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Abstract. A type of  partial ly ordered structures called incidence-polytopes  general- 
izes the  not ion  of  po lyhedra  in a combinator ia l  sense. The concept  includes all 
regular polytopes as well as many  wel l -known configurat ions.  We use hyperbol ic  
geometry to derive certain types of  incidence-polytopes  whose cells are i somorphic  
to maps  of  type {4, 4}, {6, 3}, or {3, 6} on a torus. For  these structures we give a 
criterion on  the finiteness in terms of  groups of  2 x 2 matrices,  leading among  other  
things to the explicit recogni t ion of  the groups in some interest ing special cases. 

1. Introduction 

Because of their symmetry properties regular polytopes have been investigated 
throughout the history of mathematics. The most powerful contributions to a 
systematic investigation of polytopes in our century are due to Coxeter. In the 
last two decades, due to Coxeter's influence, particular attention has been paid 
to the combinatorial properties of regular figures. As a consequence the notion 
of a regular polytope has been extended in several directions. 

Traditionally the cells of abstract polytopes were defined as images of convex 
polytopes under a particular type of mapping (see, for example, [15] and [21]) 
so that each cell was a topological ball. About 10 years ago Griinbaum suggested 
that it might be of interest to consider polytopes whose cells are images of toroidal 
maps. In [16] Griinbaum lists many interesting examples of these kinds of 
polytopes. Among them is a very interesting abstract polytope found indepen- 
dently by Coxeter and Shephard [12]. Further examples were discovered by 
Schulte [24], the author, and Colbourn (see [2] and [18]). 
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Griinbaum's  notion of  a polystroma, introduced in [16] as a special type of 
partially ordered set yielding a combinatorial structure that locally behaves like 
a polytope, provided a framework for the new approach to investigation of regular 
polytopes. The concept o f  a polystroma was later modified by Danzer [13] to 
become an (considerably more restrictive) incidence-potytope. Here we recall 
some definitions and notations. For details and the introduction to the theory of 
incidence-polytopes one should consult [14], [22], and [23]. 

An incidence-polytope ~ of dimension n, or briefly an n-incidence-polytope, 
is a partially ordered set with the properties (1)-(4) below. 

(1) ~ has a smallest element F_~ and a greatest element F,. 
(2) Every chain ol ~ ~ is contained in a maximal chain with exactly n +2  

elements, a so-called flag. 

The elements of  ~ are called faces. Any face F can be thought of as itself being 
a partially ordered set {GIG<-F} with elements of  ~ majorized by F. The 
dimension of  F, dim F, can be defined as the number of faces of ~ in a flag of 
{ G ] G -< F} minus 2. In particular, the dimension of F, is n, and faces of  dimension 
0, 1, and ( n - 1 )  are called a vertex, an edge, and a cell, respectively. If  F is a 
vertex, the partially ordered set {GIG >-F} with elements of  ~ minorized by F 
is called a vertex-figure of  a vertex F. 

(3) I f f  and g are flags of  ~ , f ~  g, and h = f n g ,  then there is a finite sequence 
of flags f = f ~ , f 2 , . . .  ,fro = g, all containing h, such that f+~ differs from 
f in exactly one face (t-< i<_ m - 1 )  (i.e., ~ is connected). 

(4) For any two faces F and G with F-< G and dim F +  1 = m = d i m  G +  1, 
there are exactly two faces H with d i m H = m  such that F -  < H < - G  
(rn =0 ,  1 . . . . .  n - I ) .  

I f  ~*  is an incidence-polytope obtained from ~ by leaving the set of  faces 
unchanged and replacing -< with -> it is called the dual o f  ~. ~ is said to be 
self-dual if ~ and ~ *  are isomorphic. 

An incidence-polytope ~ is said to be regular if the group of  its (order 
preserving) automorphisms is transitive on the flags of  ~. I f  ~ is regular then 
its faces are regular and all faces of  the same dimension are mutually isomorphic. 
Also, the vertex-figures of  a regular incidence-polytope are regular and mutually 
isomorphic. This definition of regularity is quite restrictive, as there are many 
incidence-polytopes with groups that are transitive on the set of  faces of  any 
dimension but not transitive on the flags. Actually the incidence-polytopes we 
describe in Sections 4, 5, and 6 are 4-incidence-polytopes with groups transitive 
on faces (in some instances they are also transitive on flags). 

One of  the central problems in the theory of polytopes is the construction of  
finite incidence-polytopes with preassigned cells and vertex-figures. Of  particular 
interest to us will be incidence-polytopes which G r f n b a u m  refers to as naturally 
generated, meaning that they are built step-by-step from disjoint copies of  cells 
identifying elements only as dictated by the vertex-figures. If  all the cells are 
isomorphic to an n-incidence-polytope c¢ and all the vertex figures are isomorphic 
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to an n-incidence-polytope ~V, then the naturally generated ( n + l ) -  
incidence-polytope is denoted by { qg, ~V}. The two particular classes of  naturally 
generated 4-incidence-polytopes mentioned in [16] are 

~b,c = {{6, 3}b,c, {3, 3}} 

and 

~b.c = {{4, 4}b.c, {4, 3}}, 

where in both cases cells are isomorphic to toroidal maps (described in Section 
2). These will be investigated in greater detail in Sections 4 and 5. 

