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Abstract. Following a conjecture of Sugihara, we characterize, combinatorially, 
the plane pictures of vertices and faces which lift to sharp three-dimensional scenes 
with plane faces. We also prove two generalizations of Laman's theorem on 
infinitesimally rigid plane frameworks. Both results are special cases of a representa- 
tion theorem for the k-plane matroid of an incidence graph G = (A, B; I).  The 
independent sets of incidences are characterized by I I ' l  --- I A'[ + k l B ' I -  k for all 
nonempty subsets, and the incidences are represented by rows of a matrix which 
uses indeterminate points in k-space for the vertices in A. Underlying this result is 
the simpler depth k matroid of a hypergraph H = (V, E) in which an independent 
set of edges satisfies I E'[ < - I V ' t -  k for all nonempty subsets. 

1. Introduction 

A plane  pic ture  o f  a spa t ia l  po lyhed ra l  scene o f  p lane  faces and  poin ts  o f  contac t  
shows the p ro jec t ion  o f  the des igna ted  po in ts  and  the abs t rac t  inc idence  s t ructure  
S = ( V, F ;  I )  o f  the ver t ices  V and  the faces F. G iven  an inc idence  s t ructure  S 
and a p l ane  pic ture  P o f  the  vert ices,  two key ques t ions  arise:  

(a) Are  there  nont r iv ia l  ( sharp)  scenes p ro jec t ing  to the  p ic ture ,  with some 
(al l )  faces  in d is t inc t  p l anes?  

(b) I f  yes, wha t  is the  d i m e n s i o n  o f  the  vec tor  space  o f  scenes p ro jec t ing  to 

this  p ic tu re?  

Fo r  a specific pic ture ,  the answers  d e p e n d  on the geomet ry  (or  a lgebra)  o f  
the p lane  points ,  s ince the space  o f  scenes is the  so lu t ion  space  o f  a matr ix  
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equation A(S,  P) x Z = 0. If we fix the incidence structure, and vary the picture, 
certain minimum or generic answers occur for almost all pictures. These generic 
answers depend only on the combinatorics of the incidence structure. 

Sugihara [9] conjectured a characterization of the incidence structures whose 
generic pictures lift to sharp scenes. Writing i for Il l ,  v for I Vt, and f for IFI, 
he conjectured: 

A generic picture of  an incidence structure lifts to a sharp polyhedral scene 
if and only if i'<_ v ' + 3 f ' - 4  for all sets I '  on at least two faces. 

Sughihara proved this conjecture for special classes, such as 3-connected spherical 
polyhedra [9]. We verify the full conjecture, and the extension: 

A generic picture of  an incidence structure has a space of scenes (almost all 
sharp) of  dimension d, with one face fixed, if and only if i = v + 3 f -  3 - d, and 
i'_< v ' + 3 f ' - 4  for all sets I '  on at least two faces. 

Although these criteria appear to give exponential algorithms (involving a check 
of  almost all subsets I '),  they actually yield polynomial algorithms of the order 
O(i  2) [6], [10]. 

Our proof  amounts to a controlled row reduction of the standard matrix for 
A(S,  P) to a block of  rows on the variables for the heights of the vertices. Each 
row in the block has four entries, under four vertices sharing a face in the structure 
and this matrix defines the simpler depth k matroid of  the hypergraph H = ( V; E). 
Independent sets of  rows (or edges of  the hypergraph) are characterized by the 
count 

e'-<- v' - 3 for all nonempty subsets of edges 

This characterization of the block is derived from a threefold truncation of  the 
standard representation of the transversal matroid of a hypergraph, in which a 
set of  edges is independent if and only if e' <- v' for all subsets of edges. 

Our proof, presented in Sections 2 and 3, extends to ( k -  1)-space pictures of 
hyperplane and vertex scenes in k-space, for all positive k. In Section 4 we 
summarize this pattern, confirming our previous conjecture [17]: 

A generic picture in ( k - 1 ) - s p a c e  of an incidence structure S lifts to a sharp 
scene in k-space if and only if i '<  - v ' + k f - ( k +  1) for all subsets I '  on at least 
two faces. 

In Section 5 we offer a second interpretation of  these matroids as generaliz- 
ations of Crapo's concurrence geometries [1]. For k = 2, this matroid fits the task 
of  realizing a configuration of  lines and points with specified directions for the 
lines. The theorem then says that: 

A configuration of  lines is realizable with distinct vertices and general directions 
if and only if i -  < a ' + 2 b ' - 3  for all subsets of i' incidences on a' lines and b' 
points. 
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Because such realizations with fixed directions represent parallel redrawings, this 
result has an additional interpretation as a general form of  Laman's  theorem [7]: 

The counts i = a + 2b - 3 and i'-< a '  + 2 b ' -  3 for all nonempty subsets I '  charac- 
terize minimal infinitesimally rigid plane frameworks with lines of  bars and 
joints at the intersections. 

With this corollary we also settle a conjecture characterizing the rigid frameworks 
in the plane formed by long rods and pins (more than two per rod). 

This paper  has a number  of  connections, in its roots and in some specific 
results, with the pioneering work of Henry Crapo. The results of  Section 2 turned 
out to be a reformulation of his work on general position concurrence geometries 
[1] or geometries of  circuits [2]. Both bodies of work have grown from the rich 
soil of  the geometric study of statics and mechanics for frameworks. Crapo 
selected these areas of  parallel redrawing and concurrence from our earlier joint 
work on Maxwell 's theory of plane stresses and projected polyhedra [3]. As the 
results here confirm, this focus has brought forward combinatorial structures of 
fundamental  geometric importance. 

