(x)\right)$ that consist of terms $+1,-1$ does not exceed $(4 e D M / N)^{N}$.
4. Let us apply this estimate to our polynomials $P_{i j}$; as distinct graphs $G \neq G^{\prime}$ induce distinct sign sequences of $P_{i j}$ at \tilde{x}^{G} and $\tilde{x}^{G^{\prime}}$, we have

$$
r \leq(4 e D M / N)^{N}
$$

Here $r=2^{\left(\frac{1}{2}\right)} / n, D=2, M=\binom{n}{2}$, and $N=n d-(d(d-1) / 2)$. Hence

$$
\begin{align*}
r & \leq\left(8 e\binom{n}{2} / N\right)^{N} \leq\left(\frac{4 e}{N / n^{2}}\right)^{N}, \\
r^{1 / n^{2}} & \leq\left(\frac{4 e}{y}\right)^{y} \quad \text { where } \quad y=\frac{N}{n^{2}}=\frac{n d-(d(d-1) / 2)}{n^{2}} \in(0,1), \\
\frac{\ln r}{n^{2}} & \leq y^{\ln (4 e / y)} . \tag{*}
\end{align*}
$$

We have

$$
\frac{\ln r}{n^{2}}=\frac{(\ln 2)\binom{n}{2}-\ln n}{n^{2}}=\frac{\ln 2}{2}-\frac{\ln 2}{2 n}-\frac{\ln n}{n^{2}} \geq \frac{\ln 2}{2}-\frac{1}{85.9}
$$

for $n \geq 38$. The numerical solution of the equation $y \ln (4 e / y)-(\ln 2)) 2+1 / 85.9=$ 0 on $(0,1)$ is $y=1 / 15.26175$, and the function $y \ln (4 e / y)$ is increasing on $(0,1)$. Hence (*) implies $y \geq 1 / 15.262$ for $n \geq 38$. Putting $x=d / n$ we have

$$
y=\frac{d}{n}-\frac{1}{2}\left(\frac{d}{n}\right)^{2}+\frac{1}{2 n}\left(\frac{d}{n}\right)=x-\frac{1}{2} x^{2}+\frac{1}{2 n} x \leq x-\frac{1}{2} x^{2}+\frac{1}{76} x
$$

for $n \geq 38$. Thus

$$
\frac{77}{76} x-\frac{1}{2} x^{2} \geq \frac{1}{15.262}
$$

A numerical solution then gives $x \geq 1 / 14.95>\frac{1}{15}$, hence $d>n / 15$. Then $\mathrm{d}(G)>$ $n / 15-1$ for all $G=G_{r+1}, G_{r+2}, \ldots, G_{t_{n}}$ which concludes the proof.

Remark. The constant $\frac{1}{15}$ can be improved for large n but not to $\frac{1}{14}$ using our method.
3.2. In [7] we proved that if the complement \bar{G} of a graph G has degree bounded by d then $\mathrm{d}(G) \leq 2 d \log (8 d)$, independently of the number of vertices of G. We show that this is not the case if G has bounded degree:

Theorem. If n is sufficiently large then there exists a bipartite 3-regular graph G on $2 n$ vertices with

$$
\mathrm{d}(G) \geq \frac{\log n}{18 \log \log n}
$$

To prove the theorem we state two auxiliary lemmas.

Lemma 1. For sufficiently large n there exists a bipartite graph $G=(V, E)$ on $2 n$ vertices such that:
(i) G is 3-regular.
(ii) For every partition $V=A \cup B,|A|=|B|=n$ there exists a matching M, $|M|=c n \geq n / 34$ with e having one endpoint in A and another in B for every $e \in M$.
(iii) G does not contain induced cycles of length $\leq 2 t_{o}$ where $t_{0}=\frac{1}{8} \log n$.