Finite twisted honeycombs, introduced by Coxeter [6], with "spherical" cells 
provided many interesting examples of incidence-polytopes (see [6], [9], and 
[10]). In Section 6 we extend this study by allowing cells to be toroidal. 

2. Maps of Type {4, 4} and {3, 6} on a Torus 

Any map on a torus with quadrangular faces four meeting at each vertex (of type 
{4, 4}) can be derived from its universal covering {4, 4} (a tessellation of Euclidean 
plane by squares) by a suitable identification [11, p. 103]. The symmetry group 
[4, 4] of  a regular plane tessellation by squares is generated by reflections R~ in 
the sides of  its characteristic triangle [11, p. 103] and has the presentation 

R~=(R ,RE)4=(R2R3)4=(R ,R3)2=l ,  v =  1,2,3. (2.1) 

The rotation subgroup [4, 4] + of the group in terms of the rotations S = R2R 3 

and N = R3R I then has the following presentation 

$4= N 2 = (SN)  4 (2.2) 

(see p. 107 of  [11], with N =  T). 
In the rotation group the translations X = S N S  and Y =  S2N generate an 

abelian subgroup. Regarding X and Y as unit translations along the axis in the 
Cartesian coordinate system, the orbit of the point (0, 0) under (X, Y) (the group 
generated by X and Y) is the set of  vertices of  {4, 4}. The translations X h Y  c and 
X - c Y  b generate another subgroup of [4, 4] + (isomorphic to (X, 1I)). The square 

(b,c)  (0,0) ( - c , b )  ( b - c , b + c )  

is the fundamental region for the group ( X b Y  c, X-cYb) .  Identifying opposite 
edges of the square we obtain a map {4, 4}b.,. on a torus. 

A map of  type {4, 4} is said to be reflexible if its group is generated by three 
automorphisms satisfying (2.1) (and possibly some other relations). It is easy to 
see that {4, 4} is reflexible if and only if b c ( b - c ) = 0 .  In this case {4, 4}b.,. is an 
instance of a regular 3-incidence-polytope. Now X b Y  c= 1 (or, equivalently, 
X - ' Y  h = 1) if and only if 

(SNS)b (S2N)  c = 1. (2.3) 
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The groups [4, 4]b.o and [4, 4]~.~ of  {4, 4}b.o and {4, 4}~.c, respectively, are given 
by (2.1) with the respective extra relations (derived from (2.3)) 

(RIR2R3R2) b = 1 and (R3R2RI) 2~ = 1. (2.4) 

On the other hand, the group [4, 4]b.c of a nonreflexible map {4, 4}b,c is defined 
by relations (2.2) and (2.3). In this case the group, although transitive on faces 
of  each dimension, is not transitive on the flags and {4, 4}b,c is not a regular 
3-incidence-polytope. 

Maps {6, 3}b.c and its dual {3, 6}b,c are obtained similarly (for details see [18]). 
In both cases maps are reflexible if and only if b c ( b -  c )=  0 in which case they 
are regular 3-incidence-polytopes. The groups of the reflexible maps {6, 3}b.0 and 
{6, 3}~,c and their duals are given by 

R~=(R1R2)6=(R2R3)3=(RIR3) 2= 1, I/= 1,2,3, (2.5) 

with respective extra relations 

(RIR2R3) 2b=l and (R3R2RIR2R~) 2~=1. (2.6) 

The group of a nonreflexible map {6, 3}b.c, and its dual, is given by 

S 3 = N 2 = (SN)  6 = 1 (2.7) 

together with the extra relation 

(S -I N S N ) b ( S N S  -l N )  c = 1. (2.8) 

The nonreflexible maps {p, q}b.,, and {p, q}c,b a r e  considered to be the same 
by many authors although they are enantiomorphic (mirror images of  each other) 
forms. For the purposes of  this paper we will, in some instances, have to be 
careful in distinguishing between two different forms. Without loss of  generality 
we may assume that b, c-> 0. 

3. Hyperbolic Honeycombs and the Inversive Plane 

Some interesting examples of  finite incidence-polytopes with toroidal cells can 
be derived from regular honeycombs in the three-dimensional hyperbolic 
space H a . 