Our initial investigation of matroids defined by counting properties was joint 
work with Neil White [ 14], and we have continued to benefit from the stimulation 
and insights of  this long-term collaboration [13], [15]. 

2. The Picture Matroid for Elementary Scenes 

In this section we present a proof  of  Sugihara's conjecture for the simple case 
of  elementary scenes in which all faces have exactly four vertices. For this case, 
we switch from the incidence structure S = ( V, F;  I )  to a hypergraph H = ( V; E),  
with each face replaced by the edge of  its four incident vertices. For a set 
of  f '  faces and all the incident vertices, we find that the count simplifies (see 
Section 3): 

i '<--v'+3f'-4 i fand only if e'<-v'-4. 

2.1. Pictures of Elementary Scenes 

Definition 2.1. A 4-uniform hypergraph is a hypergraph H = ( V, E) with a finite 
set V (the vertices) and a collection E (the edges) consisting of four distinct 
elements of  V. 

We allow several copies of  a single subset to appear  as distinct edges of  the 
hypergraph. To minimize the notational inconvenience this will only be implicit 
in most of  our notation. 

Definition 2.2. Given a 4-uniform hypergraph H = ( V, E),  a picture of H is an 
assignment P: V-~ R 2 with pj = (x  i ,  yj). 
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A scene over the picture P is an assignment Z:  V ~  R such that for each edge 
ei of  the hypergraph, the corresponding points q /= (x~, yj, zj) are in a plane of 
3-space. 

For any edge with vertices v~, v2, v3, v4 the condition imposed on the scene 
can be written: 

Ii x2 x3 y4X4 l 
det Yi Y2 Y3 =0.  

1 z2 z3 

1 1 

For a fixed picture this gives one linear constraint on the unknowns z~. We write 
the system o f  homogeneous linear equations for all the edges as A(/4, P) × Z = 0. 

Before we compute the rank of this matrix, we need some more notation. We 
assume that the vertices and edges of  H are ordered and define sign (i,j) to be 
( - 1 )  m if v~ is the ( m + l ) s t  vertex in edge e~. For any matrix X with v columns 
X(e~/vj) will mean the matrix with columns for all vertices in e, except vj. 

Definition 2.3. Given a 4-uniform hypergraph H(  V, E)  and a 3 x v matrix with 
columns p~ = (x~, y~, 1) the matrix A(H, P) is defined by 

do={ogn( i , j )de t (P(e , / v j ) )  if v~ce,, 
otherwise. 

Proposition 2.1. For a picture P over the hypergraph H the kernel of the matrix 
A(H, P) is the space of scenes over the picture and the rows of A(H, P) represent 
the linear constraints on the scenes. 

Any picture will have the trivial scenes, with all vertices coplanar. Unless the 
vertices in the picture are collinear, these trivial scenes form a three-dimensional 
subspace. A sharp scene has distinct planes for each pair of  faces--which means 
that there must be at least a four-dimensional space of scenes and this kernel, 
restricted to the coordinates for the vertices of  any pair of  spaces, must also be 
at least four-dimensional.  

A count of  the variables, equations, and the desired solution spaces for the 
matrix A(H, P) suggests the following condition (if the rows are independent):  

a picture for a hypergraph H has a sharp scene if e'-< v ' -  4 for all subsets E '  
o f  at least two edges. 

This condition is also a necessary condition for some pictures over the hyper- 
graph H. Specifically, a picture P is a general picture if it has the minimum space 
of scenes (solution space) for each hypergraph on the vertices. (For example,  if 
the entries in P are algebraically independent  numbers over the rationals then 
P will be general.) For a general picture, each set o f  incidence constraints or 
rows of A(H, P) will have the maximal rank. 
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i i,, 

e 3 o (~) 

e = v - 4  

(b) 

e=10 v=15 

e = v - - 5  

(c) 

Fig. 1. The elementary scene shown in (a) is flat (e = v - 3 ) ,  while the scenes shown in (b) and  (c) 
are sharp ( e ' -  < v ' - 4  for nonempty  substructures).  

Figure 1 shows some pictures of elementary scenes. The vertices are shown 
by circles, the edges by labeled polygons, with heavy lines separating two adjacent 
polygons. Figure l(a) has no sharp scenes, while Fig. l(b) has a four-dimensional 
space of scenes (almost all sharp), and Fig. l(c) has a five-dimensional space of 
s c e n e s .  

Theorem 2.2.. A general picture for a 4-uniform hypergraph lifts to a sharp scene 
if and only i f  e '< - v ' - 4  for all subsets of  at least two edges. 

This result is essentially a corollary to the following characterization of 
independent rows of A(H, P). 
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Theorem 2.3. For a general picture P of a 4-uniform hypergraph H, the rows of 
A( H, P) are independent if and only if e '< - v ' -  3 Jot all subsets of at least one edge. 

2.2. Transversal Matroids 

Before we give the proofs, we need some basic counting properties for the rows 
of a related matrix which represents the transversal matroid (see Emonds [4] 
and Mirsky and Perfect [8] for more details on this matroid). 

Definition 2.4. For a hypergraph H and an e x v matrix X of indeterminates xe 
over the reals, the matrix T(H, X )  is the e x v matrix with entries 

tU={OO i fv j~e , ,  
otherwise. 

A variant on Hall's theorem [5] characterizes the independent sets of rows in 
T(H, X).  

