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Abstract. Given a set V of n points in k-dimensional space, and an Lq-metric 
(Minkowski metric), the all-nearest-neighbors problem is defined as follows: for 
each point p in V, find all those points in V-{p} that are closest to p under the 
distance metric Lq. We give an O(n log n) algorithm for the all-nearest-neighbors 
problem, for fixed dimension k and fixed metric Lq. Since there is an 12(n log n) 
lower bound, in the algebraic decision-tree model of computation, on the time 
complexity of any algorithm that solves the all-nearest-neighbors problem (for k = 1), 
the running time of our algorithm is optimal up to a constant factor. 

1. Introduction 

The a l l -nea res t -ne ighbors  p rob l em is one  of  the very wel l - s tud ied  p rox imi ty  
p r o b l e m s  in c o m p u t a t i o n a l  geomet ry  [2], [4], [5], [7], [9]. We are  given a set V 
o f  n po in ts  in k -d imens iona l  space  and  a d i s tance  metr ic  Lq. Each  po in t  x is 
given as a k - tup le  o f  real  number s  (x~, x2 . . . . .  xk). The  Lq dis tance  be tween  a 
pa i r  o f  po in t s  x, y is given by  (Y.~ Ix~ -y~lq)~/L (No te  that  the  Loo d i s tance  be tween  
x and  y is given by  max;txi -Yi t . )  The neares t  (closest)  ne ighbors  o f  a po in t  p ~ V 
are  all those  po in ts  in V that  are  closest  to p u n d e r  the d i s tance  met r ic  Lq. The 
a l l -nea res t -ne ighbors  p r o b l e m  is def ined as fol lows:  for  each  po in t  p in V, f ind 
the neares t  (closest)  ne ighbors  o f  p. We  as sume  that  the  d imens ion  k and  the 
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distance metric Lq are fixed. We use distance for Lq distance, and d(x ,y)  to 
denote the distance between x and y. 

As far as the model of  computation is concerned we assume that all arithmetic, 
comparison, and memory-access operations require constant time. 

The simplest algorithm for the all-nearest-neighbors problem may be phrased 
as follows: for each point p in V, explicitly test if every point p' in V - { p }  is a 
closest neighbor of p. This algorithm runs in time O(n2). However, it is possible 
to obtain algorithms that require o(n 2) time. Bentley [2] utilizes multidimensional 
divide and conquer to develop an O(n(log n) k-~) algorithm for the all-nearest- 
neighbors problem. An O(n log 6) algorithm is presented by Clarkson [5] and 
by Gabow et al. [6], where & is the ratio of  the maximum to the minimum distance 
between a pair of  points in V. Clarkson [5] gives a randomized algorithm, with 
an expected running time of O(n log n) for any set of  input points. 

We give a deterministic algorithm for the all-nearest-neighbors problem, with 
a worst-case running time of  O(n log n). In the algebraic decision-tree model of  
computation, there is a lower bound of f~(n log n) on the time complexity of  any 
algorithm that solves the all-nearest-neighbors problem for dimension k = 1 [1], 
[7]. So the running time of  our algorithm is optimal up to a constant factor. We 
note however that the multiplicative constant in the running time of  our algorithm 
depends on the dimension k, and is of the order of (ck) k where c is a constant 
that does not depend on the dimension k. The space requirement of  our algorithm 
is O(n). 

Our algorithm is based on the following idea (technique). The given points 
are maintained in cubical boxes together with some neighborhood information 
for each box. The boxes are split into smaller boxes, it is determined which of 
the given points are in the smaller boxes, and the neighborhood information is 
refined. This is repeated till each box contains a fixed number of points, and 
then the nearest neighbors for the points in each box are obtained from the 
neighborhood information for the box. This technique has been proposed and 
used by several authors [5], [6], [10]. Similar ideas appear in [3] and [11]. 
Clarkson [5] and Gabow et aL [6] use the above idea to develop algorithms for 
the all-nearest-neighbors problem. So our algorithm and the all-nearest-neighbor 
algorithms in [5] and [6] are similar in this respect. But there are critical 
differences. The scheme for splitting a box into smaller boxes and for splitting 
the set of input points in a box when the box is split, and the order in which the 
boxes are split, are both quite different in our algorithm. We utilize a scheme 
that relies on a combinatorial lemma for trees (Section 4) for splitting the set 
of  input points in a box, and split the boxes in decreasing order of  volume; 
this gives us a deterministic algorithm whose worst-case running time is 
O(n log n). 

At this point we note that the expected running time of  Clarkson's randomized 
algorithm [5] is O((c')gn log n), where c' is a constant independent of dimension 
k; whereas the worst-case running time of our algorithm is O((ck) k n log n), 
where c is a constant that does not depend on k. Thus the expected running time 
of  Clarkson's randomized algorithm has a better dependence on the dimension 
than the worst-case running time of  our algorithm. On the other hand, Clarkson's 
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randomized algorithm requires the use of floor and bitwise exclusive-or 
operations,  whereas our algorithm does not. 

