
Discrete Comput Geom 4:101-115 (1989)

G
)l~,'r,'l,- 8t (.q tmlmlal~nal

eometrv
(I 389 Sprmger-Verlag N e t York Inc o ¢

An O(n log n) Algorithm for the
All-Nearest-Neighbors Problem*

Pravin M. Va idya

Department of Computer Science, University of Illinois at Urbana-Champaign,
Urbana, IL 61801, USA

Communicated by Herbert Edelsbrunner

Abstract. Given a set V of n points in k-dimensional space, and an Lq-metric
(Minkowski metric), the all-nearest-neighbors problem is defined as follows: for
each point p in V, find all those points in V-{p} that are closest to p under the
distance metric Lq. We give an O(n log n) algorithm for the all-nearest-neighbors
problem, for fixed dimension k and fixed metric Lq. Since there is an 12(n log n)
lower bound, in the algebraic decision-tree model of computation, on the time
complexity of any algorithm that solves the all-nearest-neighbors problem (for k = 1),
the running time of our algorithm is optimal up to a constant factor.

1. Introduction

The a l l -nea res t -ne ighbors p rob l em is one of the very wel l - s tud ied p rox imi ty
p r o b l e m s in c o m p u t a t i o n a l geomet ry [2], [4], [5], [7], [9]. We are given a set V
o f n po in ts in k -d imens iona l space and a d i s tance metr ic Lq. Each po in t x is
given as a k - tup le o f real number s (x~, x2 xk). The Lq dis tance be tween a
pa i r o f po in t s x, y is given by (Y.~ Ix~ -y~lq)~/L (No te that the Loo d i s tance be tween
x and y is given by max;txi -Yi t .) The neares t (closest) ne ighbors o f a po in t p ~ V
are all those po in ts in V that are closest to p u n d e r the d i s tance met r ic Lq. The
a l l -nea res t -ne ighbors p r o b l e m is def ined as fol lows: for each po in t p in V, f ind
the neares t (closest) ne ighbors o f p. We as sume that the d imens ion k and the

* This research was supported by a fellowship from the Shell Foundation. The author is currently
at AT&T Bell Laboratories, Murray Hill, New Jersey, USA.

102 P.M. Vaidya

distance metric Lq are fixed. We use distance for Lq distance, and d(x ,y) to
denote the distance between x and y.

As far as the model of computation is concerned we assume that all arithmetic,
comparison, and memory-access operations require constant time.

The simplest algorithm for the all-nearest-neighbors problem may be phrased
as follows: for each point p in V, explicitly test if every point p' in V - { p } is a
closest neighbor of p. This algorithm runs in time O(n2). However, it is possible
to obtain algorithms that require o(n 2) time. Bentley [2] utilizes multidimensional
divide and conquer to develop an O(n(log n) k-~) algorithm for the all-nearest-
neighbors problem. An O(n log 6) algorithm is presented by Clarkson [5] and
by Gabow et al. [6], where & is the ratio of the maximum to the minimum distance
between a pair of points in V. Clarkson [5] gives a randomized algorithm, with
an expected running time of O(n log n) for any set of input points.

We give a deterministic algorithm for the all-nearest-neighbors problem, with
a worst-case running time of O(n log n). In the algebraic decision-tree model of
computation, there is a lower bound of f~(n log n) on the time complexity of any
algorithm that solves the all-nearest-neighbors problem for dimension k = 1 [1],
[7]. So the running time of our algorithm is optimal up to a constant factor. We
note however that the multiplicative constant in the running time of our algorithm
depends on the dimension k, and is of the order of (ck) k where c is a constant
that does not depend on the dimension k. The space requirement of our algorithm
is O(n).

Our algorithm is based on the following idea (technique). The given points
are maintained in cubical boxes together with some neighborhood information
for each box. The boxes are split into smaller boxes, it is determined which of
the given points are in the smaller boxes, and the neighborhood information is
refined. This is repeated till each box contains a fixed number of points, and
then the nearest neighbors for the points in each box are obtained from the
neighborhood information for the box. This technique has been proposed and
used by several authors [5], [6], [10]. Similar ideas appear in [3] and [11].
Clarkson [5] and Gabow et aL [6] use the above idea to develop algorithms for
the all-nearest-neighbors problem. So our algorithm and the all-nearest-neighbor
algorithms in [5] and [6] are similar in this respect. But there are critical
differences. The scheme for splitting a box into smaller boxes and for splitting
the set of input points in a box when the box is split, and the order in which the
boxes are split, are both quite different in our algorithm. We utilize a scheme
that relies on a combinatorial lemma for trees (Section 4) for splitting the set
of input points in a box, and split the boxes in decreasing order of volume;
this gives us a deterministic algorithm whose worst-case running time is
O(n log n).

At this point we note that the expected running time of Clarkson's randomized
algorithm [5] is O((c')gn log n), where c' is a constant independent of dimension
k; whereas the worst-case running time of our algorithm is O((ck) k n log n),
where c is a constant that does not depend on k. Thus the expected running time
of Clarkson's randomized algorithm has a better dependence on the dimension
than the worst-case running time of our algorithm. On the other hand, Clarkson's

An O(n log n) Algorithm for lhe All-Nearest-Neighbors Problem 103

randomized algorithm requires the use of floor and bitwise exclusive-or
operations, whereas our algorithm does not.

