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Abstract. Several important and hard realizability problems of combinatorial 
geometry can be reduced to the realizability problem of oriented matroids. In this 
paper we describe a method to find a coordinatization for a large class of realizable 
cases. This algorithm has been used successfully to decide several geometric realiza- 
bility problems. It is shown that all realizations found by our algorithm fulfill the 
isotopy property. 

1. Introduction 

Several important and hard realizability problems of  combinatorial geometry can 
be reduced to the realizability problem of oriented matroids. Thus the polytopality 
or the star-shape embeddability of  combinatorial spheres, or more generally, the 
geometric embeddability of abstract complexes can be transformed by discrete 
algorithms to the problem of finding a coordinatization of at least one correspond- 
ing oriented matroid, see, e.g., [9]. 

Nevertheless, to decide whether a given oriented matroid is realizable is still 
a hard problem and no efficient algorithm is known to answer this question for 
the general case. On the other hand, by a very general theorem of  Tarski [18] the 
decidability of  this problem can be concluded. Using the special structure of 
inequality systems arising from chirotopes [8] as signed bases representation for 
oriented matroids, we propose a method to find a coordinatization for a large 
class of  realizable cases. 

This algorithm has been used successfully to decide several geometric realiza- 
bility problems, [5], [7], the completion of  the enumeration of  all neighborly 
4-polytopes with ten vertices [9] and an embedding of a 2.manifold of  genus 3 
with ten vertices in 3-space have been achieved by this method [4]. 

In the first two sections we sketch the basic notions of chirotope theory. The 
realizability problem for d-chirotopes with n vertices is seen to be equivalent to 
the existence of  a real-valued (n - d) x d-matrix for which the signs of  all subdeter- 
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minants are prescribed. These inequality systems have a very special structure, 
which allows one to describe the algebraic solution process in purely com- 
binatorial terms. Among this combinatorial calculus, developed in Section 4, the 
differentiation rule in Theorem 2 might be of interest on its own. 

The concept of solvability sequences for chirotopes is the main topic of this 
paper. A solvability sequence is, roughly speaking, an ordering of  the variables 
that allows the choice of  coordinates in a nonprospective way. It is shown that 
the class of  realizable chirotopes with solvability sequences is quite rich. 

Several well-known construction techniques from oriented matroid theory and 
convexity are special cases of  this method. Although it is very likely that configura- 
tions without solvability sequences do exist, so far no examples are known to 
the authors. ~ 

The last section relates the realization problem and the isotopy conjecture for 
nondegenerate configurations posed by Goodman and Pollack [18]. It is proved 
that configurations with solvability sequences do have the isotopy property and 
even more: the configuration space turns out to be not only connected, but 
contractible. 

2. Realizability of Chirotopes 

We assume that the reader is familiar with the basic concepts of oriented matroid 
theory and Grassmann algebra: see [8] and references cited in this paper. 
Throughout  our paper we use chirotopes, as defined below, as representations 
of  oriented matroids. For equivalence proofs between the chirotope and the 
classical definition of  an oriented matroid given in [3] see Las Vergnas [15], [16] 
(one direction), Lawrence [17], Dress (letter to Las Vergnas 1982) and [8]. 

We give some notations. Let 

A(~d):={(Ah. . . ,Ad)~Nd:  I_<AI< . .  .<Ad_<n}. 

Definition 2.1. A mapping X: A(n, d)--> {+ I, -1 ,  0} (alternatingly extended to all 
d-tuples o f { l ,  2 , . . . ,  n} d) is called a chirotope if for all o-e A(n, d - 2 ) ,  ~'e A(n, 4) 
the set 

{X(crl, • • •, ~d-2, rl, Z2) " X(~1,. • •, trd-2, z3, ~'4), 

--X(tr~, . . . ,  o'd-2, ~,  ~3) " X(cr~, -." , cry-2, ~'2, ~4), 

x ( c r l , . . . ,  crd_2, ~'1, ~',)" x(o ' l , .  • •, o'd-2, ~'2, ~3)} 

either contains {-1, +1} or equals {0}. 
X is called realizable if?( = sign(ArM) for a real-valued n x d-matrix M, where 

A u M  denotes the d th  compound matrix of M, i.e., the d-vector of  all (~) 
d x d-subdeterminants of  M. 