A generalization of  the all-nearest-neighbors problem is defined as follows. 
For a point p c  V, let D(p) be the multiset of  distances defined by D ( p ) =  
{z: z = d (p ,  p'),  p ' c  V, z ~ 0}, and let d~(p) <= d2(p) <-" " • <- d,,(p) be the m smal- 
lest distances in D(p). Then the m-nearest-neighbors of  p are all those points 
in V whose distance from p is at most d, ,(p) .  The all-m-nearest-neighbors problem 
is as follows: for every point p in V, find the m-nearest-neighbors of  p. A slight 
modification of  our algorithm for the all-nearest-neighbors problem leads to an 
O(mn log n) algorithm for the all-m-nearest-neighbors problem. 

We note that if the metric in the given problem is positive definite or semidefinite 
rather than one of the standard L~ metrics, the problem can be transformed in 
O(n) time to a problem with the L2 (Euclidean) metric by applying a linear 
transformation and a projection to the given set of  points. The transformation 
does not increase the dimension k. 

We define a box b to be the product J l x J 2 x ' ' ' x J k  of k intervals (either 
closed, semiclosed, or open) or, equivalently, the set of  those points x =  
(x~,x2 . . . .  , xk) such that x~ lies in the interval J,, for i =  1 . . . .  , k. A box is a 
cubical box if[ all the k intervals defining the box are of  identical length. The 
centre ct(b) of  a box b is defined to be the point (a~(b) , . . . ,  Otk(b)) where a~(b) 
is the centre of  the ith interval defining the box, for i = 1 , . . . ,  k. For a hyperplane 
h = {x: fl tx = y}, we define L(h) to be the left open halfspace {x: flrx < y}, and 
R(h) to be the right closed halfspace {x: f lrx> y}. 

2. An Overview 

In the algorithm we maintain a collection B of disjoint closed cubical boxes 
which contain all the n points in the given set V. Each box has been shrunk as 
much as possible so that further shrinkage would either destroy the cubical shape 
of  the box or push out o f  the box a point in V that was originally located in the 
box. With each box b e  B, there are associated two subsets of  B, Neighbors(b) 
and Attractors(b) such that: 

(1) For each point p c b ~ V, every nearest neighbor of  p is located in box b 
itself or in some box in Neighbors(b). 

(2) Attractors(b)={b': bcNeighbors(b')}. Thus if pEbc~ V is the nearest 
neighbor of  some point p ' c  V then p '  must be located in box b itself or 
in some box in Attractors(b). 

In the beginning, B contains a single box which is a smallest cubical box 
containing all the points in V. At the end, every box b c B is degenerate and 
consists of  a single point in V, i.e., Ibl--Ib Vl-- 1, and Neighbors(b) is exactly 
the set of  nearest neighbors of  the unique point in b c~ V. 

Let d,~ax(b) denote the greatest distance between a pair o f  points in b. Let 
dma~(b, b') denote the max imum distance between a point in b and a point in b', 
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and let dram(b, b') denote the minimum distance between a point in b and a point 
in b'. For each box b c B, we maintain a parameter Estimate(b) given by 

J d o,(b) if vI 2, 
Estimate(b) = )  rain {d .... (b, b')}, otherwise, 

For each point p ~ b c~ V, Estimate(b) serves as an upper bound on the distance 
between p and a nearest neighbor of  p. In order to eliminate unnecessary boxes 
from Neighbors(b), we ensure that Neighbors(b) satisfies the invariant 

Vb' c Neighbors(b), drain(b, b')<- Estimate(b). 

The algorithm proceeds in stages. At the beginning of each stage we choose 
a box b in B that has the largest volume (size) among all the boxes in B for 
splitting. The chosen box b is split into 2 k cubical boxes b~, b? . . . . .  b?,  by k 
mutually orthogonal hyperplanes passing through its center ~r(b), each hyper- 
plane being perpendicular to one of the coordinate axes. Simultaneously, the set 
of  points b c~ V is split into the sets of points b, ~ V, b2 c~ V , . . . ,  b? c~ V using a 
scheme based on a combinatorial lemma for trees (Section 4). Out of these 2 k 
boxes we discard those which do not contain a point in V, and each of the 
remaining boxes is shrunk as much as possible to obtain the set Successors(b). 
The shrinking process ensures that when b is split the set of data points b c TM, V 
is also split, or, equivalently, shrinking guarantees that there are at least two 
boxes in Successors(b). We then remove the split box b from B and add to B 
all the boxes in Successors(b). Finally, we create the estimates, and the neighbor 
and attractor sets, for the boxes in Successors(b); update the estimates and the 
neighbor sets for the boxes in Attractors(b); and update the attractor sets for the 
required boxes in B. That concludes a stage. For each b E B, at the end of a stage 
Neighbors(b) satisfies the above-described invariant. 

Throughout the algorithm Estimate(b) serves as an approximation to the 
distance between a point p ~ b c~ V and a nearest neighbor of p, and the volume 
(size) of b is a measure of  the error in this approximation. By splitting a box 
that has the largest volume, an estimate that has the largest error is refined. 