A generalization of the all-nearest-neighbors problem is defined as follows.
For a point p c V, let D(p) be the multiset of distances defined by D (p) =
{z: z = d (p , p'), p ' c V, z ~ 0}, and let d~(p) <= d2(p) <-" " • <- d,,(p) be the m smal-
lest distances in D(p). Then the m-nearest-neighbors of p are all those points
in V whose distance from p is at most d, ,(p) . The all-m-nearest-neighbors problem
is as follows: for every point p in V, find the m-nearest-neighbors of p. A slight
modification of our algorithm for the all-nearest-neighbors problem leads to an
O(mn log n) algorithm for the all-m-nearest-neighbors problem.

We note that if the metric in the given problem is positive definite or semidefinite
rather than one of the standard L~ metrics, the problem can be transformed in
O(n) time to a problem with the L2 (Euclidean) metric by applying a linear
transformation and a projection to the given set of points. The transformation
does not increase the dimension k.

We define a box b to be the product J l x J 2 x ' ' ' x J k of k intervals (either
closed, semiclosed, or open) or, equivalently, the set of those points x =
(x~,x2 , xk) such that x~ lies in the interval J,, for i = 1 , k. A box is a
cubical box if[all the k intervals defining the box are of identical length. The
centre ct(b) of a box b is defined to be the point (a~(b) , . . . , Otk(b)) where a~(b)
is the centre of the ith interval defining the box, for i = 1 , . . . , k. For a hyperplane
h = {x: fl tx = y}, we define L(h) to be the left open halfspace {x: flrx < y}, and
R(h) to be the right closed halfspace {x: f lrx> y}.

2. An Overview

In the algorithm we maintain a collection B of disjoint closed cubical boxes
which contain all the n points in the given set V. Each box has been shrunk as
much as possible so that further shrinkage would either destroy the cubical shape
of the box or push out o f the box a point in V that was originally located in the
box. With each box b e B, there are associated two subsets of B, Neighbors(b)
and Attractors(b) such that:

(1) For each point p c b ~ V, every nearest neighbor of p is located in box b
itself or in some box in Neighbors(b).

(2) Attractors(b)={b': bcNeighbors(b')}. Thus if pEbc~ V is the nearest
neighbor of some point p ' c V then p ' must be located in box b itself or
in some box in Attractors(b).

In the beginning, B contains a single box which is a smallest cubical box
containing all the points in V. At the end, every box b c B is degenerate and
consists of a single point in V, i.e., Ibl--Ib Vl-- 1, and Neighbors(b) is exactly
the set of nearest neighbors of the unique point in b c~ V.

Let d,~ax(b) denote the greatest distance between a pair o f points in b. Let
dma~(b, b') denote the max imum distance between a point in b and a point in b',

104 P.M. Vaidya

and let dram(b, b') denote the minimum distance between a point in b and a point
in b'. For each box b c B, we maintain a parameter Estimate(b) given by

J d o,(b) if vI 2,
Estimate(b) =) rain {d (b, b')}, otherwise,

For each point p ~ b c~ V, Estimate(b) serves as an upper bound on the distance
between p and a nearest neighbor of p. In order to eliminate unnecessary boxes
from Neighbors(b), we ensure that Neighbors(b) satisfies the invariant

Vb' c Neighbors(b), drain(b, b')<- Estimate(b).

The algorithm proceeds in stages. At the beginning of each stage we choose
a box b in B that has the largest volume (size) among all the boxes in B for
splitting. The chosen box b is split into 2 k cubical boxes b~, b? b?, by k
mutually orthogonal hyperplanes passing through its center ~r(b), each hyper-
plane being perpendicular to one of the coordinate axes. Simultaneously, the set
of points b c~ V is split into the sets of points b, ~ V, b2 c~ V , . . . , b? c~ V using a
scheme based on a combinatorial lemma for trees (Section 4). Out of these 2 k
boxes we discard those which do not contain a point in V, and each of the
remaining boxes is shrunk as much as possible to obtain the set Successors(b).
The shrinking process ensures that when b is split the set of data points b c TM, V
is also split, or, equivalently, shrinking guarantees that there are at least two
boxes in Successors(b). We then remove the split box b from B and add to B
all the boxes in Successors(b). Finally, we create the estimates, and the neighbor
and attractor sets, for the boxes in Successors(b); update the estimates and the
neighbor sets for the boxes in Attractors(b); and update the attractor sets for the
required boxes in B. That concludes a stage. For each b E B, at the end of a stage
Neighbors(b) satisfies the above-described invariant.

Throughout the algorithm Estimate(b) serves as an approximation to the
distance between a point p ~ b c~ V and a nearest neighbor of p, and the volume
(size) of b is a measure of the error in this approximation. By splitting a box
that has the largest volume, an estimate that has the largest error is refined.