Proof. We will proceed by random construction. Let $V=X \cup Y$ and $|X|=|Y|=$ n. Let $\pi_{1}, \pi_{2}, \pi_{3}: X \rightarrow Y$ be three random bijections, each taken with probability $1 / n!$ independently of the choice of the others. Let $\mathbf{G}=(V, E)$ be the "random graph" with edge set $E=\left\{\left\{x, \pi_{i}(x)\right\} ; x \in X, i=1,2,3\right\}$. Thus the probability of a particular graph G equals $\operatorname{pg}(G) /(n!)^{3}$ where $\mathrm{pg}(G)$ denotes the number of ways that G can be written as a union (not necessarily disjoint) of three perfect matchings.

Claim 1. Denote by p_{n} the probability that G is 3 -regular. Then

$$
\varliminf_{n \rightarrow \infty} p_{n} \geq 1 / e^{3}
$$

Proof. The permutation π_{1} can be chosen in n ! ways. If π_{1} is fixed, then n ! $\left(1-1 / 1!+1 / 2!-\cdots+(-1)^{n} / n!\right)$ of permutations π_{2} has the property that $\pi_{2}(x) \neq$ $\pi_{1}(x)$ for all $x \in X$, i.e., that edges $x \pi_{i}(x)(x \in X, i=1,2)$ form a 2-regular graph H. If π_{2} is such a permutation, consider the $n \times n$ matrix $\left(a_{i j}\right)_{i \in X, j \in Y}$ where

$$
\begin{aligned}
& a_{i j}=0 \quad \text { if } i j \text { is an edge of } H, \\
& a_{i j}=1 /(n-2) \quad \text { otherwise. }
\end{aligned}
$$

Then $\sum_{i \in X} a_{i j}=1$ for every $j \in Y$ and $\sum_{j \in Y} a_{i j}=1$ for every $i \in X$.
Hence ($a_{i j}$) is a doubly stochastic matrix. By [8] and [9], for the permanent

$$
P=\sum_{\pi \in S_{n}} a_{1 \pi(1)} a_{2 \pi(2)} \cdots a_{n \pi(n)}
$$

of $\left(a_{i j}\right)$ we have $P \geq n!/ n^{n}$. On the other hand, $P=q(1 /(n-2))^{n}$ where q is the number of nonzero summands in P. As the nonzero summands clearly correspond to these π such that π_{1}, π_{2}, π induce a 3 -regular graph, it follows $q \geq$ $n!/(1-2 / n)^{n}$.

Hence the number of triples $\pi_{1}, \pi_{2}, \pi_{3}$ inducing a 3-regular graph is $\geq n!n!$ $\left(1-1 / 1!+1 / 2!-\cdots+(-1)^{n} / n!\right) n!(1-2 / n)^{n}$. Then

$$
p_{n} \geq\left(1-\frac{1}{1!}+\frac{1}{2!}-\cdots+\frac{(-1)^{n}}{n!}\right)\left(1-\frac{2}{n}\right)^{n} \rightarrow 1 / e^{3}
$$

which concludes the proof of Claim 1.
Claim 2. Denote by q_{n} the probability that \mathbf{G} satisfies (ii) with $c=\frac{1}{33}$. Then $q_{n} \rightarrow 1$ for $n \rightarrow \infty$.

Proof. Let $V=A \cup B$ be a fixed partition, $|A|=|B|=n, a=|X \cap A|, b=|X-A|$, and $a \geq b$. Then $b=|Y \cap A|, a=|Y-A|$, and $a+b=n$. Set $c=\frac{1}{33}$,

$$
S_{i}^{A}=\left\{(x, y) \mid x \in X \cap Y, y \in Y-A, \pi_{i}(x)=y\right\}
$$

We have

$$
\begin{equation*}
\operatorname{Prob}\left\{\left|S_{i}^{A}\right|<c n\right\} \leq \frac{\sum_{0 \leq j<c n}\binom{a}{j}\binom{b}{a-j}}{\binom{a+b}{a}} \tag{1}
\end{equation*}
$$