Given a subset X = { x l , . . . , x , } c R  d we associate with X the realizable 
chirotope X = sign A a ( x l , . . . ,  x ,) t  which assigns to each basis in X its orientation. 

In the meantime, Jfirgen Richter from Darmstadt gave an example with 13 points in the plane. 
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Fig. 1 

If x~=(1, y~), i = l , . . . , n ,  then X assigns to each d-simplex in Y =  
{y~,.. . ,  yn}c R d-~ its orientation. Interpreting every chirotope X this way, we 
call d the rank and n the number of vertices of  X. X is a simplicial chirotope, if 
I m x c  {-1,+1}.  

In the following we consider mainly simplicial chirotopes, in which case 
chirotopes are oriented matroids. In the nonsimplicial case this is true only if 
the family B x of subsets {Al , . . . ,  Ad}c {1 , . . . ,  n} with X(A1,. . . ,  A a )# 0  forms 
the set of  bases of a matroid. 

It is known [8] that there exists an infinite family of minorminimal nonrealiz- 
able simplicial d-chirotopes for d-> 3. Hence an easy combinatorial realizability 
criterion by excluding a finite number of  subchirotopes cannot exist. Furthermore, 
it is known that realizability depends on the field. For example, the 3-chirotope 
of simplex orientations of  the following configuration with nine vertices is 
realizable with real numbers but not with rationals [13]. 

Clearly, real realizable simplicial chirotopes are also realizable with rationals 
and therefore also with integers. We restrict ourselves to simplicial chirotopes. 
The reader will see that all ideas can principally be extended to nonsimplieial 
chirotopes, too. 

3. Inequality Systems Arising from Chirotopes 

The question, whether a given simplicial d-chirotope X with n vertices is realizable 
leads immediately to a system of (,7) d x d-determinant inequalities in n.  d 
variables. Since Aa(M" A) = AaM" det A for every d x d-matrix A, d 2 of these 
variables are redundant. We describe how the above inequality system can be 
transformed into a more convenient system in ( n -  d ) x  d variables. 

If  X(/3) = 1 for /3  E A(n, d) we can assume that the n x d-realization matrix 
V=(vu), i.e., sign AaV=x,  has the unit matrix as submatrix: v~,.j=8~j 
(l~-i,j<_d). 
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For A ~ A(n, d) we use as notation for the determinant 

det(v~,.j)~j___d =: (A~,. . . ,  Aa)=: (A). 

We have 

13113jlk]:=(131" "13j-,k13,+t. . .13d)=Vk..  k~13, l <--j<--a~ 

Similarly every d x d-subdeterminant (A) of V, except (13), corresponds to an 
r x r- subdeterminant of the (n - d) x d-matrix (Vkj ; k ~ 13) where 1 -< r := I A \ 131 --- 
min{n - d, d}. 

Example 3.1. n = 6, d = 3, 13 = (235) 

1)11 

1 
0 

V ~  
1)41 
0 

V6~ 

(245) = 13113214] = , 

I' (246)= v41 

[ 1)61 

1)12 

0 
1 

v42 
0 

v62 

0 

1)42 

0 

0 

v42 
v62 

vl3t 
0 

0 

V43 
1 

v63 

° I 
3 ~ 1)42, 

/)43 

1)43 = 1)62 I)63 1 ' 
I)63 [ 

r = 1{2, 4,6}\{2, 3, 5}1 = 2. 

This correspondence is described by the following theorem. 

Theorem 1. Let M be an n x d.matrix (n >- d) with (13) ~ O. Then for all 
A e A(n, d): 

(A). (13)a-1 = det(13113,[Aj])l~j~d. (1) 

directly by multiplying M = ( m  o) with the adjoint of  The proof follows 

Example 3.2. With Example 3.1 we have for any 6x3-matrix M;  

(235)[2tl] (235)[311] (235)[5ll][ 
(146)(235) 2= (235)[214] (235)[3[4] (235)[5]4][ 

(235)[2[6] (235)[3[6] (235)[516][ 

1(135) (215) (231) 1 
= 1 ( 4 3 5 )  (245) (234)[. 

[(635) (265) (236) I 
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It can be seen that all quadratic Grassmann-Pliicker-relations, see [8], are special 
cases of  (1). 