We note that the algorithms for the all-nearest-neighbors problem described 
in [5] and [6] also maintain the given points in cubical boxes together with 
estimates for the nearest-neighbor distances of points in each box and a set of 
boxes similar to Neighbors(b) for each box b. So our algorithm is similar to the 
algorithms in [5] and [6] in this respect. But the scheme for splitting a box 
together with the set of input points in the box, and the order in which the boxes 
are split, are totally different in our algorithm; the scheme and the order that we 
use lead to a worst-case running time of O(n log n). 

3. The Algorithm 

Let h~(b) be the hyperplane defined by h~(b)={x: xi=a,(b)}, where a ( b ) =  
(a~(b), a2(b) . . . .  , ak(b)) is the centre of box b. Let L(h~(b)) be the left open 
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halfspace {x: x, < a,(b)} and R(h,(b))  be the right closed halfspace {x: x, >- ai(b)}. 
Let Immediate-Successors(b) be the set of boxes defined by 

Immediate - Successors(b) = {b': b ' =  b ~ f l  n .  • • nfk ,  

where f = L(h,(b)) or f = R(h,(b)),  1 <- i <- k}. 

Corresponding to a cubical box b, let shrunk(b) be a cubical box such that: 

(1) l f l b ~  V I ~ I  then s h r u n k ( b ) = b n  V. 
(2) If  I b n  Vl>-2 then (i) shrunk(b)~_b, (ii) shrunk(b)n  V = b n  V, and (iii) 

the maximum L~ distance between a pair of  points in shrunk(b) ~ V equals 
the size of  shrunk(b). 

We now give the algorithm for the all-nearest-neighbors problem. 

Algorithm All-Nearest-Neighbors 
1. Neighbors( bo) := O, Attractors(bo) := Q, B := {bo}, where bo is a smallest 

cubical box containing all the n points in V. 
2. Repeat Steps 2.1-2.6 until each box/~c  B satisfies I/~l = I/~c~ V I = 1, i.e., 

until each box /~ ~ B is degenerate and consists of  a single point in V. 
2.1. Choose, for splitting, a box b e  B that has the largest volume 

among all the boxes in B. 
2.2. Split the set of  points b n  V into the sets of  points b ~  V, bzn  

V , . . . ,  b:~ n V, where b~, b 2 , . . . ,  b?  are the boxes in Immedia te-  
Successors(b). 

2.3. Successors(b) := {b': b ' =  shrunk(b"), 
b" e Immediate - Successors(b), Ib" n V 1 >- 1}. 

2.4. For each box b'c Successors(b). 
create Neighbors( b') and Estimate( b'). 

For each box b ' c  Attractors(b), 
update Neighbors( b') and Estimate( b'). 

2.5. For each box b'~ Successors(b), 
create Attractors( b'). 

For each box b' 6 ( B - Successors(b)), 
update Attractors( b'). 

2.6. B := B - {b} u Successors(b). 
end All-Nearest-Neighbors 

Let B* be the set of  all the boxes generated during the execution of  the 
algorithm. The boxes in B* form a tree in which the boxes are the vertices, the 
children of  b are the boxes in Successors(b), and the leaves are all the points in 
the set V. Every box in this tree has at least two and at most 2 k children. Also 
the total number of  boxes in B* is at most 2n. 

The running time of the algorithm may be divided into: 

(i) Time to select a largest box at each stage summed over all stages. 
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(ii) Total time required to split the set of data points b n V, and shrink box 
b, for all boxes b ~ B*. 

(iii) Total time required to maintain Estimate(b), Neighbors(b), and 
Attractors(b) for all boxes b 6 B*. 

We maintain a heap [8] for the boxes in B. This allows us to pick in constant 
time a box in B that has the largest volume. Since ]B* I-< 2n the total time for 
heap maintenance is O(n log n). Then (i) is O(n log n). 

In Section 4 we show that (ii) is O(n log n). To split the set of data points 
b n V efficiently we utilize k ordered lists List~(b), 1 <- i <- k, the ith list containing 
the points in b c~ V ordered on the ith coordinate. The list List,(b) is embedded 
in the leaves of  a complete binary search tree T,(b). When b is split, from the k 
ordered lists for b we obtain similar lists for all the boxes in Successors(b). In 
Section 4 we show how to split the set of  data points in a box so that the total 
time to split bc~ V for all boxes be  B* is O(n log n). Once the k ordered lists 
corresponding to a box are available the box can be shrunk in constant time. 
Thus the total time for shrinking all the boxes in B* is O(n). 