Proposition 2.4. A set of edges E is independent in the T( H, X )  if and only if for 
any subset E' of  E, e' ~ v'. 

Proof. For completeness we present a proof, due to Edmonds [4]. 
Assume that a set of  rows is independent in T(H, X).  By counting the variables 

and equations, we clearly have e ' -  < v' for all subsets. 
Assume that a set is dependent in T(H, X).  There must be a circuit C of k +  1 

rows in the matrix T(H, X).  This in turn must contain a basis C '  of  k independent 
columns. The row dependence gives a (k + 1)-vector Y such that Y x C' -- 0, with 
the vector composed of  polynomials in the variables of  C'. Since C '  is a column 
basis of C, Y x  C = 0 .  If  any column of  C not in C' contains nonzero entries, 
this would give a polynomial equation in these variables which has nonzero 
coefficients but is identically zero. We conclude that the remaining columns are 
zero, and that e = k + 1 > k = v. [] 

Proposition 2.5. The matrix T(H, X )  has a solution space of  exactly dimension 
k, which remains of dimension k ( k # 0), when restricted to any subset of k vertices, 
if and only if, for any nonempty subset E', e' < v' - k. 

Proof. If  the hypergraph has e ' -  < v ' - k  then E is independent and the matrix 
T(H, X )  has rank v -  k. Thus there is a solution space of motions of dimension 
k. For any k vertices, we can add singletons in these vertices to H, making 
H * = ( V ,  E*). This hypergraph satisfies e*=  v and, for any subset E", e"_< v". 
This independent set E* gives independent rows in the matrix T(H*, X*) and 
blocks all of the motions of  T(H, X).  Since these added rows were nonzero only 
on the chosen k vertices, the solution space, restricted to these vertices, had 
dimension k. 
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Conversely, assume that T(H, X) has the solution space described. If any 
subset has e* > v * -  k, then there is a set V* of at least k vertices, containing a 
set E '  of  edges with e '--  v ' -  k + 1, and, for all proper subsets E", e " -  < v " -  k. With 
this hypergraph and its independent edges, the solution space has dimension < k. 
This contradicts the assumption. []  

2.3. Proofs of the Theorems 

Proof of Theorem 2.3. (a) If e ' >  v ' - 3  for some subset, then the count of 
variables, equations, and solutions shows that the rows are dependent. 

(b) Assume that the hypergraph satisfies the count e'--- v ' -  3 for all nonempty 
subsets of edges--or  any subset of at least three vertices. By Proposition 2.5, this 
hypergraph gives a matrix T(H, Y) with a three-dimensional solution space, 
which remains of dimension 3 when restricted to any three vertices. 

We use a general basis for a 3-space of solutions as the rows of a 3 × v matrix 
M with columns Mj. Without loss of generality, we could assume that the third 
row of the matrix M is [1 • • • 1]. This amounts to multiplying the j th  column 
of T(H, Y) by m3j and the column of M by 1/m3j. 

For any edge f, with vertices v~,...,/.)4 (for simplicity), we have the three 
equations Z YoMj = 0  (sum over the vertices of f ) .  Since for any three vertices 
these columns are independent, and the y,~ are nonzero, up to multiplication of 
the row by a nonzero constant, we have 

y o = ( - 1 )  j - ' d e t ( M ~ . . . M i _ ~  M j + , - - . M 4 ) = s i g n ( i , j ) d e t ( M ( f / v ~ ) ) .  

These values of Y0 give the corresponding row of the matrix A(H, M), a 
specialization of A(H, X). Since these rows are independent in T(H, Y), they 
remain independent in A(H, M) and in A(H, P) for any general picture. [] 

Proof of Theorem 2.2. (a) Assume that the hypergraph satisfies the count. The 
solution set contains a nontrivial scene, by the count e <- v - 4 .  

Take any two edges f =  (vt, v2, v3, v4) and g. We want to prove that some 
scene over the picture gives distinct planes for these edges. By the count on the 
set E'= (f,g), g contains a distinct vertex--call it vs. We add the edge h = 
(v~, v2, v3, vs) to H, creating a new hypergraph H'.  (h cannot be in H, since the 
doubleton (f, h) does not have e " -  < v" -4 . )  This hypergraph now satisfies the 
hypothesis of Theorem 2.3. If  any subset E" in H '  contains at least two edges of 
/4, then the count, with at most one edge h added gives e " -  < v " -  3. If E" contains 
only one edge of H, and h, then the count is also satisfied, since h is not in H, 
and the doubleton has e"-- 2 = 5 - 3 = v " -  3. We conclude h adds an independent 
row to A(H, P ) - - s o  it must remove a solution. This solution must place v5 off 
the plane of v~, v2, D3 as desired. 

Since each pair of  edges has distinct planes in some scene, an appropriate 
linear combination of  these scenes will give distinct planes to the edges--and we 
have the desired sharp scene. 
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(b) Assume that the hypergraph has sharp scenes for a general position picture. 
I f  any two edges lie in a subset E '  with e ' >  - v ' - 3 ,  then there will be a subset E* 
of at least two edges, with e* = v * - 3  and e " -  < v " - 3  for all nonempty subsets. 
This subset generates independent rows of A(H, P ) - - a n d  makes all these edges 
coplanar in all scenes. This is a contradiction. [] 

3. General Polyhedral Scenes 

A general scene has arbitrarily sized subsets of  vertices which must remain 
coplanar. In addition, the objective is to characterize pictures which will have 
scenes with each such subset in a different plane. We recall the formal definitions, 
as found in [9] and [17]. 