Now consider a simplicial d-chirotope X with n vertices and X(/3) = +1, which 
can be assumed for every fl ~ A(n, d) in the simplicial case. By Theorem 1 each 
A ~ A(n, d)\{/~} can be identified with a determinant function A(v~, . . . ,  V(~-d)d) 
where 

% := { v , , . . . ,  v(n-~)~}:= {~ ~ A(n, d): IA\~I = 1} 

= {~[/3jlk]: 1 -<j--< n, k g fl} 

is the set of  independent variables. The sign matrix (X(fl[flj[k]): k g f l )  is 
known in oriented matroid theory as standard representative matrix according to 
a basis/3 ~ A(n, d), see [2]. The realizability question for X can be posed in the 
following form: 

Do there exist real numbers ~h,- • •, ~7(n-d)d ~ R such that 

sign At( . . . .  r / j , . . . )  = x(A~) for all At ~ A(n, d)\{fl}? (2) 

Solving such a system of (~ ) -1  simultaneous inequalities successively by 
eliminating the variables v ,  we are still free 

to choose a suitable basis/3, 
to choose an elimination order, solvability sequence, 
to reduce the system by the chirotope conditions. 

Definition 3.3. R c A(n, d) is called a reduced system for X, if for every chirotope 
X' with X'[R = X[/~ we have X'=X. A minimal (with respect to inclusion) reduced 
system will be called a minimal system for X. Obviously (2) is equivalent 
to 

Given a minimal system M c A(n, d),  do there exist * h , . . . ,  ~l(,-d)d ~ R such 
that 

sign At ( . . . ,  ~/j . . . .  ) = x(A~) for all Ai ~ M?  (3) 

I f  we want to eliminate a variable v~ in some minimal inequality system 
{At < 0 (>0)}, we write 

Ai(vl, v2 , . . . )  = or" A~(O2 . . . .  )+Ri(v2,. . .) ,  

where R, and A~ = OAdOvt are homogeneous polynomials in v2, v 3 , . . . .  Since A[ 
is again a determinant expression arising from A(n, d) and X(A~) # 0 by assump- 
tion, we get one of the following inequalities for vi: 

(i) vl < - R d A ~ ( v 2 , . . . ) ;  
(ii) v l>-R /A~(v2 , . . . ) .  
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With this partition of  all determinants Ai containing vi in upper bounds (i) 
and lower bounds (ii) in general we obtain new inequalities 

(iii) - R j /  A~(v2 . . . .  ) < - R , /  A~( v~ . . . .  ) 

for all upper bounds A~ and lower bounds A~. In the case of only one-sided 
restrictions for v~ no new inequalities (iii) occur. 

These new polynomial inequalities 

(iv) Pu := RjD~ - R~D~ > 0 (<0) together with the Ak not containing v~ form 
a new inequality system, such that the old system has a solution v~, v2, 
v3, •. • if and only if the new system has a solution v2, v3 , . . . .  

Since the Ptj are polynomials of higher degree, in general it will be impossible 
to continue this elimination successively. This is the crucial point why a general 
algorithm is not reached in this way. Therefore we restrict ourselves to the cases 
where either no new polynomials Po occur or all new polynomials are of  the 
form Pu = +Ak" At for  suitable Ak, AI ~ A(n, d). 

Example 3.4 (compare Example 3.1 with (/3)= (235)). The following reduced 
system defines a chirotope X: 

Table 1 

With Vl := (123) = v13, 

123+ 125+ 135+ 136+ 
146+ 156+ 234+ 235+ 
236+ 245-  2 4 6 -  256+ 
345 - 346+ 356+ 4 5 6 -  

we obtain 

A~:= 
I D1 v~3] and 

O61 D63 I 

Oil 012 013 I 

041 042 043 , 

D61 062 063 

l V41 042 
A~=-v6~ and A j =  v61 v6: ' 

and therewith 

A j - -  IV61 v621 v61 v6a 

Elimination of v~ yields the new inequality system in which (123), (136), and 
(146) do not occur. In the next section we develop a combinatorial calculus to 
describe and compute effectively eliminations of this type. 
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4. The Combinatorial Calculus 

Using the terminology of the last chapter, we begin with a theorem that describes 
the relationship between As ~ A(n, d) and its derivatives A~ =OAdOvj ~ A(n, d). 