We note that the algorithms for the all-nearest-neighbors problem described
in [5] and [6] also maintain the given points in cubical boxes together with
estimates for the nearest-neighbor distances of points in each box and a set of
boxes similar to Neighbors(b) for each box b. So our algorithm is similar to the
algorithms in [5] and [6] in this respect. But the scheme for splitting a box
together with the set of input points in the box, and the order in which the boxes
are split, are totally different in our algorithm; the scheme and the order that we
use lead to a worst-case running time of O(n log n).

3. The Algorithm

Let h~(b) be the hyperplane defined by h~(b)={x: xi=a,(b)}, where a (b) =
(a~(b), a2(b) , ak(b)) is the centre of box b. Let L(h~(b)) be the left open

An O(n tog n) Algorithm for the All-Nearest-Neighbors Problem 105

halfspace {x: x, < a,(b)} and R(h,(b)) be the right closed halfspace {x: x, >- ai(b)}.
Let Immediate-Successors(b) be the set of boxes defined by

Immediate - Successors(b) = {b': b ' = b ~ f l n . • • nfk ,

where f = L(h,(b)) or f = R(h,(b)), 1 <- i <- k}.

Corresponding to a cubical box b, let shrunk(b) be a cubical box such that:

(1) l f l b ~ V I ~ I then s h r u n k (b) = b n V.
(2) If I b n Vl>-2 then (i) shrunk(b)~_b, (ii) shrunk(b)n V = b n V, and (iii)

the maximum L~ distance between a pair of points in shrunk(b) ~ V equals
the size of shrunk(b).

We now give the algorithm for the all-nearest-neighbors problem.

Algorithm All-Nearest-Neighbors
1. Neighbors(bo) := O, Attractors(bo) := Q, B := {bo}, where bo is a smallest

cubical box containing all the n points in V.
2. Repeat Steps 2.1-2.6 until each box/~c B satisfies I/~l = I/~c~ V I = 1, i.e.,

until each box /~ ~ B is degenerate and consists of a single point in V.
2.1. Choose, for splitting, a box b e B that has the largest volume

among all the boxes in B.
2.2. Split the set of points b n V into the sets of points b ~ V, bzn

V , . . . , b:~ n V, where b~, b 2 , . . . , b? are the boxes in Immedia te-
Successors(b).

2.3. Successors(b) := {b': b ' = shrunk(b"),
b" e Immediate - Successors(b), Ib" n V 1 >- 1}.

2.4. For each box b'c Successors(b).
create Neighbors(b') and Estimate(b').

For each box b ' c Attractors(b),
update Neighbors(b') and Estimate(b').

2.5. For each box b'~ Successors(b),
create Attractors(b').

For each box b' 6 (B - Successors(b)),
update Attractors(b').

2.6. B := B - {b} u Successors(b).
end All-Nearest-Neighbors

Let B* be the set of all the boxes generated during the execution of the
algorithm. The boxes in B* form a tree in which the boxes are the vertices, the
children of b are the boxes in Successors(b), and the leaves are all the points in
the set V. Every box in this tree has at least two and at most 2 k children. Also
the total number of boxes in B* is at most 2n.

The running time of the algorithm may be divided into:

(i) Time to select a largest box at each stage summed over all stages.

106 P.M. Vaidya

(ii) Total time required to split the set of data points b n V, and shrink box
b, for all boxes b ~ B*.

(iii) Total time required to maintain Estimate(b), Neighbors(b), and
Attractors(b) for all boxes b 6 B*.

We maintain a heap [8] for the boxes in B. This allows us to pick in constant
time a box in B that has the largest volume. Since]B* I-< 2n the total time for
heap maintenance is O(n log n). Then (i) is O(n log n).

In Section 4 we show that (ii) is O(n log n). To split the set of data points
b n V efficiently we utilize k ordered lists List~(b), 1 <- i <- k, the ith list containing
the points in b c~ V ordered on the ith coordinate. The list List,(b) is embedded
in the leaves of a complete binary search tree T,(b). When b is split, from the k
ordered lists for b we obtain similar lists for all the boxes in Successors(b). In
Section 4 we show how to split the set of data points in a box so that the total
time to split bc~ V for all boxes be B* is O(n log n). Once the k ordered lists
corresponding to a box are available the box can be shrunk in constant time.
Thus the total time for shrinking all the boxes in B* is O(n).

In Section 5 we show that (iii) is O(n log n). Since at each stage we split a
box that has the largest volume, and force the neighbor set of each box b c B to
satisfy the invariant Vb'~ Neighbors(b), drain(b, b')<_ Estimate(b), we can bound
the sizes of the attractor sets of all the boxes in /3, and the sizes of the neighbor
sets of nondegenerate boxes in B, by some constant dependent on k. This in turn
enables us to obtain a bound of O(n) on the total number of additions to
(insertions into) the neighbor and attractor sets of all the boxes in B*. Since the
size of the attractor set of each box in B is bounded by a constant dependent
on k, we get that the time for maintaining attractor sets is O(n). For a box b, we
implement Neighbors(b) by a data structure which allows insertions and deletions
to be performed in O(log n) time, and allows access to a box b', with the greatest
value of the parameter dmin(b , b'), in O(Iog n) time. Then the total time, for
maintaining neighbor sets of all the boxes in B*, can be shown to be O(n log n).
Finally, only addition of a box to Neighbors(b) can change the parameter
Estimate(b), and the change due to the addition of a single box can be computed
in constant time. So the total time for maintaining the estimates is O(n). This
gives a bound of O(n log n) on (iii).