Definition 3.1. An incidence structure is S =  (V, F;  I)  where V is the set of 
vertices, F is a set of  subsets of  V, the faces, and I is a set of ordered pairs in V x F. 

A picture S (p )  of the incidence structure S is an assignment p: V--> R 2. 
A scene S(q, r) of  the incidence structure S is an assignment q: V--> R 3 and 

an assignment r: F--> R 3 such that for each (v~,fj) ~ I :  rlq 1 + r2q2+ q3 + r3 = 0. 
A scene S(q, r) lifts the picture S(p)  if the projection of q down the last 

coordinates of  all points gives p. 
A scene is trivial if and only if for each pair of  faces f , f ' :  r ( f )  = r(f ') .  
A scene is sharp if and only if for each pair of  faces f , f ' :  r ( f )  ~ r( f ' )  and a 

picture is sharp if it lifts to a sharp scene. 

The equation for an incidence in a scene says that the point qi is on the plane 
with coordinates (rl ,  r2, 1, r3). (With the entry 1 we have assumed that no plane 
is vertical.) For a fixed picture p this is a linear equation in the unknowns 
r~, r2, r3, q3- These define a system of linear equations, and an i by (v + 3f) matrix 
A(S,  p). I f p  is a set of  algebraically independent numbers over the rationals, the 
independence of rows in A(S,  p) defines the picture matroid of  S. 

A simple count of  the equations and the unknown leads to a natural conjecture: 

A general position picture of an incidence structure S = (V, F: I )  is sharp if 
and only if i ' -  < v ' + 3 f ' + 4  for all substructures with at least two faces. 

This is Sugihara's conjecture [9], for which he provided a proof  covering some 
classes, such as subsets of  a 3-connected spherical polyhedron. 

Figure 2 shows some incidence structures of  polyhedra which are covered by 
this cr i ter ion--so all general pictures will lift to sharp polyhedra. For spherical 
polyhedra the count i -< v + 3 f - 4 ,  and Euler's formula imply that the polyhedron 
must contain at least four triangles (Fig. 2(a)-(c)).  A toroidal polyhedron meeting 
the count must contain at least eight triangles (Fig. 2(d)). 

Definition 3.2. Given an incidence structure S = (V, F; I )  and an ordering of 
the vertices, the derived 4-hypergraph H ( S )  is the hypergraph H ( S )  = (V, UEj)  
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(a) 

(d) 

f, 

(b) (c) 

Fig. 2. By Sugihara's criteria, the general pictures ofthese spherical (a)-(c) and toroidal (d) polyhedra 
are sharp. 

where for each f a c e f  with vertices v~, v2, v 3 , . . . ,  v3+m the set E, consists of  the 
edges v~, v2, v3, v3+,, for 1 -< n <- m. If  ~ has less than four vertices then E~ is 
empty. ( I f  some 4-tuple appears  in two distinct Ej, then we allow multiple copies 
of  the edge. Such duplicate edges will be dependent  in A ( H ( S ) ,  p).) 

Theorem 3.1. For an incidence structure S the following are equivalent: 

(a) The S is independent in the picture matroid. 
(b) For any nonempty subset I '  of  I, i <- v' + 3f' - 3. 
(c) The derived 4-hypergraph H ( S ) gives independent rows in A ( H ( S ) , p) for 

general pictures p. 
(d) The derived 4-hypergraph H(S )  satisfies e '<- v ' -  3 for all nonempty subsets 

E'  of  edges. 

Proof. The equivalence of  (c) and (d) is Theorem 2.3. We will show that (b) ~-~ (d) 
and that (a) ~ (c). 

We assume, for convenience, that all vertices are incident to some face. We 
also assume that each face is incident to at least three vertices, so that for general 
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values of p, there will be at most one solution r to make a scene with a given set 
q of  heights over these points. This can be accomplished by adding additional 
vertices which only lie on a single face. Such an addition will not change that 
character of  the scene, and general points for these vertices can be added to any 
picture. The resulting additional rows in the matrix for a general picture of  the 
incidence structure will therefore be independent of  any other set of incidences, 
so property (a) will be unchanged. 

These changes will not affect the definition of H ( S )  (except to delete un- 
attached vertices there). These changes will also not affect the count in (b), since 
we add one vertex and one incidence each time we fill in on a face. 

(d)-~(b). For any incidence structure let v(f~) be the number of vertices 
incident with face f~. For any H ( S )  = ( V, ~_j Ej), writing e~ for the size of Ej, we 
have 

i = E  v( .~)=E (ej +3) <- v + 3 f - 3  (sum over all faces). 

Since this is true for all incidence structures defined by nonempty subsets o f / ,  
we have property (b). 

(b) ~ (d). For each edge e of H ( S )  let the extension of  e be the entire set Ej 
for some face ~ containing the vertices. This may not be unique, but if some 
4-tuple is actually contained in two faces, the incidence structure restricted to 
these vertices is dependent in the matrix and in the count. In such a case H ( S )  
was defined to have multiple edges--and it also violates the count. 

We assume that (b) holds and that each edge lies in a unique Ej. If  some set 
E '  has e ' >  v ' - 3 ,  and we extend each edge to get a set E* then e*>  v * - 3 ,  since 
the extension adds at most one vertex for each added edge. For such an extended 
set E*: 

e* = ~  (v(f j ) -3)---  i -  3f* > v * - 3 .  