By a polyhedron we mean the union of plane polygons which form a topological 
2-manifold without boundary and without self-intersections, where a plane poly- 
gon is a plane set bounded by finitely many line segments. We will, furthermore, 
assume that the plane polygons, called faces, are disjoint except for their edges. 
We use the Schl~ifli symbol {p, q} to denote a regular polyhedron whose faces 
are regular p-gons, q of which meet at any vertex. A three-dimensional honeycomb 
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is a set of polyhedra, called cells, fitting together to fill all the space just once, 
so that every face of each polyhedron belongs to exactly one other polyhedron. 
A honeycomb is said to be regular if its cells are regular (polyhedra) and 
congruent. A regular honeycomb whose cells are {p, q}'s, r around each edge, is 
denoted by {p, q, r} and is an instance o fa  4-incidence-polytope. The arrangement 
of cells of  a regular honeycomb {p, q, r} around a common vertex corresponds 
to the arrangement of faces of  polyhedron {q, r} which is isomorphic to a 
vertex-figure of {p, q, r}. 

There is only one regular three-dimensional honeycomb in the Euclidean 
space: {4, 3, 4} is the space filling by cubes. The six regular four-dimensional 
polytopes are the only regular three-dimensional spherical honeycombs. 

There are a total of 15 regular honeycombs in Ha: {3, 5, 3}, {5, 3, 4}, {5, 3, 5}, 
{4, 4, 3}, {4, 4, 4}, {6, 3, 3}, {6, 3, 4}, {6, 3, 5}, {6, 3, 6}, {3, 6, 3} and their duals. Of 
special interest to us will be regular honeycombs {p, q, r} with ( p - 2 ) ( q - 2 )  =4  
(so that p is 6, 3, or 4). In each of these cases a cell of  the honeycomb being a 
tessellated horosphere is isometric to a Euclidean tessellation [5, pp. 199-214]. 

Let us use Poincar6's half-space model for the hyperbolic space H 3, and let 
H denote the absolute of H 3. II being an extension of the Euclidean plane by the 
point at infinity can therefore be viewed as an inversive plane. It is now natural 
to establish a one-to-one correspondence between the planes of the hyperbolic 
space and the circles of  the inversive plane (the intersections of planes of H 3 by 
I1), and, consequently, the isomorphism between the group of  reflections of H 3 
and the group of  inversions in the inversive plane. For us it is important to notice 
that a group of displacements in ~.~3 is isomorphic to a group of  M/Sbius transforma- 
tions. The above-mentioned isomorphism was first discovered by Liebmann [ 19]. 

The symmetry group [p, q, r] of a honeycomb {p, q, r} is generated by reflec- 
tions R~ in four planes p~ which form an orthoscheme [7, p. 188] with dihedral 
angles ,%(Pl, P2) = It~p, ~(P2,/93) - -  7r/q, ~(P3,/94) = 7r/r, and ~(Pl ,  9 3 )  = 

~ ( p , ,  p,,) = ~ ( p 2 ,  p,,) = ~-/2. 
Since the absolute of  the hyperbolic space ~_~3 is isomorphic to the inversive 

plane, [p, q, r] can be represented by a group generated by inversions in four 
circles, cutting one another at these same angles. The group [p, q, r] in terms of 
the reflections R, has the following presentation 

R2, = ( R , R 2 )  p = ( R 2 R 3 )  q = ( R 3 R 4 ) "  = ( R , R 3 )  2 = ( R 2 R 4 )  2 = ( R 4 R , )  2 = 1,  

~,-- 1, 2, 3,4. (3.1) 

We let ~0 denote the cube root of unity, so that it satisfies the equation 
co 2 + to + 1 = 0, and i the fourth root of  unity, i.e., i 2 + 1 = 0. As usual, ~- will denote 
the "golden ratio" (1 +x/5)/2 so that ~.2_ ~._ 1 = 0. 

[6, 3, 3] = (R,(z) = ~., g2(z) = -o~,/3(z) : I - ~,/,(z) = II~), 

[6, 3, 4] = (R,(z)= ~, R2(z)= -03~, R3(z)= v'~-E, R4(z)= ll~). 

See Fig. I. 
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[6 ,  3, 5] = < R , ( z )  = ~, R 2 ( z )  = -o3~, R 3 ( z )  = r -  ~, g , ( z )  = 1 / ~ ) ,  

[6 ,  3, 6] = ( R , ( z )  = ;~, R 2 ( z )  = -o3~, R 3 ( z )  = x / 3 -  ;~, R 4 ( z )  = 1 /~ ) .  

S e e  Fig. 2. 

[3, 6, 3] = ( R , ( z )  = ;~, R2(z )  = oa~, e 3 ( z )  = 1 - ~, R4(z) = I /$5 ,  

[ 4 , 4 , 3 ]  = ( R , ( z )  = [, R=(z) = i~, R 3 ( z ) =  1 - [ ,  R4(z) = 1/~) ,  

[4,  4, 4] = ( R , ( z )  = e, R2(z )  = i£, R3(z)  = -~/2- e, R4(z)  = 1/;~>. 