We note that since the total number of insertions into the neighbor and attractor
sets is O(n), the space required by our algorithm is O(n).

4. Splitt ing the Set of Data Points in a Box

In this section we describe how to split the set of data points b n V in a box b
efficiently, so that the total time required to split b n V for all the boxes generated
during the algorithm is O(n log n).

We make the following definitions. Let T be a rooted tree such that each
nonleaf vertex has at least two children. For a vertex v in T, we define re(v),
v s(v), and lsa(v). Let re(v) be the number of leaves in the subtree rooted
at v, and let the largest son of v, denoted by Vm,~, be a child of v such that

An O (n log n) Algor i thm for the Al l -Neares t -Ne ighbors Problem 107

for any child v' o f v, m(Vma×)>--m(v'). For a non lea f vertex v let s (v) =
m (v) - m(v), and for a leaf vertex v let s (v) = 0. We define the lowest smal ler
ances tor of v, deno ted by lsa(v), as follows. I f each vertex on the pa th f rom the
root to v, o ther than the root , is the largest son o f its fa ther then Isa(v) is the
root; o therwise lsa(v) is the lowest vertex v' on the pa th from the root to v such
that v' is not the largest son o f its father.

In the case o f the tree o f boxes genera ted dur ing the a lgor i thm, for a box
bc B*, re(b) is ident ical to the number o f poin ts in bc~ V, bmax is a box in
Successors(b) that conta ins the largest number o f points in V among all the boxes
in Successors(b), and s(b) equals the number of poin ts in (b - bmax) ~ V.

In o rde r to b o u n d the total amoun t of work for spl i t t ing sets o f da t a points
in boxes we require a l emma abou t weight ings on tree vertices.

Tree-Weighting Lemma. Let T be a rooted tree with t vertices such that each
nonleaf vertex has at least two and at most r children. Define the weight w(v) of a
nonleafvertex v by w(v) = s(v)(1 + log2 m (lsa(v)) - log: s(v)) and define the weight
of a leaf to be O. Then ~,~ r w(v) < 4rt l°g2 t.

Proof. The l emma is p roved by induct ion on the n u m b e r o f leaves in T. The
base case is when T consis ts o f a single leaf ,ver tex v and then w(v)= 0. So let
the number o f leaves in T be at least two, then t - - 2 . Let P be a sequence o f
vertices in T as follows. The first vertex in P is the root o f T, and , for j > 1, the
.jth vertex in P is the largest son o f the (j - l) s t vertex in P. The sequence
te rminates in a leaf. Let Q be the set of all vert ices v such that v is the son o f
some vertex in P and v is not the largest son o f its father. Fo r a vertex v, let
T(v) denote the subtree roo ted at v. We induct ive ly assume that,

V v e O , }~ w(u)<--4rm(v)log2m(v).
u~_ T(v)

We note that , for each vertex v in P, lsa(v)= root , and so,

V v c P , w (v) = s (v) (l + l o g 2 t - l o g 2 s (v)) .

As a vertex v has at most r ch i ldren we have s (v) < - (1 - 1 / r) m (v) , and so,

V v ~ P, logz t - l o g 2 s(v)>-log2 re(v) - log2 s(v)->- - log2(1 - 1/r).

Thus,

Then

V v e P , w(v)<-4rs(v) (log2t - log2s(v)) .

Z w(v)= E w(v)+ E 2 w(u)
v e T v~ P v c Q uc T(v)

E 4rs(v)(log2 t - l o g 2 s(v))+ ~ 4rm(v) log~ m(v).
w~ P v~ O

108 P.M. Vaidya

Now since ~,,, ~ s (v)<- t, and ~,,~o re (v) log2 r e (t ,)~ Y.,.~ ¢, s (v) log2 s (v) , we get
that ~,,~T W(V) <-4rt tog2 t. D

A proper ancestor o f a leaf in a rooted tree is a non lea f vertex on the path
f rom the root to the leaf. We also require an upper bound on the number of
p roper ancestors of a set o f leaves in a comple te binary tree, and such a bound
is p rovided by the fol lowing lemma.

Ancestors Lemma. Let T be a complete binary tree of height h (T) containing
2 h~r)- 1 vertices and let L be a set of leaves in T. Let Ancestors(L, T) be the set
of all the proper ancestors in T of the leaves in L. Then IAncestors(L, T) I <
ILi(h(r) - l o g l L I) - 1.

Proof The bound holds for h (T) = 2. Let us assume that the upper bound holds
for all comple te binary trees containing at most 2 h(T~ ~- 1 vertices. Let T~ and

be the subtrees rooted at the two sons of the root o f T, and let L~, L2, be the
sets o f leaves in L that are in T,, T2, respectively. Then

IAncestors(L~, T,)I ~ It,l(h(T) - 1 - l o g] L ,]) - 1,

[Ancestors(L2, T2)I ~ IL21(h(T) - 1 - loglL2[) - 1,

and

IAncestors(L, T)I :]Ancestors(L,, T~)]+ [Ancestors(L2, T2)I + 1.