From this contradiction we conclude that property (d) holds. 
(a)~--~(c). Each scene S(q, r) realizing a picture p reduces to a unique scene 

over H ( S ) ( p ) .  Conversely, each scene over H ( S ) ( p ) ,  with p in general position 
(which will have no three points on a line) will extend to a unique set of  values 
for r, since we assumed that each face contains at least three vertices and these 
points will determine a unique plane for the face. Therefore the two spaces of 
scenes have the same dimension d. Independence of H ( S )  in A ( H ( S ) ,  p) means 
v - e = d. Independence of  S in the picture matroid means v + 3 f -  i = d. [] 

Corollary 3.2. For any incidence structure S, the following are equivalent: 

(a) A general picture S ( p )  is sharp. 
(b) For any substructure I' with at least two faces, i '<- v ' + 3 f - 4 .  

Proof. (b) ~ (a). Assume that S satisfies (b). By Theorem 3.1, the structure is 
independent and there is a nontrivial scene. If we take any two faces f '  and f '  
and add a new common vertex w, this creates a new structure S* with one more 
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variable and two more equations. S* satisfies i*-< v*+ 3 f - 3 ,  and this remains 
true for any proper subset. This new structure is also independent with a smaller 
dimensional space of scenes. If  the two faces were already forced to share a 
common plane over S ( p ) ,  this would be impossible. We conclude that some 
scene places the faces into different planes. This is true for each pair of  faces, 
so some appropriate linear combination of these scenes is the required sharp scene. 

(a)--> (b). Assume that (b) is false for S. Then there is a subset I '  with more 
than one face and i ' =  v '+  2 f " - 3 .  Either i '=  v ' + 3 f - 3  and for all proper subsets 
I", i"-< v" + 3 f " -  3, or some nonempty subset has i"-> v" + 3" - 2. This second 
possibility requires a circuit in the picture matroid. Such a circuit must have more 
than one face and removing one incidence gives an independent set of the same 
type. In either case this independent set will only allow a space of scenes of 
dimension 3, so the faces must share a common plane in all scenes over a general 
point p. This makes (a) false as well. [] 

Corollary 3.3. For any incidence structure S, and any d >-1 the following are 
equivalent: 

(a) A general picture S ( p )  has an a l~ne space o f  scenes o f  dimension d, almost 
all sharp, with the first face  f ixed in the projection plane. 

(b) i = v + 3 f  - 3 - d and i' <~ v' + 3f '  - 4 for  any substructure I'  with at least two 
.faces. 

Proof. Fixing the first plane in the projection plane removes a 3-space of solutions 
from the equations A ( H ( S ) ,  P). The rest follows from Corollary 3.2. 

4. The k-Plane Matroid on Incidence Graphs 

Under all the language of three-dimensional scene analysis in Sections 2 and 3, 
we have a general result for any incidence graph G = (A, B; I)  (usually thought 
of  as the incidence graph of a hypergraph H = (A; B)). We will restate the results 
for a general k. 

Definition 4.1. For any incidence graph G = (A, B; I) (with l c A ×  B), the 
k-plane matroid at B is the matroid defined on the incidences I by: 

a set I '  is independent if and only if i ''< - a"+ k b " -  k for all nonempty subsets 

As usual we order the vertices and the incidences in some arbitrary fashion. 

Definition 4.2. Given an incidence graph G = (A, B; I)  and a ( k -  1) x b matrix 
X of  distinct indeterminates, the matrix B ( G , X )  is an i x ( a + k b )  matrix 
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defined by 

if ij = (a,,,, b,,), l 
1 

bjs = Xrm 

[10 i f s = a + n k - 1 ,  

otherwise. 

if s = m ,  

if r = s - ( a + ( n - 1 ) k ) a n d  l < - r < - k - 1 ,  

I f  we let Y = [ z ~ . . .  za Y ~ . . .  Y~k . . .  Y b l . . .  Yhk] then the matrix equation 
B(G,  X ) x  Y '  = 0  represents the system equations, one for each incidence i: = 

(an,, bn), 

y . lx~ , .  + • • • + Ynlk I)Xtk-I )m + Zm + Y.k = O. 

For k = 3 these are the same equations used to define scenes Y over a picture X. 

Definition 4.3 Given an incidence graph G = (A, B; I )  and an ordering of the 
vertices, the derived ( k + l ) - h y p e r g r a p h  H ( G )  is the hypergraph H ( G )  = 
(A, U Ej) where, for each vertex b i incident with vertices a l , . .  •, ak+,,, the set 
Ej consists of  the edges a ~ , . . . ,  ak, ak+, for 1--< n--< m. I f  aj has less than k +  1 
vertices then Ej is empty. ( I f  some edge appears  in two distinct Ej, then we allow 
multiple copies of  the edge. As we observed earlier such hypergraphs will be 
dependent  in the extended depth k matroid.) 

Theorem 4.1. For any incidence graph G = (A, B; I ) ,  the rows o f  the matrix 
B(  G, E ) are independent i f  and only i f  the corresponding incidences are independent 
in the k-plane matroid. 

Proof  This is a simple translation of Theorem 3.1, with k in place of 3. All of  
the steps go through without change, reducing the problem through the depth k 
matroid of  the derived (k + 1)-uniform hypergraph to the basic results on trans- 
versal methods. [] 

For k = 0  in this count, we have independence defined by i ' < - a '  for all 
nonempty subsets. This gives a trivial matroid, where incidences are independent 
if and only if they select different elements of  a. 