The right-hand side is nonzero only if $b \geq a-j$ for some j, i.e., only if $a-c n \leq b$ which yields

$$
\begin{equation*}
a \leq\lfloor(n / 2)(1+c)\rfloor . \tag{2}
\end{equation*}
$$

The right-hand side of (1) may be further bounded from above by

$$
\frac{\sum_{0 \leq j<c n}\binom{a}{j}^{2}}{\binom{a+b}{a}} \leq \frac{\binom{a}{\lceil c n\rceil}^{2}}{\binom{n}{a}} \leq \frac{\binom{\lfloor(n / 2)(1+c)\rfloor}{[c n\rceil}^{2}}{\binom{n}{\lfloor(n / 2)(1+c)\rfloor}} \leq 2^{-n \varphi(c)+K \log n}
$$

where $\varphi(c)=2 c \log c+\frac{1}{2}(1-c) \log ((1-c) / 2)-\frac{3}{2}(1+c) \log ((1+c) / 2)$ and K is independent of n. As $\varphi\left(\frac{1}{33}\right)>\frac{2}{3}$,

$$
\operatorname{Prob}\left\{\left|S_{i}^{A}\right|<c n\right\} \leq 2^{-(2 / 3) n}
$$

for sufficiently large n. Then $\operatorname{Prob}\left\{\left|S_{i}^{A}\right|<c n \mid i=1,2,3\right\} \leq 2^{-2 n}$. The number of all partitions in question is $\binom{n}{n}$. Thus the probability that $\left|S_{i}^{A}\right|<c n(i=1,2,3)$ for some of them is $\leq\binom{ 2 n}{n} 2^{-2 n} \rightarrow 0$.

Claim 3. Denote by r_{n} the probability that \mathbf{G} has the following property: after deleting $\leq \sqrt{n}$ edges from \mathbf{G}, the graph " \mathbf{G} minus deleted edges" does not contain any cycle of length $\leq 2 t_{0}$ where $t_{0}=\frac{1}{8} \log n$. Then $r_{n} \geq 0.99$ holds for sufficiently large n.

Proof. Fix a set C of $2 t$ pairs $x y(x \in X, y \in Y)$ forming a cycle, where $t \leq t_{0}$, We will estimate the probability $r_{n}(C)$ that G contains C as a cycle. Let π_{1}, π_{2}, π_{3} be bijections inducing $\mathbf{G}=(V, E)$ and let E_{i} be the set of edges induced by $\pi_{i}(i=1,2,3)$. Set $M_{i}=C \cap E_{i}$; clearly, M_{i} is a matching. By [10, p. 129] we have $2^{2 t}+2$ ways to split C into three matchings M_{1}, M_{2}, M_{3}. For each of them we have $a=\left(n-t_{1}\right)!\left(n-t_{2}\right)!\left(n-t_{3}\right)$! triples $\pi_{1}, \pi_{2}, \pi_{3}$ with $E_{i} \cap C=$ $M_{i}(i=1,2,3)$, where $\left|M_{i}\right|=t_{i}(i=1,2,3)$.

Hence

$$
r_{n}(C) \leq\left(2^{2 t}+2\right) \cdot \operatorname{Max} \frac{\left(n-t_{1}\right)!\left(n-t_{2}\right)!\left(n-t_{3}\right)!}{(n!)^{3}} \leq \frac{2^{2 t+1}}{n^{2 t}}
$$

for sufficiently large n (as $t_{i} \ll \sqrt{n}$). The number of cycles of length $2 t$ formed by pairs $x y, x \in X, y \in Y$, is

$$
\binom{n}{t}^{2} t!(t-1)!\leq \frac{n^{2 t}}{t}
$$

Thus the expected number of cycles of length $\leq 2 t_{0}$ contained in \mathbf{G} is at most

$$
\sum_{t \leq t_{0}} \frac{2^{2 t+1}}{t}<\frac{\sqrt{n}}{100}
$$

Hence we infer that the probability $\geq 0.99, G$ contains at most \sqrt{n} cycles of length $\leq 2 t_{0}$. Choosing an edge from each of these cycles we get the required set of edges.