After some algebraic manipu la t ion it is seen that

[Ancestors(L, T)[<-ILl(h(T) -log] LI) - 1 - I t , t - It21

+[L2t log ([L'~--LIIL~[)+[L, I log [1L,!+ I L~I~
\ IL,t]"

The p roof o f the l emma fol lows f rom the observa t ion that log((IL~I + It:[)/It ,I)<_
IL=t/[L,I and tog(([L,l + [L2[)/[L2I) <--[L,[/[L=[.

We now give a scheme for splitting the set o f input points in a box when the
box is split. The boxes in B* (i.e., the set o f all the boxes genera ted dur ing the
a lgor i thm) form a tree in which the vertices are the boxes in B*, the children of
every box b are the boxes in Successors(b), and the leaves are the points in V.
In addi t ion, each non lea f box in this tree has at least two and at most 2 k children,
and the n u m b e r of vertices in this tree is at most 2n. Suppose we can split the
set of da ta points bc~V in t ime propor t iona l to s (b) (l + l o g 2 m (I s a (b)) -
log2 s(b)). Then f rom the Tree-Weight ing L e m m a it follows that the total t ime
required to split bc~ V for all b e B* is O(n log n). This is summar ized in the
fol lowing lemmas.

Splitting Lemma 1. The total time required to split the set of data points b ~ V
for all boxes b generated during the algorithm is O(k 4kn log n).

An O(n log n) Algorithm for the All-Nearest-Neighbors Problem 109

Proof By the Tree-Weighting Lemma and Splitting Lemma 2 below. [~

Splitting Lemma 2. The set of points bc~ V can be split in O(k2ks (b) (l+
log2 m(Isa(b)) - log= s(b))) time.

We now show that b c~ V can be split in O(s(b)(1 + log2 m(Isa(b)) -log2 s(b)))
time. Corresponding to each box b we have k ordered lists List,(b), 1 <- i <_ k, the
ith list containing the points in b c~ V ordered on the ith coordinate. From an
entry for a point p in each of these lists there are pointers to the entries for p in
all the remaining k - I lists. For each, i, 1 ~ i ~ k, List,(b) is embedded in the
leaves of a corresponding complete binary search tree T,(b) of height
[log2 m(lsa(b))] . The leaves of T,(b) are the points in Isa(b) c~ V ordered on the
ith coordinate, however, only the leaves that are points in b c~ V are linked
together to form the ordered list List,(b). In the process of splitting b c~ V, we
split the k ordered lists List,(b), i= 1 , . . . , k, and, for each box obtain b' in
Successors(b), we obtain the k ordered lists List,(b'), i= 1 , . . . , k . For each
b' ~ (Successors (b) - { b }), List, (b') will be embedded in the leaves of a complete
binary search tree T,(b') of height [log2 m(b')] .

To split b c~ V we first obtain the points in (b - b) n V in time proportional
to s (b)= I (b - b)c~ V]. As before let h,(b) be a hyperplane orthogonal to the
ith coordinate axis and passing through the center of b, and let L(h,(b)) and
R(h,(b)) be the corresponding left open and right closed halfspaces. Among the
two boxes b n L (h , (b)) and b n R (h , (b)) , let b, be the one that contains the
smaller number of points in V. We can obtain the set of points b, c~ V in time
proportional to tb, c~ V I by searching List,(b) simultaneously from both ends and
stopping the first time the hyperplane h,(b) is crossed. We have two cases
depending on t(U,k~_, b,)c~ V t. If I(U,k.~ b,)c~ V l < T ~ m (b) then (U,k_, b,)c~
bm,x=O and (b - b ) =U,~=~ b,, and in this case we spend time proportional
to kl(U, k ~ b,)c~ V l = k s (b) in obtaining the set of points (b - b ) n V. On the
other hand, if l(U,k=, b,)c~ V } ~ 2 - k m (b) , then we can afford to spend O(m(b))
time in isolating the points in (b - b )c~ V. Thus the points in (b-bmax)~ V
can be obtained in (k2ks(b)) time.

Once we have the set of points (b - b m , ~) n V, we get the corresponding k
sorted lists as follows. To obtain a list containing the set of points (b - b~,~)n V
sorted on the ith coordinate, we first label all the points in List,(b) that are
located in b - b We then label all the vertices in T,(b) that are proper ancestors
of the labeled points in List,(b). The labeling of the proper ancestors can be
performed in time proportional to the number of proper ancestors plus the number
of points in (b - bm~) c~ V. Then from the Ancestors Lemma we can bound the
time required for labeling by O(s(b)(1 +log2 m(Isa (b)) - log2 s(b))) . Next, we
traverse the labeled vertices of L(b) in order and thereby obtain the labeled
points in List,(b), i.e., the points in (b - b m , ~) n V in sorted order on the ith
coordinate. The in order traversal may be performed in time proportional to the
number of labeled vertices. Finally, we unlabel all the labeled vertices.