For k =  1, we have independence defined by i '<  - a ' + b ' - 1 ,  which returns us 
to the cycle or graphic matroid on the incidence graph, as a bipartite graph. 
Independent  sets are forests and circuits are polygons in the graph. 

For k = 2, we have an important example in concurrence geometries which 
will be described in Section 5. This case can also be interpreted in terms of 
pictures on the line and scenes of  lines and points in the plane. 

For k = 3, we have returned to the central example in scene analysis, as well 
as an interpretation in concurrence geometry. 

For k >  3, we have interpretations in terms of pictures in ( k - 1 ) - s p a c e  and 
scenes in k-space [17, Section 7]. 

Definition 4.4. Given an incidence graph G = (A, B; I ) ,  a lifting Y of the k-plane 
matroid is a solution of matrix equation A ( G ,  X ) x  Y ' - - 0 .  
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Theorem 4.2. For any incidence graph G = (A, B; I)  and any 1 <- m < k, the 
following are equivalent: 

(i) The space ofliftings o f  the k-plane matroid o f  H has dimension m + k, which 
remains o f  dimension m + k when restricted to any subset o f  at least two 
vertices o f  B. 

(ii) For all nonempty subsets I'  o f  I, i' <- a' + kb' - k - m. 

Proof We proceed by induction on m. 
For m = 1, this is the content of Corollary 3.2 with 3 replaced by k. This 

requires no change in the proof. 
The induction step from m and m + 1 is also a virtual copy of this proof. 

Adding any new vertex a ° with edges to b 2 and b 3 will reduce the count, and 
the motion space to dimension m + k, by the count. This means that the edge 
removed an additional motion involving these two vertices from b. The rest now 
follows from the induction hypothesis. []  

Remark. For m = k, the count would prevent any edges and the entire statement 
would become trivial. For m = 0, the space of lifting always have dimension at 
least k, so no condition exists on the incidence structure. 

5. Parallel Redrawings and Rigid Frameworks in the Plane 

5.1. Concurrence Geometries and Parallel Redrawing 

In Section 2 the matrix A ( H ,  P)  was developed for plane pictures of elementary 
scenes. The entries (x~, y,, 1) in the matrix represented affine coordinates of points 
in 2-space or, equivalently, as projective coordinates of  finite points in projective 
2-space. The solutions were interpreted as heights which placed the points into 
3-space, with points o f  an edge sharing a plane. 

In projective space such coordinates have a dual or polar interpretation. The 
original triples (x~, y~, 1) also represent lines in a plane (not through the origin). 
The "lifting" extends this configuration to a set of planes in 3-space with the 
given intersections on a fixed cutting plane z =0.  The equation for an edge 
constrains the four planes of  the edge to share a point in 3-space. This interpreta- 
tion is an example of  Crapo 's  concurrence geometries [ 1 ]. It was in this geometric 
setting that the matrix A ( H ,  X )  first appeared and a version of  Theorem 2.3 was 
proven. The incidence structures of  Section 3 and 4 also have a consistent 
interpretation as concurrent hyperplanes in a space, so the k-plane matroid 
generalizes the concurrence geometries. 

If  the sectioning plane (dual to the picture) is placed projectively as the plane 
at infinity, then the "pic ture"  records the directions of the planes and the "liftings" 
form a space of parallel redrawings of the configuration of planes and points. 
For the faces of  a polyhedron,  such parallel redrawings have a number of  
applications to the study of  Minkowski sums, infinitesimal rigidity, and the design 
of patterns of  dihedral angles in 3-space [18] and in higher dimensions, 
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For the case k = 2, the analogous interpretation fits parallel redrawings of a 
set of  lines in the plane with prescribed incidences, and directions. This subject 
has a long history dating back to the last century. We offer a brief statement and 
application of  our results for this special case. 

Definition 5.1. A plane configuration is an incidence graph G = (A, B; I )  with 
an assignment of a normal direction ( f ,  g~) to each line a,. 

A parallel redrawing is an assignment of  a triple ( f ,  g,, hi) to each line a, a 
plane position (xj, yj) to each point b~, such that, for each edge (ai, bj) in /, 

fx j  + g, yj + h, =O. 

A parallel redrawing is trivial if all points have the same position. A parallel 
redrawing is proper if distinct points have separate positions. 

Theorem 5.1. Almost all plane configurations on an incidence graph G = (A, B; I )  
will have proper parallel redrawings if and only if i '<- a' + 2 b ' -  3 for all nonempty 
subsets I'. 

Proof. The parallel redrawings of the configuration are the solutions of  the 
matrix A(G, P). The result is a simple restatement of  Theorem 4.1. [] 

Figure 3(a) and (b) shows general configurations with proper parallel 
redrawings ( i '<-a '+2b' -3) .  The configuration in Fig. 3(c) is special, since 
general configurations on this graph will have only trivial parallel redrawings 
( i = a + 2 b - 2 ) .  

5.2. Bar and Joint Frameworks 

This result has important corollaries in the theory of plane bar and joint 
frameworks. 

Definition 5.2. A bar and joint framework in the plane is a graph G = ( V ,  E)  
with as assignment P of a point Pi ~ R 2 to each vertex v~ such that Pi # Pj if (i, j )  ~ E. 

a = 9  b = 6 = i = 8  

i=a+2b-3  
(a) 

a =  12 b =8~i =24 
i = a + 2 b - 4  

(b) 

a = 6  

i = a + 2 b - 2  
(c) 

Fig. 3. By their counts, the configurations shown in (a) and (b) are general, while the configuration 
in (c) must be special, since they all have nontrivial parallel redrawings--the dilations. 
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An infinitesimal motion of a bar and joint framework (G, P) is an assignment 
M of  a vector m~ c R 2 to each vertex vi such that, for each edge ( i , j ) ,  we have 

(p, - p~) . ( m , -  mj) =O. 