In Section 5 we show that (iii) is O(n log n). Since at each stage we split a 
box that has the largest volume, and force the neighbor set of each box b c B to 
satisfy the invariant Vb'~ Neighbors(b), drain(b, b')<_ Estimate(b), we can bound 
the sizes of  the attractor sets of all the boxes in /3, and the sizes of the neighbor 
sets of nondegenerate boxes in B, by some constant dependent on k. This in turn 
enables us to obtain a bound of  O(n) on the total number of  additions to 
(insertions into) the neighbor and attractor sets of all the boxes in B*. Since the 
size of the attractor set of  each box in B is bounded by a constant dependent 
on k, we get that the time for maintaining attractor sets is O(n). For a box b, we 
implement Neighbors(b) by a data structure which allows insertions and deletions 
to be performed in O(log n) time, and allows access to a box b', with the greatest 
value of  the parameter dmin(b , b'), in O(Iog n) time. Then the total time, for 
maintaining neighbor sets of all the boxes in B*, can be shown to be O(n log n). 
Finally, only addition of  a box to Neighbors(b) can change the parameter 
Estimate(b), and the change due to the addition of  a single box can be computed 
in constant time. So the total time for maintaining the estimates is O(n). This 
gives a bound of O(n log n) on (iii). 

We note that since the total number of insertions into the neighbor and attractor 
sets is O(n), the space required by our algorithm is O(n). 

4. Splitt ing the Set of Data  Points  in a Box  

In this section we describe how to split the set of  data points b n V in a box b 
efficiently, so that the total time required to split b n V for all the boxes generated 
during the algorithm is O(n log n). 

We make the following definitions. Let T be a rooted tree such that each 
nonleaf vertex has at least two children. For a vertex v in T, we define re(v), 
v . . . .  s(v), and lsa(v). Let re(v) be the number of leaves in the subtree rooted 
at v, and let the largest son of  v, denoted by Vm,~, be a child of v such that 
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for any child v' o f  v, m(Vma×)>--m(v'). For  a non lea f  vertex v let s ( v ) =  
m (v) - m( v ...... ), and for a leaf  vertex v let s (v )  = 0. We define the lowest  smal ler  
ances tor  of  v, deno ted  by lsa(v), as follows. I f  each vertex on the pa th  f rom the 
root  to v, o ther  than the  root ,  is the largest  son o f  its fa ther  then Isa(v) is the 
root;  o therwise  lsa(v) is the lowest  vertex v' on the pa th  from the root  to v such 
that v' is not the largest  son o f  its father.  

In the case o f  the tree o f  boxes  genera ted  dur ing  the a lgor i thm,  for  a box 
bc  B*, re(b) is ident ical  to the number  o f  poin ts  in bc~ V, bmax is a box in 
Successors(b) that  conta ins  the largest  number  o f  points  in V among  all the  boxes 
in Successors(b), and s(b) equals  the number  of  poin ts  in ( b -  bmax) ~ V. 

In o rde r  to b o u n d  the total  amoun t  of  work for spl i t t ing sets o f  da t a  points  
in boxes we require  a l emma  abou t  weight ings on tree vertices. 

Tree-Weighting Lemma. Let T be a rooted tree with t vertices such that each 
nonleaf vertex has at least two and at most r children. Define the weight w(v) of a 
nonleafvertex v by w(v) = s( v)( 1 + log2 m (lsa(v)) - log:  s(v)) and define the weight 
of a leaf to be O. Then ~,~ r w( v ) < 4rt l°g2 t. 

Proof. The l emma is p roved  by induct ion  on the n u m b e r  o f  leaves in T. The 
base  case is when T consis ts  o f  a single leaf ,ver tex  v and then w(v)= 0. So let 
the  number  o f  leaves in T be at least two, then t - - 2 .  Let P be a sequence  o f  
vertices in T as follows.  The first vertex in P is the root  o f  T, and ,  for j > 1, the 
.jth vertex in P is the largest  son o f  the ( j - l ) s t  vertex in P. The sequence 
te rminates  in a leaf. Let Q be the set of  all vert ices v such that  v is the  son o f  
some vertex in P and v is not  the largest  son o f  its father. Fo r  a vertex v, let 
T(v) denote  the subtree  roo ted  at v. We induct ive ly  assume that,  

V v e O ,  }~ w(u)<--4rm(v)log2m(v). 
u~_ T(v) 

We note that ,  for each vertex v in P, lsa(v)= root ,  and  so, 

V v c P ,  w ( v ) = s ( v ) ( l + l o g 2 t - l o g 2 s ( v ) ) .  

As a vertex v has at most  r ch i ldren  we have s ( v ) < - ( 1 - 1 / r ) m ( v ) ,  and  so, 

V v ~  P, logz t - l o g 2  s(v)>-log2 re(v)  - log2 s(v)->- - log2(1 - 1/r). 

Thus,  

Then 

V v e P ,  w(v)<-4rs(v) ( log2t - log2s(v) ) .  

Z w(v)= E w(v)+ E 2 w(u) 
v e T  v~ P v c Q  uc T(v) 

E 4rs(v)(log2 t - l o g 2  s(v) )+ ~ 4rm(v) log~ m(v).  
w~ P v~ O 
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Now since ~,,, ~ s (v)<-  t, and ~,,~o re (v)  log2 r e ( t , )~  Y.,.~ ¢, s (v )  log2 s (v) ,  we get 
that  ~,,~T W(V) <-4rt tog2 t. D 

A proper  ancestor  o f  a leaf  in a rooted tree is a non lea f  vertex on the path 
f rom the root  to the leaf. We also require an upper  bound  on the number  of  
p roper  ancestors  of  a set o f  leaves in a comple te  binary tree, and such a bound  
is p rovided  by the fol lowing lemma.  