After the k ordered lists for the set (b - b~,~) c~ V have been obtained, all the
points in (b - bm,~) n V are deleted from each of the lists List~(b), i = 1 , k.

110 P.M. Vaidya

For each box b' in Successors(b)-{bm~x}, we can obtain the k ordered lists
List,(b') from the k ordered lists for (b - b ) n V, in O (k l (b - b )c~ VI)=
O(ks(b)) time. In addition, for each b' in Successors(b)-{bm,,}, List,(b') may
be embedded in a complete binary search tree T~(b') of height [log2 m(b')] in
O(m(b ')) time.

Finally, we note that deleting the points in (b-b~,,~)c~ V from List,(b),
i = 1 , . . . , k, leaves behind the points in b n V. So the k ordered lists for the
points in bm,x~ V are now available. Since lsa(bm~×) = L~a(b), a suitable embed-
ding of these lists in a complete binary search tree of height [log2 m (Isa (bm~O)]
is also available.

Thus the entire process of splitting b n V may be accomplished in
O(k2ks(b)(l+log2 m(Isa(b)) - log2 s(b))) time. We have thus proved Splitting
Lemma 2.

5. Maintaining Neighbor and Attractor Sets, and Estimates

In this section we describe how the neighbor and attractor sets, and the estimates,
may be maintained in O(n log n) time. We first observe that:

(1) A box b' is added to or deleted from Attractors(b) whenever b is added
to or deleted from Nei~hbors(b').

(2) Estimate(b) changes only when a box is added to Neighbors(b).
(3) When b is split, there can be additions only to the neighbor sets of boxes

in Successors(b)u Attractors(b), only boxes in Successors(b) can possibly
get added to the neighbor set of a box in Attractors(b), and for all
b' ~ Successors(b), Neighbors(b') c Neighbors(b) ~ Successors(b).

The above observations lead to the following procedure for modifying the
neighbor and attractor sets, and the estimates, during the stage when b is split.

Procedure Modify-sets-estimates
1. V b ' c Successors(b),

Neighbors(b') := Neighbors(b) w Successors(b) - {b'},
Attractors(b') := Attractors(b) w Successors(b) - {b'},
If]b 'n V] >-2 then Estimate(b') := dma×(b')

else Estimate(b') := min {dmax(b ' , b")}.
b" c N e l g h b o r ~ (b) ~ Succe~ ~or~ (b)

2. Vb' ~ Attractors(b),
Neighbors(b') := Neighbors(b') u Successors(b) - {b},
Estimate(b') := min{Estimate(b'), min {dm,,(b', b")}}.

b" c S u c c e s s o r s (b)

3. Vb' c Neighbors(b),
Attractors(b') := Attractors(b') u Successors(b) - {b} .

4. Vb' c Successors(b) w Attractors(b),
delete from Neighbors(b') every box b" which satisfies dm~n(b', b")>
Estimate(b'), and if b" is deleted from Neighbors(b') then also delete
b' from Attractors(b").

end Modify-sets-estimates

An O(n log n) Algorithm for the All-Nearest-Neighbors Problem 111

As before let B* be the set o f all the boxes generated during the execution o f
the all-nearest-neighbors algorithm. We shall bound the total number o f boxes
that are added to Neighbors(b) and Anracgors(b) for all b ~ B* during the entire
execution o f the all-nearest-neighbors algorithm. During the stage when b is split,
there are at most

2lSuccessors(b)l(ISuccessors(b)J + I Neighbors(b) I + IAttractors(b)t)

addit ions to the neighbor and attractor sets. So to bound the total number
o f addit ions to the neighbor and attractor sets we must bound the size o f
Neighbors(b) and Attractors(b) when b is split. Such bounds are provided by the
Packing Lemmas that follow.

We let bt. denote a box in the current set of boxes B such that bE has the
largest volume among all the boxes in B.

Packing Lemma 1. Let r be a positive integer. At the beginning of a stage, if b ~ B
then the number of boxes b' in B such that d (b, b')<_rdma~(bL) is at most
2k(2rk+3) k.

Proo£ Let size(b') denote the length of each of the k intervals defining b'. Let

C(b)= {b': b' ~ B, d (b, b')- <- rdm~*(bL)}

and

A(b) = tb ' : b' E B*, Successors(b') c~ C(b) ¢ Q}.

Since boxes are split in nonincreasing order o f size, Vb'~ A(b), size(b') .>- size(bu).
So each box b' in A(b) may be shrunk to a box b" such that dm~(b, b")=
dm,,(b, b')<-rd (bL), and size(b") = size(bt). Let ,4(b) be the set o f boxes
obtained by shrinking all the boxes in A(b) in this manner. We note that the Lq
distance between two points in k-dimensional space is bounded by k times the
L~, distance between the points. It then follows that there exists a box b* such
that size(b*)=(2rk+3)size(bE), b* and b have the same center, and b* is a
superset o f every box b in A(b). As the boxes in ,4(b) are disjoint we get
[.4(b)l <- (2rk + 3) k. Finally, as ISuccessors(b)[~ 2 ~, we have

IC(b)l-<- 2klA(b)l ~ 2 ~ I/~(b)l <- 2~ (2rk +3) k. []

Packing Lemma 2. At the beginning of each stage, if b c B and Ib c~ V I >_ 2 then
INeighbors(b)l <- cl(k) where q (k) = 2~(2k+3) k.