Now we are ready to finish the proof of the lemma. Due to Claims 1-3, for sufficiently large n there exists a bipartite graph $G=(V, E)$ on $2 n$ vertices that is 3-regular, has the partition property (ii), and only $\leq \sqrt{n} \cdot 2 t_{0}$ of its edges is contained in induced cycles of length $\leq 2 t_{0}$.

We modify G to get a new graph satisfying (i)-(iii) of the lemma. Consider an edge $x y$ of G that is contained in a cycle C of length $\leq 2 t_{0}$. Choose another edge $x^{\prime} y^{\prime}$ such that the distance from x to x^{\prime} in G is $\geq 2 t_{0}+1$ and that $x^{\prime} y^{\prime}$ is contained in no cycle of length $\leq 2 t_{0}$; such $x^{\prime} y^{\prime}$ does exist, for at most $\frac{1}{8} n \log n$ vertices are contained in cycles of length $\leq 2 t_{0}$ and at most $3\left(2^{2 t_{0}+1}-1\right) \cdot \sqrt{n}$ vertices $x^{\prime} \neq x$ are joined with x by a path of length $\leq 2 t_{0}+1$. Delete edges $x y$, $x^{\prime} y^{\prime}$ from G and add $x y^{\prime}, y x^{\prime}$ to G. This does destroy the cycle C but does not create any new cycle of length $\leq 2 t_{0}$; moreover, the resulting graph remains 3 -regular. Repeating this procedure at most \sqrt{n} times (once for each short cycle) we get a 3 -regular graph without cycles of length $\leq 2 t_{0}$. Also, the new graph satisfies property (ii) with $|M| \geq \frac{1}{33} n-\sqrt{n}$, i.e., $|M| \geq n / 34$ for sufficiently large n.

Lemma 2. The graph $G=(V, E)$ from Lemma 1 nas the following property: for every function $f: V \rightarrow R$ there is an induced subtree T of G such that:
(i) $\operatorname{diam} T \leq 2 t_{0}$.
(ii) $|L| \geq n^{1 / 17}$, where L is the set of leaves of T.
(iii) $f(x) \geq f(y)$ whenever x is a leaf and y is a nonleaf in T.

Proof. For every $x \in V$, let L_{x} be the set of all vertices of V where the distance from x is $t_{1}=\left\lfloor t_{0} / 2\right\rfloor-1$. As G does not contain cycles of length $\leq 2 t_{0}$ and G is 3-regular, L_{x} has cardinality

$$
S=3.2^{t_{1}-1}<\sqrt{n} .
$$

Write V as $V=\left\{v_{1}, \ldots, v_{2 n}\right\}$ where $f\left(v_{1}\right) \geq f\left(v_{2}\right) \geq \cdots \geq f\left(v_{2 n}\right)$. Choose j such that for $P=\left\{v_{1}, \ldots, v_{j}\right\}$ and for $B=\bigcup_{x \in P} L_{x}$ we have

$$
n-\sqrt{n} \leq|B| \leq n
$$

and put $A=V-B$. Choose $A^{\prime} \subset A, B^{\prime} \supset B$ with $\left|A^{\prime}\right|=\left|B^{\prime}\right|=n$. By Lemma 1, condition (ii), there exists a matching M joining A^{\prime} with B^{\prime} with $|M| \geq \frac{1}{34} n$. Let A_{1} be the set of vertices x in A^{\prime} such that $x y \in M$ for some $y \in B$. As $\left|B^{\prime}-B\right|<\sqrt{n}$ we have $A_{1} \geq \frac{1}{34} n-\sqrt{n}$ and for $A_{2}=A-A_{1}$ we have $\left|A_{2}\right|=|A|-\left|A_{1}\right| \leq \frac{33}{34} n+2 \sqrt{n} \leq$ $\frac{34}{35} n$ for sufficiently large n.
(a) We claim that there exists $x_{0} \in A$ such that