Ancestors Lemma.  Let T be a complete binary tree of  height h (T)  containing 
2 h~r)- 1 vertices and let L be a set of  leaves in T. Let Ancestors(L, T) be the set 
of  all the proper ancestors in T of  the leaves in L. Then IAncestors(L, T ) I <  
ILi(h( r ) - l o g l L I ) -  1. 

Proof The bound  holds for h (T)  = 2. Let us assume that the upper  bound  holds 
for all comple te  binary trees containing at most  2 h(T~ ~-  1 vertices. Let T~ and 

be the subtrees rooted at the two sons of  the root o f  T, and let L~, L2, be the 
sets o f  leaves in L that  are in T,,  T2, respectively. Then 

IAncestors(L~, T,)I ~ It,l(h( T ) -  1 - l o g ] L , ] ) -  1, 

[Ancestors(L2, T2)I ~ IL21(h(T) - 1 - loglL2[)  - 1, 

and 

IAncestors( L, T)I : ]Ancestors(L,, T~)]+ [Ancestors(L2, T2)I + 1. 

After some algebraic manipu la t ion  it is seen that  

[Ancestors(L, T)[ <-ILl(h(T) -log] LI) - 1 - I t , t -  It21 

+[L2t log ([L'~--LIIL~[)+[L, I log [1L,!+ I L~I~ 
\ IL,t ]" 

The  p roof  o f  the l emma  fol lows f rom the observa t ion  that  log(( IL~I + It:[)/It ,I)<_ 
IL=t/[L,I and  tog(([L,l + [L2[)/[L2I) <--[L,[/[L=[. 

We now give a scheme for  splitting the set o f  input  points  in a box when the 
box is split. The boxes  in B* (i.e., the set o f  all the boxes genera ted  dur ing the 
a lgor i thm)  form a tree in which the vertices are the boxes  in B*, the children of  
every box b are the boxes  in Successors(b), and the leaves are the points  in V. 
In  addi t ion,  each non lea f  box in this tree has at least two and at most  2 k children, 
and  the n u m b e r  of  vertices in this tree is at most  2n. Suppose  we can split the 
set of  da ta  points  bc~V in t ime propor t iona l  to s ( b ) ( l + l o g 2 m ( I s a ( b ) ) -  
log2 s(b)).  Then f rom the Tree-Weight ing L e m m a  it follows that the total t ime 
required to split bc~ V for  all b e  B* is O(n log n). This is summar ized  in the 
fol lowing lemmas.  

Splitting Lemma 1. The total time required to split the set of  data points b ~ V 
for all boxes b generated during the algorithm is O( k 4kn log n). 
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Proof By the Tree-Weighting Lemma and Splitting Lemma 2 below. [~ 

Splitting Lemma 2. The set of  points bc~ V can be split in O(k2ks (b ) ( l+  
log2 m(Isa(b)) - log= s(b))) time. 

We now show that b c~ V can be split in O(s(b)(1 + log2 m(Isa(b))  -log2 s(b))) 
time. Corresponding to each box b we have k ordered lists List,(b), 1 <- i <_ k, the 
ith list containing the points in b c~ V ordered on the ith coordinate. From an 
entry for a point p in each of these lists there are pointers to the entries for p in 
all the remaining k - I  lists. For each, i, 1 ~ i ~  k, List,(b) is embedded in the 
leaves of a corresponding complete binary search tree T,(b) of height 
[log2 m(lsa(b))] .  The leaves of T,(b) are the points in Isa(b) c~ V ordered on the 
ith coordinate, however, only the leaves that are points in b c~ V are linked 
together to form the ordered list List,(b). In the process of splitting b c~ V, we 
split the k ordered lists List,(b), i= 1 , . . . ,  k, and, for each box obtain b' in 
Successors(b), we obtain the k ordered lists List,(b'), i= 1 , . . . , k .  For each 
b' ~ ( Successors ( b ) - { b ..... } ), List, (b') will be embedded in the leaves of a complete 
binary search tree T,(b') of height [log2 m(b')] .  

To split b c~ V we first obtain the points in ( b -  b ..... ) n V in time proportional 
to s (b )=  I ( b -  b ..... )c~ V]. As before let h,(b) be a hyperplane orthogonal to the 
ith coordinate axis and passing through the center of b, and let L(h,(b))  and 
R(h,(b))  be the corresponding left open and right closed halfspaces. Among the 
two boxes b n L ( h , ( b ) )  and b n R ( h , ( b ) ) ,  let b, be the one that contains the 
smaller number of points in V. We can obtain the set of points b, c~ V in time 
proportional to tb, c~ V I by searching List,(b) simultaneously from both ends and 
stopping the first time the hyperplane h,(b) is crossed. We have two cases 
depending on t(U,k~_, b,)c~ V t. If I(U,k.~ b,)c~ V l < T ~ m ( b )  then (U,k_, b,)c~ 
bm,x=O and ( b - b  ..... ) =U,~=~ b,, and in this case we spend time proportional 
to kl(U, k ~ b,)c~ V l = k s ( b )  in obtaining the set of points ( b - b  ... .  ) n  V. On the 
other hand, if l(U,k=, b,)c~ V } ~ 2 - k m ( b ) ,  then we can afford to spend O(m(b) )  
time in isolating the points in ( b - b  ... .  )c~ V. Thus the points in (b-bmax)~ V 
can be obtained in (k2ks(b))  time. 