See Fig. 3. 
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In all these cases the inversions R,,  R2, R3 appear as reflections in lines, that 
is, in circles centered at infinity, and the lines of  intersection of  the corresponding 
planes in hyperbolic space are parallel, so that the centres of  the cells of the 
honeycomb {p, q, r} belong to the absolute. On the other hand, the same groups 
yield dual honeycombs whose vertices all belong to the absolute. The cells of 
the honeycombs with "ordinary"  vertices, these being the orbit of the common 
point of  the last three mirrors R2, R3, R4, are inscribed in horospheres. 

The cells of  the honeycombs are represented by certain sets of circles, one 
circle for each face of the cell. But the vertices of the honeycomb have no nice 
analog in the inversive plane. (To be precise, a point of hyperbolic space is 
represented in the inversive plane by an elliptic bundle of circles.) 

For the remaining three groups, [3, 5, 3], [5, 3, 4], and [5, 3, 5], expressions 
for the generating reflections do not all have as simple a form as the reflections 
above. We use an easy method of constructing pictures for finite polyhedral 
groups [3, p. 523] to find three of the generating reflections R~: 

[3, 5, 3] = (Rl(z) = ~., R2(z) = oJg, R3(z) = Zo+ p2/(~_ zo), R4(z) = 1/~), 

where Zo and p denote the centre and radius, respectively, of  the circle of  the 
inversion R3. p is a root of the equation z - 2 p 2  3p + 3 = 0 and Zo = 3-'/2~'p. The 
approximate values for p are 6.678 and 1.176, and the approximate values for Zo 
are 6.238 and 1.099, respectively. 
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Finally, for  p = 4 and p = 5 we have 

[p, 3, 5] = ( R l ( z )  = ~, R : ( z )  = e'2~/5:~, R3(z ) = Zo+ p2/(~._ ZO), R4(z) = 1/:~), 

where as before z0 and p are the center and radius, respectively, o f  the circle o f  
the inversion R3. When  p = 4, p is a root o f  the equat ion p2_  2~'p + 2 = 0 and 
zo = 2-~/2p.  T h e  approximate  values for p are 2.404 and 0.832, and the approximate  
values for Zo are 1.700 and 0.588, respectively. When p = 5, p is a root  o f  the 
equat ion p2 _ (3~r + 1)p + (z  + 2) = 0 and Zo = 5-1/4Tl/2p. In this case the approxi-  
mate  values for  p are 5.152 and 0.702, and  the approximate  values for Zo are 
4.382 and 0.597, respectively. 

O f  special interest to us will be to consider  a rotat ion subgroup [p, q, r] ÷ o f  
[p, q, r]. This group is generated by the three involutions (half-turns) 

L = R 2 R 4 ,  M = R 4 R ~ ,  N = R I R 3 .  (3.2) 

In terms o f  these generators  [p, q, r] ÷ has the fol lowing presentat ion:  

L 2 = M 2 = N 2 = ( L M )  p = ( L M N )  q = ( M N )  r = 1. (3.3) 

4. Incidence-Polytopes with Cells of Type {4, 4} 

We will now consider  certain groups o f  2 x 2 matrices derived in the following 
manner .  Given a commutat ive  ring R and a subgroup G of  the units R* o f  R, 
one can consider  the g roup  

I 
and its quot ient  PSLC(2, R)  with respect to the center. In this and the following 
sections the representat ion by  matrices is always meant  in this sense. 

Using the generat ing inversions for  a g roup  [4, 4, r], the three involutions (3.2) 
can be represented by  the M6bius  t ransformat ions  

L ( z ) = i / z = - I / ( i z ) ,  M ( z ) = l / z = i / ( i z ) ,  N ( z ) = - z + x = ( - i z + i x ) / i ,  

with x = 1 when r = 3 and x = x/2 when r = 4, Since det  L = i and  det  M = det N = 
1, any t ransformat ion in the g roup  (L, M, N)  has a determinant  equal to 1 or  i. 
In matrix notat ion 

N:E :]  41, 
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Each incidence-polytope {{4, 4}b.c, {4, r}} can now be derived from a hyperbolic 
honeycomb {4, 4, r}, r = 4 or 3, by making suitable identifications. The relation 
(2.3) in terms of the involutions (3.2) can be written as 

( L M L M N ) b ( L M N L M )  ~ = 1. (4.2) 

The addition of (4.2) to (3.3) with p = q  = 4 gives us the presentation for the 
rotation subgroup of the group [{4, 4}b.c, {4, r}]. If  bc(b - c) # 0 this will be the 
whole group. 

Since 

1 ( L M L M N ) b ( L M N L M ) C = [ I o  i x ]h i10  i l ] C = [ 0  x ( c i - b )  1 1 J (4.3) 

the incidence-polytope {{4, 4}b.~, {4, r}} is finite if and only if the factor group of 
the group generated by the matrices (4.1) by the normal closure of (4.3) is finite. 