$$
\left|L_{x_{0}}-A_{2}\right| \geq \frac{S}{35} .
$$

Indeed, otherwise $\left|L_{x} \cap A_{2}\right|>\frac{34}{35} S$ for every $x \in A$. Denote by N the number of pairs (x, y) with $x \in A, y \in A_{2}$, and $y \in L_{x}$ (equivalently, $x \in L_{y}$). Then, on one hand,

$$
N=\sum_{x \in A}\left|L_{x} \cap A_{2}\right|>|A| \frac{34}{35} S \geq \frac{34}{35} n S
$$

and, on the other hand,

$$
N=\sum_{y \in A_{2}}\left|L_{y} \cap A \leq\left|A_{2}\right| S \leq \frac{34}{35} n S\right.
$$

a contradiction.
(b) Let $L_{x_{0}}-A_{2}=\left\{x_{1}, \ldots, x_{m}\right\}, m \geq S / 35$. For every $i \in\{1, \ldots, m\}$, we have a path P_{i} of length t_{1} from x_{0} to x_{i} and a path Q_{i} of length $\leq t_{1}+1$ from x_{i} to some $z_{i} \in P$ (the existence of Q_{i} follows by the definition of B if $x_{i} \in B$; if $x_{i} \in A_{1}$ we use an M-edge $x_{i} y$ with $y \in B$ and a path of length $=t_{1}$ from y to a vertex in P). As the x_{i} 's are pairwise distinct and G does not contain cycles of length $2 t_{0} \geq$ $4 t_{1}+2$, the z_{1} 's are pairwise distinct, too, and the union of P_{i} 's and Q_{i} 's is an induced subtree T of G. Assuming, in addition, that z_{i} is the only P-vertex on Q_{i}, the tree T satisfies (iii) due to the definition of P. We have diam $T \leq$ $4 t_{1}+2 \leq 2 t_{0}$ and $|L|=m \geq S / 35=\frac{3}{35} 2^{\left[r_{0} / 21-2\right.} \geq 2^{(1 / 17) \log n}=n^{1 / 17}$ for sufficiently large n.

Proof of the Theorem. Let $G=(V, E)$ be the 3-regular bipartite graph on $2 n$ vertices from Lemma 2 ; let $x \rightarrow \bar{x}(x \in V)$ be its representation in R^{d} with $t=1$. Set $f(x)=\|\bar{x}\|$ for $x \in V$. Let T be the induced subtree of Lemma 2 . Thus we have $\gamma>0$ such that $\|\bar{x}\| \geq \gamma$ or $\|\bar{x}\| \leq \gamma$ if x is a leaf or a nonleaf in T, respectively. Let x_{0} be a nonleaf such that the distance from x_{0} to each of the leaves is at most t_{0}. For every leaf x, let f_{x} and g_{x} be vertices on the path from x_{0} to x where the distance from x is 1 and 2 , respectively.

Let L_{1} be a maximal set of leaves with the property

$$
x, y \in L_{1}, \quad x \neq y \text { implies } g_{x} \neq g_{y} \quad \text { and } \quad g_{x} g_{y} \notin E .
$$