Once we have the set of points ( b - b m , ~ ) n  V, we get the corresponding k 
sorted lists as follows. To obtain a list containing the set of  points ( b -  b~,~)n V 
sorted on the ith coordinate, we first label all the points in List,(b) that are 
located in b - b . . . .  We then label all the vertices in T,(b) that are proper ancestors 
of the labeled points in List,(b). The labeling of  the proper ancestors can be 
performed in time proportional to the number of proper ancestors plus the number 
of points in ( b -  bm~) c~ V. Then from the Ancestors Lemma we can bound the 
time required for labeling by O(s(b)(1 +log2 m(Isa (b ) ) - log2  s(b))) .  Next, we 
traverse the labeled vertices of L(b)  in order and thereby obtain the labeled 
points in List,(b), i.e., the points in ( b - b m , ~ ) n  V in sorted order on the ith 
coordinate. The in order traversal may be performed in time proportional to the 
number of labeled vertices. Finally, we unlabel all the labeled vertices. 

After the k ordered lists for the set (b - b~,~) c~ V have been obtained, all the 
points in ( b -  bm,~) n V are deleted from each of  the lists List~(b), i = 1 . . . .  , k. 
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For each box b' in Successors(b)-{bm~x}, we can obtain the k ordered lists 
List,(b') from the k ordered lists for ( b - b  .... ) n  V, in O ( k l ( b - b  .... )c~ VI)= 
O(ks(b))  time. In addition, for each b' in Successors(b)-{bm,,}, List,(b') may 
be embedded in a complete binary search tree T~(b') of height [log2 m(b')]  in 
O(m(b ' ) )  time. 

Finally, we note that deleting the points in (b-b~,,~)c~ V from List,(b), 
i = 1 , . . . ,  k, leaves behind the points in b .... n V. So the k ordered lists for the 
points in bm,x~ V are now available. Since lsa(bm~×) = L~a(b), a suitable embed- 
ding of these lists in a complete binary search tree of height [log2 m (Isa (bm~O)] 
is also available. 

Thus the entire process of splitting b n V may be accomplished in 
O(k2ks(b)( l+log2 m(Isa(b) ) - log2  s(b)))  time. We have thus proved Splitting 
Lemma 2. 

5. Maintaining Neighbor and Attractor Sets, and Estimates 

In this section we describe how the neighbor and attractor sets, and the estimates, 
may be maintained in O(n log n) time. We first observe that: 

(1) A box b' is added to or deleted from Attractors(b) whenever b is added 
to or deleted from Nei~hbors(b'). 

(2) Estimate(b) changes only when a box is added to Neighbors(b). 
(3) When b is split, there can be additions only to the neighbor sets of boxes 

in Successors(b)u Attractors(b), only boxes in Successors(b) can possibly 
get added to the neighbor set of a box in Attractors(b), and for all 
b' ~ Successors(b), Neighbors( b') c Neighbors(b) ~ Successors(b). 

The above observations lead to the following procedure for modifying the 
neighbor and attractor sets, and the estimates, during the stage when b is split. 

Procedure Modify-sets-estimates 
1. V b '  c Successors(b), 

Neighbors( b') := Neighbors(b) w Successors(b) - {b'}, 
Attractors( b') := Attractors(b) w Successors(b) - {b'}, 
If  ]b 'n  V] >-2 then Estimate( b') := dma×(b') 

else Estimate(b') := min {dmax(b '  , b")}. 
b" c N e l g h b o r ~  ( b ) ~ Succe~  ~or~ ( b ) 

2. Vb' ~ Attractors(b), 
Neighbors( b') := Neighbors( b') u Successors(b) - {b}, 
Estimate(b') := min{Estimate(b'), min {dm,,(b', b")}}. 

b" c S u c c e s s o r s (  b ) 

3. Vb' c Neighbors(b), 
Attractors( b') := Attractors( b') u Successors(b) - {b} .  

4. Vb'  c Successors(b) w Attractors(b), 
delete from Neighbors(b') every box b" which satisfies dm~n(b', b")> 
Estimate(b'), and if b" is deleted from Neighbors(b') then also delete 
b' from Attractors(b"). 

end Modify-sets-estimates 
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As before let B* be the set o f  all the boxes generated during the execution o f  
the all-nearest-neighbors algorithm. We shall bound  the total number  o f  boxes 
that are added  to Neighbors(b) and Anracgors(b) for all b ~ B* during the entire 
execution o f  the all-nearest-neighbors algorithm. During the stage when b is split, 
there are at most  

2lSuccessors( b )l(ISuccessors( b )J + I Neighbors( b ) I + IAttractors( b )t) 

addit ions to the neighbor  and attractor sets. So to bound  the total number  
o f  addit ions to the neighbor  and attractor sets we must bound  the size o f  
Neighbors(b) and Attractors(b) when b is split. Such bounds  are provided by the 
Packing Lemmas that follow. 