The case with r = 3 is particularly interesting. In this instance the subgroup 
of (L, M, N) generated by 

(4.4) 

generates PSL(2, Z[i]) [1], where Z[i] denotes the ring of Gaussian integers (ring 
of polynomials in i with integral coefficients). Obviously, (T, U, 1/) is a normal 
subgroup of (L, M, N) and hence the rotation group of {4, 4, 3} is isomorphic to 
the semidirect product of PSL(2, Z[i]) with the cyclic group C2 generated by L: 

[4, 4, 3] + ~ PSL(2, 7[i]) • C2. (4.5) 

Consequently, the group of  all 2 x 2 matrices of determinant equal to + 1 or +i  
factored by its center is isomorphic to PSL(2, Z[i]) • C2. 

To get the whole reflection group [4, 4, 3] we adjoint one of the reflections 
Rv, say R2, to (L, M, N). It is easy to check that (T, U, V)=PSL(2, Z[i]) is a 
normal subgroup of(R~) - [4, 4, 3] and since (R2, L) = (R2, R~) ---/92 (the dihedral 
group of  order 4) and (R2, L)c~(T, U, V) = 1 we have 

[4, 4, 3] ~ PSL(2, 7[i]) •/92. (4.6) 

Hence, the group of  the incidence-polytope *LPb.c is the factor group of the 
group (4.6) or (4.5) by the normal closure of (4.3), with x = 1, depending on 
whether ~b,c is reflexible or not. Consequently, 

Theorem I. ~b,c is finite i f  and only i f  the factor group of  PSL(2, Z[i]) by the 
normal closure o f  

where a = ci - b, is finite. 
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With the exception of (b, c) equal to (4, 0) or (5, 0), whenever b + c-< 5, Zeh.c 
is known to be finite [2], [16], [12] and no other cases are known to be finite. 
An attempt was made to enumerate the cosets of (R~, R2, R3) in [4, 4, 3] using 
a computer but the computation exceeded the storage limits. 

The polynomial i2+ 1 = 0 is reducible in Zs and its roots are ±2. When i = -2 ,  
b = l ,  and c = 2  we have c i - b = - O  (mod 5) and the matrix (4.7) becomes the- 
identity matrix. Since i = -2 ,  det L = 2 which is not a square in Zs. This, together 
with the fact that the matrices T and U from (4.4) generate the group of positive 
modular matrices (see, for example, p. 366 of [17]), implies that the matrices 
(4.1) generate PGL(2, 5) of order 120. But the order of the group of  ~ . 2  is 120 
as well [2, p. 32] and we conclude 

[{4, 4}1.2, {4, 3}] ~ PGL(2, 5) = $5. 

In Z~3, i2+1 =0  is reducible with roots +5. When i =5 ,  b = 2 ,  and c = 3  we 
have c i - b  =--0 (mod 13). With i = 5, det L = - 5  which is not a square in ZI3 SO 
that, as above, we conclude that in this case the matrices (4.1) generate PG L(2, 13) 
of  order 2184. As above, considering that the order of the group of  &¢2,3 is also 
2184 [2, p. 32] we conclude 

[{4, 4}2,3, {4, 3}] --~ PGL(2, 13). 

The polynomial i2q - 1 = 0 is also reducible in Z 17 where its roots are +4. When 
i = -4 ,  b = 1, and c = 4 we have ci - b =- 0 (mod 17) and the matrix (4.7) becomes 
the identity matrix. The matrices (4.1) with i = - 4  generate PSL(2, 17) of order 
2446 which is half of  the order of [{4, 4}1.4, {4, 3}], so that the group of &¢~.4 is 
an extension of (?2 by PSL(2, 17). 

When b =  1, c = 3 ,  and i = 2  we have c i - b = - O  (mod 5) and PGL(2,5)  is 
isomorphic to a quotient group of the group of ~ . 3  by a normal subgroup of 
order 6 [2, p. 32]. The normal subgroup generated by ( L M L M N )  5 and ( N L N L M ) 3  

is the dihedral group D 3 of order 6, and the group [{4, 4}1,3 , {4, 3}] is an extension 
o f / ) 3  by PGL(2, 5). 

The case with r = 4 is interesting as well. In this instance the cells and 
the vertex-figures of the hyperbolic honeycomb are inscribed in horospheres 
and the honeycomb is self-dual. The group of  the dual of {p, q, r} is obtained 
from (3.1) interchanging R~ with R 4 and R2 with R 3. Consequently, the rota- 
tion group of  the dual of  {p, q, r} is obtained from (3.3) by interchanging 
L with N. From {4, 4, 4} we can derive incidence-polytopes {{4, 4}b.c, {4, 4}d,e} 
with toroidal cells and toroidal vertex-figures. The presentation for the 
rotation subgroup of  the group of  this incidence-polytope is obtained by the 
addition of  

( N M N M L ) d ( N M L N M )  e=  1 (4.8) 

and (4.2) to (3.3) with p = q = 4. When b = d and c = e the incidence-polytope 
is self-dual. 
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We will now discuss several finite inc idence-poly topes  derived f rom {4, 4, 4}. 
For this purpose  it will be convenient  to represent  the group [4, 4, 4] by the 
following inversions: 

R , ( z )  = 5, R z ( z )  = iS, R3(z) = 2 -  ~, R4(z ) =2/_~. 