Proof Since Ib ~ V I -> 2, we have Estimate(b)= dm~x(b) < - dma×(bL), and hence,
Vb' c Neighbors(b), dmi,(b, b') ~ Estimate(b) ~ dma,(bL). So from Packing Lemma
1 we get INeighbors(b)l ~ 2h(2k + 3) k. []

1t2 P.M. Vaidya

Packing Lemma 3. At the beginning of each stage, if b e B then IAttractors(b) I <-
c2(k) where c2(k) = 12 k +2k(8k+3) k.

Proof Without loss of generality, let a (b) , the center of box b, be the origin. Let

Ar.(b) = {b': b'6 Attractors(b), d,~i,(b, b ')->4d~.(bL)}

and let

As(b) = Attractors(b) - A t (b) .

From Packing Lemma 1,

Ias(b)[~ 2 k (8k + 3) k.

We first observe that there cannot be a pair of boxes b~, b2, in A~(b) such
that the centers a(b) =0, a(bl) , a(b2) are collinear. Assume that there exist such
boxes bf and b2 in AF(b), and let

d(0, a(b2)) = d(0, a(b,))+ d(a(b ,) , a(b2)).

Then as

and

we get

dm~n(b, b2)+ dm.~(bL)-> d(0, a(b2))

d,.~×(b,, b2) ~ d(a(b,) , ct (b2)) + dma~(b,)

drain(b, b2) >- dmax(b~ , b2) + d(O, a(b,)) - 2d,..x(bL) > dmax(b, , b2).

Then because of the invariant forced on the neighbor sets at each stage, we must
have that b ~ Neighbors(b2) and be ~ Attractors(b) which is a contradiction.

By Packing Lemma 4 below, there also cannot be a pair of boxes bl, b2 in
Av(b) such that

(c~(bO a(b~) ~ <1
d \d(0_ a(----b,))' d(0, a(b2))] - 3.

Let AF(b)= {p : p = ¢x(b')/d(O, a(b')), b'~ At(b)}. Then [,4F(b)t= IAF(b)I,
each point in AF(b)is at a distance of 1 from the origin, and the distance between
any two points in AF(b) is at least ~. Around each point in AF(b) draw a ball
of radius ~. No two of these balls can intersect and the intersection of each such
ball with the unit ball around the origin completely contains a ball of radius ~ .
So the number of points in .4F(b) and hence the number of boxes in AF(b) is
at most 12 k. Thus

]Attractors(b)l =]As(b)l + lAy(b)[~ 2k(8k + 3) k + 12 k. []

An O(n log n) Algorithm for the All-Nearest-Neighbors Problem 113

Packing Lemma 4. At the beginning of a stage let b be a box in B and let

At:(b) = {b': b'c Attractors(b), d (b, b ') ->4d (be)}.

Then there cannot be a pair of boxes b~, b2 in At(b) such that

(a (b ,) _ a(b~) ~ l
d \d(O,,-~i-b,))' d(O, a(b2))] <-~"

Proof Assume that there is such a pair of boxes b~, b~, in AF(b). Let
d(O, a(bl)) ~ d(O, a(b2)) and A = d(0, c~(bl))/ d(O, a(b2)). We have

d(a(b,), Aa(b2)) ~ ~d(O, a(b,)) = ~d(O, Aa(b2)).

This gives

d(0, a(b2)) = d (a (b ,) , Aa(b2))+d(Ace(b2), a(b:))

+ d(O, Aa (b~)) - d(a(b,), ,~c~(b~))

>-d(a(b,), a(b2))+ ~d(O, a(b,))

>- d(a(bl), a(b2)) + ~d (be).

This would imply that d (b, b2)> dm~,(bt, b:) and this cannot happen because
of the invariant forced at each stage on the neighbor sets. []

From the packing lemmas and the procedure for maintaining the neighbor
and attractor sets, it follows that during each stage there are at most a constant
number o f addit ions to neighbor and attractor sets. Since there are at most 2n
stages it follows that O(n) boxes are added to the neighbor and attractor sets
during the entire execution o f the all-nearest-neighbors algorithm. The size o f
the at tractor set o f any box in B never grows beyond a constant because at the
beginning of a stage the size of the attractor set is bounded by a constant and
during a stage there can be only a constant number o f additions to an attractor
set. So the total time for maintaining attractor sets is O(n). The time to maintain
the estimates is also O(n) because the change in Estimate(b) due to the addition
o f a box to Neighbors(b) can be computed in constant time. We implement
Neighbors(b) by a data structure which allows insertions and deletions in O(log n)
time, and allows access to a box b' that has the largest value for the parameter
dm~n(b, b') in O(Iog n) time. A heap or a 2-3 tree suffices [8]. Then the total work
to maintain the neighbors sets is O(n log n). Explicitly evaluating the constants
gives a bound of O(8k(8k+3)k)n log n) on the time for maintaining the neighbor
and attractor sets.