We let bt. denote  a box in the current set of  boxes B such that bE has the 
largest volume among  all the boxes in B. 

Packing Lemma 1. Let r be a positive integer. At the beginning of a stage, if b ~ B 
then the number of boxes b' in B such that d .... ( b, b')<_rdma~( bL) is at most 
2k(2rk+3)  k. 

Proo£ Let size(b') denote  the length of  each of  the k intervals defining b'. Let 

C(b)=  {b': b' ~ B, d .... (b, b')- <- rdm~*(bL)} 

and 

A(b) = tb ' :  b' E B*, Successors(b') c~ C(b)  ¢ Q}. 

Since boxes are split in nonincreasing order  o f  size, Vb'~ A(b),  size(b') .>- size(bu). 
So each box b'  in A(b) may be shrunk to a box b" such that dm~(b, b")= 
dm,,(b, b')<-rd .... (bL), and size( b") = size( bt). Let ,4(b) be the set o f  boxes 
obtained by shrinking all the boxes in A(b) in this manner.  We note that the Lq 
distance between two points in k-dimensional  space is bounded  by k times the 
L~, distance between the points. It then follows that  there exists a box b* such 
that size(b*)=(2rk+3)size(bE),  b* and b have the same center, and b* is a 
superset o f  every box b in A(b). As the boxes in ,4(b) are disjoint we get 
[.4(b)l <- (2rk + 3) k. Finally, as ISuccessors(b)[ ~ 2 ~, we have 

IC(b)l-<- 2klA(b)l ~ 2 ~ I/~(b)l <- 2~ (2rk +3 )  k. [] 

Packing Lemma 2. At the beginning of each stage, if b c B and Ib c~ V I >_ 2 then 
INeighbors(b)l <- cl(k ) where q (k )  = 2~(2k+3)  k. 

Proof Since Ib ~ V I -> 2, we have Estimate(b)= dm~x(b) < - dma×(bL), and hence, 
Vb' c Neighbors(b), dmi,(b, b') ~ Estimate(b) ~ dma,(bL). So from Packing Lemma 
1 we get INeighbors(b)l ~ 2h(2k + 3) k. []  
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Packing Lemma 3. At the beginning of each stage, if  b e B then IAttractors( b ) I <- 
c2(k) where c2(k) = 12 k +2k(8k+3)  k. 

Proof Without loss of generality, let a (b) ,  the center of box b, be the origin. Let 

Ar.(b) = {b': b'6 Attractors(b), d,~i,(b, b ')->4d~.(bL)} 

and let 

As(b)  = Attractors(b) - A t (b ) .  

From Packing Lemma 1, 

Ias(b)[ ~ 2 k (8k + 3) k. 

We first observe that there cannot be a pair of boxes b~, b2, in A~(b) such 
that the centers a(b)  =0,  a(bl) ,  a(b2) are collinear. Assume that there exist such 
boxes bf and b2 in AF(b), and let 

d(0, a(b2)) = d(0, a(b,))+ d(a(b , ) ,  a(b2)). 

Then as 

and 

we get 

dm~n(b, b2)+ dm.~(bL)-> d(0, a(b2)) 

d,.~×(b,, b2) ~ d(a(b, ) ,  ct (b2)) + dma~(b,) 

drain(b, b2) >- dmax( b~ , b2) + d(O, a( b,) ) - 2d,..x(bL) > dmax( b, , b2). 

Then because of  the invariant forced on the neighbor sets at each stage, we must 
have that b ~ Neighbors(b2) and be ~ Attractors(b) which is a contradiction. 

By Packing Lemma 4 below, there also cannot be a pair of boxes bl, b2 in 
Av(b)  such that 

( c~(bO a(b~) ~ <1 
d \d(0_ a(----b,))' d(0, a(b2))] - 3. 

Let AF(b )= {p :  p =  ¢x(b')/d(O, a(b')), b'~ At(b)}. Then [,4F(b)t= IAF(b)I, 
each point in AF(b)is  at a distance of 1 from the origin, and the distance between 
any two points in AF(b) is at least ~. Around each point in AF(b) draw a ball 
of  radius ~. No two of these balls can intersect and the intersection of each such 
ball with the unit ball around the origin completely contains a ball of radius ~ .  
So the number of points in .4F(b) and hence the number of boxes in AF(b) is 
at most 12 k. Thus 

]Attractors( b )l = ]As(b)l + lAy(b)[ ~ 2k(8k + 3) k + 12 k. [] 
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Packing Lemma 4. At the beginning of a stage let b be a box in B and let 

At:(b) = {b': b'c Attractors(b), d ..... (b, b ' ) ->4d  .... (be)}. 