Then the half- turns L, M, N in matrix notat ion are 

(4.9) 

and the relat ion (4.2) in terms of  these matrices is (4.3) with x = 2. 
The incidence po ly tope  {{4,4}5,2, {4, 4}} has 24 cells and six vertices. The 

addi t ion of  (4.2) with b = 1 and c = 2 to [4, 4, 4] gives us the finite g roup  of  order  
480 [2, p. 32]. In this g roup  

( N M N M L ) Z ( N M L N M  )4  = 1 

and the vertex-figures o f  the inc idence-poly tope  are {4, 4}2,4. If, however ,  we add 
to the g roup  the relat ion (4.8) with d = 1 and e = 2 we obtain a group of  order  
120 which is then the group  of  self-dual inc idence-poly tope  {{4, 4}1,2, {4, 4}1,2}. 

In Zs,  i = - 2  is a root  o f  i 2 + 1 = 0 and when b = 1 and c = 2 we have ci - b =- O. 
Using (4.9) with i = - 2 ,  (4.8) is satisfied when d = 1 and c = 2 and,  fur thermore ,  

L M N L M = [ 1 0  11] and M L M = [ _ ~  10] ( m o d 5 ) .  

Hence  by [17, p. 366], since det M = - 2  which is not a square  in Zs,  the matrices 
(4.9) with i = - 2  genera te  PGL(2 ,  5) o f  order  120. It  follows tha t  

[{4, 4},,2 , {4, 4}1.2] ~ PGL(2,  5). 

In terms o f  the above -men t ioned  matr ices y = ( N M N M L )  5 and z = ( N M L N M )  5 
are identi ty but  in the g roup  [{4, 4}5,2, {4, 4}] they generate  a normal  subgroup  
i somorphic  to the dihedral  g roup  D2, so that  the group [{4, 4}1.2, {4, 4}] is an 
extension o f  D2 by PGL(2 ,  5). 

The inc idence-poly tope  {{4, 4}2,3 , {4, 4}} does  not seem to be finite, but,  
however ,  the self-dual po ly tope  {{4, 4}2,3 , {4, 4}2,3 } is finite and  its g roup  is o f  
order  2184 suggesting that  the group  is PGL(2 ,  13). We proceed  to show that  this 
is indeed true. Polynomial  i2+ 1 = 0  has solut ions +5 over  7/13. With b = 2 and 
c = 3, ci - b =- 0 (mod  13) implies i = 5. Matr ices  (4.9) with i = 5 satisfy (4.2) and  
(4.8) when b = d = 2 and  c = e = 3. This matr ix  representa t ion gives us 

[; i] ,]  mo ,3, U = ( L M N L M )  4= and U M U - 2 M U  = - 0 
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and we conclude that 

[{4, 4}2,3, {4, 4}2,31 ~ PGL(2, 13), 

since det M = -2  which is not a square in Zt3. 
If  vertices of {{4, 4}2,3, {4, 4}} were identified so that the vertex-figures were 

{4, 4}3.2 (mirror images of the cells) the honeycomb would collapse to a 
honeycomb with one cell only. 

5. lncidence-Polytopes with Cells of Type {6, 3} or {3, 6} 

Using the generating inversions for a group [6, 3, r], the three involutions (3.2) 
can be represented by the Mfbius transformations 

L(z)  = - ~ / z  = -to/to2z, M ( z )  = 1/z, N ( z )  = - z + x  

with x = 1, 2, ~" or x/3 when r = 3, 4, 5, or 6, respectively. Since det L = 1 and 
det M = det N = - 1, any transformation in the group (L, M, N) has a determinant 
equal to 1 or -1.  In matrix notation 

i n to  

Each incidence-polytope {{6, 3}b,~, {3, r}} can now be derived from the hyper- 
bolic honeycomb {6, 3, r} by making suitable identifications. The relation (2.8) 
in terms of the involutions L, M, and N can be written as 

( N M L N L M )  b ( L M N M L N )  c = 1. (5.2) 

The addition of (5.2) to (3.3) with p = 6 and q = 3 gives us the presentation for 
the rotation subgroup of the group [{6, 3}b.c{3, r}]. If b c ( b -  c) ~ 0 this will be 
the entire group. 

The honeycomb {6, 3, r} has finite vertex-figures when r = 3, 4, or 5. When 
r = 6  its vertex-figures are inscribed in horospheres and the honeycomb is 
self-dual. From {6, 3, 6} we can derive incidence-polytopes {{6, 3}b.c, {3,6}a.e} 
with toroidal cells and toroidal vertex-figures. The additional relation in this case 
is obtained from (5.2) by interchanging L and N (and b, c changed to d, e, 
respectively) so that 

( L M N L N M ) d ( N M L M N L )  ~= 1. 