If follows easily from the 3 -regularity of G and the maximality of L_{1} that $\left|L_{1}\right| \geq|L| / 8 \geq n^{1 / 17} / 8$. For every $x \in L_{1}$ set $\tilde{x}=\alpha \tilde{x}+(1-\alpha) \bar{g}_{x}$ where $\alpha \in\langle 0,1\rangle$ is chosen so that $\|\tilde{x}\|=\gamma$; such α does exist because $\|\tilde{x}\|=\|\tilde{x}\| \geq \gamma$ for $\alpha=0$ and $\|\tilde{x}\|=\left\|\bar{g}_{x}\right\| \leq y$ for $\alpha=1$; for $x \in L_{1}$ set $\tilde{x}=\bar{x}$. Then for $x, y \in L_{1}, x \neq y$,

$$
\begin{aligned}
\tilde{x} \tilde{y} & =\left[\alpha \bar{x}+(1-\alpha) \bar{g}_{x}\right]\left[\beta \bar{y}+(1-\beta) \bar{g}_{y}\right]<1 \\
\tilde{x} \tilde{f}_{x} & =\left[\alpha \bar{x}+(1-\alpha) \bar{g}_{x}\right] \bar{f}_{x} \geq 1
\end{aligned}
$$

For every $x \in L_{1}$, let K_{x} be the ball with center \tilde{x} and radius $r=\sqrt{2 \gamma^{2}-2} / 2$. We have for $x, y \in L_{1}$

$$
\|\tilde{x}-\tilde{y}\|=\left(\tilde{x}^{2}-2 \tilde{x} \tilde{y}+\tilde{y}^{2}\right)^{1 / 2}>\left(2 \gamma^{2}-2\right)^{1 / 2}=2 r
$$

Hence the balls K_{x} are pairwise disjoint. On the other hand, if $x_{0}, x_{1}, \ldots, x_{t}=x$ is a path from x_{0} to $x \in L$, then

$$
\left\|\tilde{x}_{i}-\tilde{x}_{i+1}\right\|=\left(\tilde{x}_{i}^{2}-2 \tilde{x}_{i} \tilde{x}_{i+1}+\tilde{x}_{i+1}^{2}\right)^{1 / 2} \leq\left(2 \gamma^{2}-2\right)^{1 / 2}=2 r,
$$

hence balls K_{x} are contained in the ball with center x_{0} and radius $\leq\left(2 t_{0}+1\right) r$. Then

$$
\left|L_{1}\right| V_{d} r^{d} \leq V_{d}\left[\left(2 t_{0}+1\right) r\right]^{d},
$$

where V_{d} is the volume of the unit ball in R^{d}. It follows

$$
n^{1 / 17} / 8 \leq\left(2 t_{0}+1\right)^{d}
$$

and thus

$$
d \geq \frac{\log \left(n^{1 / 17} / 8\right)}{\log \left(2 t_{0}+1\right)} \geq \frac{\frac{1}{11} \log n-3}{\log (\log n)-2} \geq \frac{\log n}{18 \log (\log n)}
$$

for sufficiently large n.

References

1. P. Frankl, H. Maehara, On the contact dimension of graphs, to appear.
2. P. Frankl, H. Maehara, The Johnson-Lindenstrauss lemma and the sphericity of some graphs, to appear.
3. H. Maehara, On the sphericity for the join of many graphs, Discrete Math. 49 (1984), 311 -313.
4. H. Maehara, Space graphs and sphericity, Discrete Appl. Math. 7 (1984), 55-64.
5. H. E. Warren, Lower bounds of approximation by nonlinear manifolds.
6. V. Chvátal, P. L. Hammer, Aggregation of inequalities in integer programming, Ann. Discrete Math. 1 (1977), 145-162.
7. J. Reiterman, V. Rödl, E. Siňajová, Geometrical embeddings of graphs, Discrete Math., to appear.
8. G. P. Egoryčev, Solution of the van der Waerden Problem for Permanents, IFSO 13M, Akad. Nauk SSSR.
9. D. 1. Falikman, A proof of the van der Waerden conjecture on the permanent of a doubly stochastic matrix, Mat. Zametki 29 (1981), 931-938.
10. J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, Macmillan, 1978.

Received December 8, 1986, and in revised form July 10, 1987.