A bar and joint f ramework in the plane, with more than one joint, is 
infinitesimally rigid if the space of  infinitesimal motions has dimension 3 (the 
Euclidean motions). 

A bar and joint framework in the plane defines a configuration of  lines for 
the bars and points for the joints. Because we insist that vertices be distinct, the 
framework itself will be a proper parallel redrawing. By an old engineering 
technique, each parallel redrawing of a framework corresponds to an infinitesimal 
motion of the framework corresponds to an infinitesimal motion of the framework 
[2], [3], [16]. Each parallel redrawing gives a new position p~ for the joint pj, g 

and the corresponding velocities are the vectors p~ - p j  turned 90 ° clockwise (Fig. 
4(a) and (b)). In particular, the trivial parallel redrawings obtained by translation 
and dilation of any proper drawing correspond to the trivial motions of translation 
and rotation of the framework. (Note that for a trivial drawing there will be no 

(a) (b) 

(c) (d) 

Fig. 4. An infinitesimal motion of a framework (a), (d) corresponds to a parallel redrawing of the 
configuration (b), (c). 
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dilations.) Nontrivial redrawings of  the framework (Fig. 4(c)) will correspond to 
nontrivial infinitesimal motion (Fig. 4(d)). 

A framework with a subset of bars forming a collinear tree for each line will 
form a general configuration of lines and points, with each collinear tree as a 
single "face".  

Definition 5.3, A bar and joint framework realizes an incidence graph G = 
(A, B; I) if there is a joint for each vertex in B, and each vertex in A is replaced 
by a connected chain (a tree) of collinear bars among all vertices incident with 
the line. 

Theorem 5.2. An incidence graph G = (A, B; I)  has a realization as an isostatic 
(minimal infinitesimally rigid) bar and joint framework in the plane i f  and only i f  
i = a + 2 b  - 3 ,  and for any proper subset I': i '< - a ' + 2 b ' - 3 .  

Proof. If the graph has the required count, then any general position configur- 
ation will have a proper parallel redrawing. This can be used to construct the 
framework. Since this redrawing has a space of parallel redrawings of exactly 
dimension 3, by Theorems 5.1 and 4.2, the corresponding framework has a space 
of  infinitesimal motions of exactly dimension 3. This means that the framework 
is infinitesimally rigid. 

If  there is a minimal infinitesimally rigid framework realizing this graph, then 
the set U o f  bars gives 2v - 3  independent equations on the 2v unknown velocities 
of  the vertices in the plane. If a line ai contains val(at) points then the framework 
has val(ai) - 1 bars along this line. If we take a set I of  edges in the incidence 
graph, we find that u = 2 v - m  if and only if i = a + 2 b - m  for any m. Since 
independence of  the bar equations requires u < - 2 v - 3 ,  we conclude that the 
incidence graph has the required count. [] 

Remark. If each line has only two incident vertices, we have a general framework 
and this is Laman's theorem [7]. We give a related, but simpler proof of this 
theorem in [16]. In general, our stronger result guarantees that certain sets of 
edges can be in forced collinear without loosing the desired rank of  the rigidity 
matrix which records the bar equations. In this plane setting there are a wealth 
of  examples and further connections with fields such as plane statics which we 
cannot begin to describe here. Some examples are shown in Fig. 5. We note that 
Fig. 5(c) shows a nonrigid realization (by the substructure shown), although a 
general framework on the underlying K3.3 is infinitesimally rigid. 

A rereading of  the proof  gives the following corollary, which we shall need 
shortly. 

Corollary 5.3. An incidence graph C; = (A, B; I)  has a realization as an indepen- 
dent bar and joint framework in the plane if  and only if, for any nonempty subset 
I', i' < a' + 2 b ' -  3. 
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a = 7  b=12 i=28 a = l l  b=8  i=24 
i=a+2b-3 i=a+2b-3 

(a) (b) 

a = 7  b = 6  i=16 a ' = 6  b '=4  i '=12 
i=a+2b-3 i'=a'+2b'-2 

(¢) 

Fig. 5. Some examples of plane frameworks with collinear bars are generally infinitesimally rigid 
(a, b), while others always have nontrivial infinitesimal motions (c). 

5.3. Bar and Body Frameworks in the Plane 

This result also settles a conjecture about body and joint frameworks in the plane 
[11, Conjecture 2]. We need one more definition. 

Definition 5.4. An identified body and joint framework in the plane is an incidence 
graph G = (B, J ;  I )  with an assignment P of a point p~ E R 2 to each vertex j~ 
in J. 

An identified body and joint framework is infinitesimally rigid if there is a 
replacement of  each body bk in B by an isostatic plane bar and joint framework 
which includes the joint p~ if (bk,j~) ~ I (and includes at least two joints in total), 
and this total replacement bar and joint framework is infinitesimally rigid. 

An identified body and joint framework is independent if there is a replacement 
framework, with isostatic frameworks for the bodies, which is independent. 

Remark. This definition of infinitesimal rigidity is just a short cut to avoid the 
usual descriptions of  centers of  motion and projective transformations to velocities 
[11], [15]. It is equivalent to the usual definition, but it is better suited to the 
next proof. 
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Theorem 5.4. Given an incidence graph G = ( B, J; I) the following are equivalent: 

(i) G has a realization as an independent ( isostatic) identified body and joint 
framework in the plane. 