Since 

( N M L N L M ) b ( L M N M L N ) ~ = [ I o  1 J [ ;  1. l  1 (5.3) 

the incidence-polytope {{6, 3}b,c, {3, r}} is finite if and only if the factor group of 
the group generated by the matrices (5.1) by the normal closure of (5.3) is finite. 
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The most interesting case is the one with r = 3. This case is described in detail 
in [18]. When r = 3 then x = 1 and in this case matrices (5.1) generate the modular 
group PSL±(2, Z[to]): the group of all 2x  2 matrices over Z[to] (ring of poly- 
nomials in to with integral coetticients) with a determinant equal to 1 or -1  
factored by its center. This group is isomorphic to the semidirect product of 
PSL(2, Z[to]) with the cyclic group C2 generated by a matrix with a determinant 
equal to - 1 • 

[6, 3, 3] + ~ PSL(2, Z[to]) - (?2. 

Now, as in Section 4, we can show 

[6, 3, 3] = PSL(2, Z[to]) • /)2,  

and, as was essentially done in [18], we can conclude 

Theorem 2. ~(b,c is finite i f  and only i f  the factor  group o f  PSL(2, Z[to]) by the 
normal closure o f  

where a = cto - bto 2, is finite. 

Except for (b, c ) = ( 5 , 0 ) ,  whenever b + c - 5 ,  ~tt'b.c is known to be finite (see 
[2], [16], and [18]) and there are no other known cases. Reference [18] can be 
consulted for an explicit recognition of  the groups of  these incidence-polytopes. 

Theorems 1 and 2 are reminiscent of  the situation where the factor group of  
the modular group PSL(2, Z) by the normal closure of the above matrix is finite 
if and only if ]a I <-5, giving the usual polyhedral groups. 

This can easily be seen as follows. The matrices 

S =  and T =  _ i  0 

generate the modular group PSL(2, Z) [11, p. 94]. These generators satisfy the 
relations 

T ~ = ( S T  ~) = 1, 

and, since the modular group is defined by the above relations [20, p. 108], it 
follows that PSL(2, Z) is isomorphic with the triangle group (2, 3, oo). Factoring 
PSL(2, Z) by the normal closure of  
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results in a finite group if and only if the triangle group (2, 3, a) defined by 

S a -- T 2= (ST) 3= 1 

is finite. On the other hand, (2, 3, a) is finite only when a is 3, 4, or 5 giving 
tetrahedral, octahedral, or icosahedral groups, respectively (see, for example, p. 
15 of  [8]). 

In group [6 ,3 ,3]  the four reflections R~, R~R~R2, R3, and R4 generate a 
subgroup which is isomorphic to [3, 6, 3] and hence the M6bius transformations 

n = R~R3 = N = (5.4) 

generate a group isomorphic to [3, 6, 3] +. The additional relation for {3, 6}b: 
yields, in terms of  these matrices, 

(mlnlmn)b(lmnmln)C = 1 1 = 1 " 

Hence {{3, 6}b:, {6, 3}} is finite if and only if the subgroup of PSL~(2, Z[~o]) 
generated by l, m, and n factored by the normal closure of  this matrix is finite. 

6. Twisted Honeycombs with Toroidal Cells 

Let {p, q, r} be a regular hyperbolic honeycomb with generating reflections satisfy- 
ing (3.1). The transformation R1RER3R4 being conjugate to R3R4RIR2 = 
R3R~ • R4R2, which is the product of two half-turns about two nonintersecting 
edges of a characteristic orthoscheme, is a twist shifting a vertex of  the honeycomb 
along an infinite polygon called a Petrie polygon [6, p. 25]. For a 4-incidence- 
polytope such polygons can be defined as a skew polygon such that every three 
consecutive edges, but not four, belong to a cell [10, p. 169]. 

Petrie polygons of regular incidence-polytopes are discussed in [24]. The group 
of  the honeycomb is transitive on the set of  all of  its Petrie polygons. Conjugation 
by a reflection maps "right"-handed Petrie polygons onto "lef t"-handed ones 
and vice versa. In Twisted Honeycombs [6] Coxeter suggests identifying vertices 
of  a honeycomb {p, q, r} whenever the vertices are separated by t steps along a 
"r ight"-handed Petrie polygon to obtain a twisted honeycomb {p, q, r} ,  

Assuming that the reflections Ri were chosen so that R~R2R3R4 is indeed a 
"right"-handed twist, the addition of  (R~ R2R3R4)'  = 1 to (3.1) gives us the group 
of  {p, q, r},. In this case the left-handed twist R4R~RER3 must have the same 
order t, so that the resulting twisted honeycomb is a reflexible twisted honeycomb 
which we will denote, as in [2], by {p, q, r},.t. This is an instance of  a regular 
4-incidence-polytope whose group we denote by [p, q, r],. 
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On the other hand, considering only the rotation group [p, q, r] ÷ of the 
honeycomb generated by the half-turns (3.2) satisfying (3.3), the addition of 

(LN) '  = 1 (6.1) 

to (3.3) will not necessarily result in a group of a regular incidence-polytope. 
The half-turn M = R4R~ transforms R1R2R3R4 into the "right"-handed twist 
L N  = R4R2R3R~. The "left"-handed twist L M N M  = R2R3RaR~ in this instance 
need not be of the same order t as L N  and in fact need not be of  a finite order. 
If the addition of (6.1) to (3.3) results in a finite group then let the order of 
L M N M  be denoted by t'. 