114 P.M. Vaidya

6. All-m-Nearest-Neighbors

To get an algorithm for the all-m-nearest-neighbors problem, the all-nearest-
neighbors algorithm is modified as follows. Any box b'c hnmediate-Successors(b)
such that [b' c~ V] < m + 1 is immediately split into Ib' n VI boxes each containing
exactly one point in V. Let r~(b)~ r 2 (b) ~ ' ' ' ~ r , , , (b) ~ ' " be a nondecreasing
sequence of the distances in the multiset {r: r = d (b, b'), b'c Neighbors(#)}.
Then

d (b)
Estimate(b) I (r . , (b),

if l b c ~ V [> - m + l ,

otherwise.

The sizes of the attractor sets of all the boxes in B can be bounded by c2(k)m,
and the sizes of the neighbor sets of nondegenerate boxes in B can be bounded
by cl(k), where e~(k), c2(k) are constants dependent on k. During each stage
there are O(m 2) additions to the neighbor and attractor sets, and the number of
stages is O(n /m) . Then the running time may be shown to be O(mn log n).

7. Conclusion

We have presented an O(n log n) algorithm for the all-nearest-neighbors problem.
The running time of the algorithm is optimal up to a constant factor in the
algebraic decision-tree model of computation. If the metric in the given problem
is positive definite or semidefinite rather than one of the standard L, metrics,
the problem can be transformed in linear time to a problem with the L2 (Euclidean)
metric without increasing the dimension. A slight modification of the all-nearest-
neighbors algorithm gives an O(mn log n) algorithm for the all-m-nearest-
neighbors problem.

One question that naturally comes up is how does the algorithm behave if the
points are maintained in a collection of regions other than disjoint cubical boxes?
The algorithm will run with a similar time bound if the regions satisfy the following
three conditions. First, the regions are easy to compute with so that splitting and
shrinking a region can be quickly accomplished. Second, the volume of the
intersection of any two regions is at most a small fraction of the volume of either
region. Third, the ratio of the size of the smallest cube that contains a region to
the size of the largest cube that is contained in the region is bounded by a fixed
constant. The second and the third conditions would allow us to prove packing
lemmas similar to the ones in the paper. Thus hyperrectangles which are balanced,
i.e., hyperrectangles which do not deviate too far from the shape of a cube, wilt
suffice. But hyperrectangtes that are unbalanced, i.e., flat in some direction and
quite long in some other direction will not suffice, since the size of the attractor
sets will grow as the hyperrectangles get more and more unbalanced. A scheme
for splitting the regions which forced the set of input points in a region to split
evenly could lead to unbalanced regions, and so such a scheme (e.g., the splitting
scheme used in building a k-dimensional tree) would not be adequate.

An O(n log n) Algorithm for the All-Nearest-Neighbors Problem 115

Acknowledgments

The author would like to thank Professor Herbert Edelsbrunner for helpful
discussions. The author is grateful to Professor Alan Cline for pointing out that
the algorithm works in the same asymptotic time complexity for any positive
semidefinite metric.

References

t. M. Ben-Or, Lower bounds for algebraic computation trees, Proc. 15th Annual ACM Syrup. Theory
Comput., 1983, pp. 80-86.

2. J. L. Bentley, Multidimensional divide-and-conquer, Comm. ACM 23 (1980), 214-229.
3. J. L. Bentley, D. F. Stanat, and E. H. Williams, Jr., The complexity of finding fixed radius nearest

neighbors, h~form. Process. Left. 6 (1977), 209-212.
4. J. L. Bentley, B. Weide, and A. C. Yao, Optimal expected-time algorithms for closest-point

problems, ACM Tran. Math. S(~[tware 6 (1982), 563-579.
5. K. Clarkson, Fast algorithms for the all-nearest-neighbors problem, Proc. 24th Annual Syrup.

Found. Comput. Sci., 1983, pp. 226-232.
6. H. N. Gabow, J. L. Bentley, and R. E. Tarjan, Scaling and related techniques for geometry

problems, Proc. 16th Annual ACM Symp, rheo o, Comput., 1984, pp. 135-143.
7. F. P. Preparata and M. I. Shamos, Computational Geometo': An Introduction, Springer-Verlag,

New York, 1985,
8. E. M. Reingold, J. Nievergelt, and N. Deo, CombinatorialAlgorithms: Theory and Practice, Prentice

Hall, Englewood ('lifts, N J, 1977.
9. M. 1. Shamos, Computational Geometry, Ph.D. dissertation, Yale University, New Haven, CT,

1978.
10. M. O. Rabin, Probabilistic algorithms, in Algorithms and Complexity (J. F. Traub, ed.), Academic

Press, New York, 1976, pp. 21-30.
11. F. Yuval, Finding nearest neighbors, Inform. Process. Lett. 3 (1975), 113-114,

Received Ju(v 21, 1986, and in revised fi~rm December 23, 1987.