(ii) G satisfies 2i <- 3b + 2j - 3 (=) and, for every subset of  bodies and induced 
subgraph o f  attached joints, 2i' <- 3 b' + 2j' - 3. 

(iii) G has an independent ( isostatic) realization as an identified body and joint 
framework in the plane such that each body has all its joints collinear. 

Proof. (iii)-~ (i) is trivial. 
(i)-~ (ii). This is a consequence of  Laman's  theorem, using a simple counting 

argument [11]. I f  any body has less than two joints, we simply add new joints 
incident only to this body. This will not affect the count or the independence. 
Each body bk is replaced by an isostatic framework on the jk vertices attached 
to the body, and an appropriate  graph with 2jk--3 edges. This creates a total 
graph G* with a count 

ek = e* <- 2v* - 3 <- 2j - 3. 

We also know that 

2i -- 2(~, jk) =~. (ek +3)  = ~. ek + 3 b  -<- 3b +2 j  - 3 .  

Since every subset is also independent,  the similar count holds for all nonempty 
subsets of  bodies. I f  the framework was isostatic, then clearly equality holds for 
the graph. 

(ii)-~ (iii). Each body in the graph with Jk attached vertices will be replaced 
by a line of jk  joints and an extra joint off this line, attached to each of  these jk 
joints by a new line (Fig. 6). This creates a new incidence graph G ° = (A °, B°; I o) 
o f  lines A and joints B, to which we can apply Theorem 5.2. For any subgraph 
of  G we assume that 2 i ' = 3 b ' + 2 j ' - 3 .  In the new graph G o each incidence in I 
places a joint on two lines, while each new new joint for a body is on jk lines, so 

e = 2 i + ~ . ~  < - 3 b + 2 j - 3 + ~ j k = ( ~ A  + b ) + 2 ( b + j ) - 3 = a ° +  2 b ° - 3 .  

Since the same count holds for all subsets o f  b'  bodies, it holds for any subgraph 
of  G o in which a body with some lines has all the lines present. 

Assume some other substructure, containing only some of the lines and vertices 
for a body,  fails the condition e ' <  - a ' + 2 b ' - 3 .  I f  a line does not have at least 
two joints, then it can be dropped,  maintaining this failure. I f  this substructure 
contains at least one line (and two joints) from a body, then we can fill out this 
body by adding: 

(a) The special vertex for the body, if missing, with its lines to all present 
vertices (one vertex, n lines, and 2n incidences, n = 2). 

(b) The basic line of  the body, if missing (one line and at least one incidence). 
(c) New vertices along the basic line of  the body, and the line to the body 

vertex (one vertex, one line, and three incidences). 
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Fig. 6. 

I ) 
(a) 

(b) 

Bodies with all points collinear (heavy lines) are equivalent to frameworks with an added 
joint for each body. 

(d) Missing lines between joints on the basic line and the special vertex for 
the body (one line and two incidences). 

These additions can only maintain or increase any failure of  the count. Since 
full subsets satisfy the count, we conclude that all nonempty subsets do also. 

By Corollary 5.3, the graph G o has a realization as an independent bar and 
joint framework. This is the required realization of G with all the original joints 
for any body collinear. [] 

Remark. This theorem is the plane analogue of an important conjecture about 
spatial structures. The appropriate  definitions are given in [ 11]. 

Conjecture.  A bipartite graph can be realized in 3-space as an infinitesimally 
rigid identified body and hinge structure if and only if it can be realized as an 
infinitesimally rigid identified body and hinge structure with all hinges of  each 
body in a single plane. 
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For the special case where each hinge connects only two bodies, we do have a 
characterization of  the graphs [11], but the methods used here do not extend to 
solve even this special case of  the conjecture. 

We pointed out that, for k = 3, Theorem 4.1 describes spatial configurations 
of  planes and points which have parallel redrawings. However  all motions of  
spatial bar  and joint frameworks cannot be expressed as parallel redrawings. In 
fact, the spatial analogue of  Laman's  theorem is a central unsolved problem 
which cannot be approached by the path used here [12]. However, the problem 
of parallel redrawings of  line configurations in k-space can be studied by these 
matroids. The resulting theorems apply both to infinitesimal motions of  
frameworks in k-space and to Minkowski sums of  polytopes in k-space [18]. 

5.4. Special  Position Problems 

We have concentrated on the structures of  general values of  the variables. For 
some special values (the special posit ions) the rank of some subsets will change. 
The given matrices still represent the underlying engineering problem, but the 
independence or dependence of  a set of  rows will depend on the geometry of 
the points, as well as the count of  the original structure. 

From the pattern of  representation given in Sections 2-4, the set of  special 
positions for the vertices of  any hypergraph is projectively invariant. Thus the 
geometry of these specializations is projective geometry. Crapo has begun a study 
of this geometry (for the elementary scenes and their analogues) under the title 
of  the circuit geometry of  the configuration of  points in projective ( k -  l ) -space  
[2]. 

For both scene analysis in space and parallel redrawing in the plane there is 
an extensive literature on special positions. An enormous number  of  pretty 
geometric results and exciting unsolved problems lie in this direction. The pattern 
of  our  representing matrix, and the polynomials obtained from determinants of  
its minors can be used to develop an algebraic geometry of  the special positions 
which make sets of  these determinants = 0. A model for this type of  study is 
provided by [13] and [15] where special positions of  frameworks are analyzed. 
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