If t '= t the resulting twisted honeycomb {p, q, r}, (which is the same as 
{p, q, r},.,) is a regular 4-incidence-polytope with group [p, q, r],. If t ' ~  t the 
resulting twisted honeycomb is not symmetric by reflections and hence not a 
regular incidence-polytope. These twisted honeycombs are called chiral and their 
group denoted by ((p, r, t; q)) is generated by the half-turns L, M, N satisfying 
(3.3) and (6.1) (see pp. 125 and 142 of [4]). 

Tables 1 and 2 lists all known twisted honeycombs with toroidal cells. Their 
duals are also twisted honeycombs and they have toroidal vertex-figures. 

Using the matrix representations from Sections 4 and 5 we can in some instances 
explicitly recognize the groups of twisted honeycombs. 

Matrices (5.1) with x =  1, when to=3  generate PSL(2, 13) and satisfy the 
defining relations for ((6, 3, 7; 3)), and when to = 11 generate PSL(2, 37) and 
satisfy the defining relations for ((6, 3, 9; 3)): 

((6, 3, 7; 3)) ~ PSL(2, 13), 

((6, 3, 9; 3)) ~ PSL(2, 37). 

In the group ((6, 3, 6; 3)) the transformation ( N M L N L M ) 2 ( L M N M L N )  of  
period 3 generates a normal subgroup C3. The factor group is then isomorphic 
to [{6, 3}2.~, {3, 3}] ~ PGL(2, 7) [18] and hence ((6, 3, 6; 3)) is an extension of C3 
by PGL(2, 7). 

In the group ((6, 3, 8; 3)) the transformation ( L M N M )  6 of period 2 induces 
a normal subgroup D2, the dihedral group of order 4, whose generators we may 
take to be ( L M N M )  6 and ( N M L M )  6. I am grateful to J. Leech for pointing this 
out. The factor group is isomorphic to ((6, 3, 6; 3)) (fix L and M and interchange 
N with M N M ) .  Equivalently, in the group, ( N M L N L M ) ( L M N M L N )  2 of period 
2 induces a normal subgroup A4, the alternating group of order 12, whose 
generators we may take to be ( N M L N L M ) ( L M N M L N )  2 and ( L M N M )  6 so that 
((6, 3, 8; 3)) is an extension of  A 4 by [{6, 3}t.2, {3, 3}] ~ PGL(2, 7). 

The above-mentioned isomorphism fixing L and M and interchanging N with 
M N M  induces an isomorphism mapping {{6, 3}b.c, {3, 3}} onto its mirror image 
{{6, 3},.b, {3, 3}}, and mapping the "left"-handed twisted honeycomb onto the 
"right"-handed one (its mirror image). 
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Matrices (5.4) with to = - 3  generate PGL(2, 7) and  satisfy the defining relations 
for ((3, 3, 4; 6)) and,  since the orders are equal,  we have 

((3, 3, 4; 6)) ~ PGL(2,  7). 

In  the group  [{3, 6}z,2, {6, 3}1.2] the t ransformat ion  ( L N )  4 of  order 2 generat ing 
a normal  subgroup  C2 is in the center so that 

1.213, 6, 3]1,2 ~ PGL(2,  7) x (?2. 

In  [6, p. 35] we can  see that  ((6, 4, 5; 3)) ~ ((5, 4, 6; 3)) ~ PGL(2,  19). Another  
matrix representa t ion can be derived from the matrices 

(generat ing a group isomorphic  to [6, 3, 4] ÷, compare  with (4.9)) by sett ing to = - 8 .  
The group [4, 4, 3]5, of  the reflexible twisted honeycomb {4, 4, 3}5, conta ins  a 

central  e lement  ( R 2 R I R 2 R 3 )  3 of  order  2. The addi t ion  of (R2R~ R2R3) 3 = 1 to 

R~ = (RIR2) 4 = (R2R3) " =  (R3R4) 3 = ( R ~ R 2 R 3 R , )  5 = (R1R3) 2 = (R, R4) 2 = (R2R,) 2 

v =  1 , 2 , 3 , 4 ,  

results in the group i somorphic  to the symmetr ic  group $6 [9, pp. 90-92],  and  hence 

[4, 4, 3 1 5 ~ $ 6 × C 2 .  
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