Then there cannot be a pair of boxes b~, b2 in At(b)  such that 

( a ( b , )  _ a(b~) ~ l 
d \d(O,,-~i-b,))' d(O, a(b2))] <-~" 

Proof Assume that there is such a pair  of  boxes b~, b~, in AF(b). Let 
d(O, a(bl)) ~ d(O, a(b2)) and A = d(0, c~(bl))/ d(O, a(b2)). We have 

d( a( b,), Aa( b2) ) ~ ~d( O, a( b,) ) = ~d(O, Aa(b2)). 

This gives 

d(0, a(b2)) = d ( a ( b , ) ,  Aa(b2))+d(Ace(b2), a(b:)) 

+ d(O, Aa (b~)) - d(a(b,), ,~c~(b~)) 

>-d(a(b,), a(b2))+ ~d(O, a(b,)) 

>- d(a(bl), a(b2)) + ~d .... (be). 

This would imply that d ..... (b, b2)> dm~,(bt, b:) and this cannot  happen  because 
of  the invariant forced at each stage on the neighbor  sets. []  

From the packing lemmas and the procedure  for maintaining the neighbor 
and attractor sets, it follows that during each stage there are at most  a constant 
number  o f  addit ions to neighbor  and attractor sets. Since there are at most 2n 
stages it follows that O(n) boxes are added  to the neighbor and attractor sets 
during the entire execution o f  the all-nearest-neighbors algorithm. The size o f  
the at tractor set o f  any box in B never grows beyond a constant  because at the 
beginning of  a stage the size of  the attractor set is bounded  by a constant  and 
during a stage there can be only a constant  number  o f  additions to an attractor 
set. So the total time for maintaining attractor sets is O(n). The time to maintain 
the estimates is also O(n) because the change in Estimate(b) due to the addition 
o f  a box to Neighbors(b) can be computed  in constant  time. We implement 
Neighbors(b) by a data structure which allows insertions and deletions in O(log n) 
time, and allows access to a box b' that has the largest value for the parameter  
dm~n(b, b') in O(Iog n) time. A heap or a 2-3 tree suffices [8]. Then the total work 
to maintain the neighbors  sets is O(n log n). Explicitly evaluating the constants 
gives a bound  of  O(8k(8k+3)k)n log n) on the time for maintaining the neighbor  
and attractor sets. 
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6. All-m-Nearest-Neighbors 

To get an algorithm for the all-m-nearest-neighbors problem, the all-nearest- 
neighbors algorithm is modified as follows. Any box b'c hnmediate-Successors(b) 
such that [b' c~ V] < m + 1 is immediately split into Ib' n VI boxes each containing 
exactly one point in V. Let r~(b)~ r 2 ( b ) ~ ' ' '  ~ r , , , ( b ) ~ ' "  be a nondecreasing 
sequence of the distances in the multiset {r: r = d .... (b, b'), b'c Neighbors(#)}. 
Then 

d .... (b) 
Estimate( b) I (r . , (b),  

if l b c ~ V [ > - m + l ,  

otherwise. 

The sizes of  the attractor sets of  all the boxes in B can be bounded by c2(k)m, 
and the sizes of  the neighbor sets of  nondegenerate boxes in B can be bounded 
by cl(k), where e~(k), c2(k) are constants dependent on k. During each stage 
there are O(m 2) additions to the neighbor and attractor sets, and the number of  
stages is O(n /m) .  Then the running time may be shown to be O(mn log n). 

7. Conclusion 

We have presented an O(n log n) algorithm for the all-nearest-neighbors problem. 
The running time of the algorithm is optimal up to a constant factor in the 
algebraic decision-tree model of computation. If the metric in the given problem 
is positive definite or semidefinite rather than one of the standard L, metrics, 
the problem can be transformed in linear time to a problem with the L2 (Euclidean) 
metric without increasing the dimension. A slight modification of the all-nearest- 
neighbors algorithm gives an O(mn log n) algorithm for the all-m-nearest- 
neighbors problem. 

One question that naturally comes up is how does the algorithm behave if the 
points are maintained in a collection of regions other than disjoint cubical boxes? 
The algorithm will run with a similar time bound if the regions satisfy the following 
three conditions. First, the regions are easy to compute with so that splitting and 
shrinking a region can be quickly accomplished. Second, the volume of the 
intersection of any two regions is at most a small fraction of the volume of  either 
region. Third, the ratio of  the size of  the smallest cube that contains a region to 
the size of  the largest cube that is contained in the region is bounded by a fixed 
constant. The second and the third conditions would allow us to prove packing 
lemmas similar to the ones in the paper. Thus hyperrectangles which are balanced, 
i.e., hyperrectangles which do not deviate too far from the shape of  a cube, wilt 
suffice. But hyperrectangtes that are unbalanced, i.e., flat in some direction and 
quite long in some other direction will not suffice, since the size of  the attractor 
sets will grow as the hyperrectangles get more and more unbalanced. A scheme 
for splitting the regions which forced the set of  input points in a region to split 
evenly could lead to unbalanced regions, and so such a scheme (e.g., the splitting 
scheme used in building a k-dimensional tree) would not be adequate. 
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