Theorem 2. Interpreting A~ A(n, d) as a polynomial depending on the variables 
Va = {/3[/3il k], 1 <j-< d, k ~/3} via Theorem 1 and assuming (/3) = 1, A[kl/3j] := 0 

for k ~ A, we have 

Example 4.1. 
j = 2 ,  k=4:  

0(246) =0 v41 0 
/242 

0((235)[314]) /26, Vrz 

aA 
o(/3[/3jtk]) = A[kl/3j]. 

With the matrix V from Example 3.1, we have with A = (246), 

0 I 043 /0/242 = 

V63 ] 

/263 "~- 

1 0 

0 1 

V61 /262 

0 I = (236) = (246)[413]. 
1)63 

Furthermore, the above derivation rule yields 

0A 
=0 

0(/3[/3jlk]) 

if the variable fl[fl~lk] does not occur in the determinant A. 

Proof of  Theorem 2. fl[fl~lk] occurs in A if and only if ke  A and b~ A. If this 
is not the case A[kl/3~] equals 0. For k e A, b~ ~ A we use the quadratic Grassmann- 
H/ticker relation 

d 
(a)=(a)(#)= X A[Zjl#,], 

j= l  

compare [8]. Hence a(A)/a(/3[fJk])= A[kt/3~]. [] 

To eliminate a variable v ~ V, from the system as described in Section 3 we 
have to decide which A ~ A(n, d) gives rise to an upper bound (resp. lower bound) 
for v. 

It is 

¢=> 

¢=~ 

o r  

v > -  

( 0-~A+ R > 0 and 0A> 0~, 
A = v.  Ov 8v / 

( 0A+R <0 and0A<0~, 
A = v. Ov Ov / 

sign(A), sign( OA/ Ov ) = +1, 
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and 

~ k a r l  

sign(A), s i gn (~v )  = -1 .  

Hence given a d-chirotope X with n vertices we define for every v E Vo the 
sets o f  upper  and lower bounds as follows: 

~(v):= { A E A(n, d): x(A) " x (~v)  = - I  }, 

-~(v) := { A E A(n, d): x(A) " X(~v) = +I }. 

Here A, v, OA/Ov E A(n, d)  according to Theorem 2. 
Since X was assumed to be simplicial, °~(v) u ~ ( v )  is a disjoint union of all 

determinants containing the variable v. A pair (,4, B) of  disjoint subsets A, B c 
A(n, d) will be called bipartite if  I a n b t = d - 1 for all a E A, b E B. Especially, 
(A, B) is bipartite if A = O or B = 0 .  

Algorithm 4.2. 
Input: Simplicial d-chirotope X with n vertices. 

Output: Solvability sequence v~ . . . .  , va(,-a) according to a basis fl E A(n, d), if 
it exists. 

Remark: The exact definition of  a solvability sequence and a proof  of  the 
correctness of  this algorithm will be given in the next chapter. 

0. For all 13 E A(n, d) 
1. Initialize V:= V~, ~ : = A ( n , d ) ;  i :=(n-d)d  
2. I f  V = O: Stop. vl, . . . ,  V<,-d)d is a solvability sequence. 
3. Else: 

3.1. Is there a v ~ V and a minimal system R c A(n, d) such that  
( ~  n R n .~(v),  ~ n R n °//(v)) is bipartite? 

3.2. If yes: 
3.2.1. v~:=v; V:= V~{vi} 
3.2.2. ~ : =  ~ \ ( ~ ( v f ) u  ~//(v~)) 
3.2.3. i := i - 1  
3.2A. Go to 2. 

Given a basis/3 E A(n, d)  and a variable v = (/3)[/3ilJ], what does it mean 
geometrically that (R n ~ ( v ) ,  R n ~d(v)) is bipartite for a minimal system 
R c A(n, d)? 

Let there be given a hyperplane (A), A cA(n ,  d - l )  and fl~,j~A. 
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Y 

P 

Fig. 2 

301 

(A) separates/3i and j  ¢ ,  x ( ( ; t , j ) )  • x((; , ,  /3,)) = - 1 ,  

fa(A,y) '~ 
x((~,J))" x l , ~ )  = -1, 

¢~ (x,j)~ ~(v). 

In this sense ~Z(v) represents the separating hyperplanes o f j  and/3i whereas 
-~(v) represents the nonseparating hyperplanes. 

The pair (j, fli) is a contravariant (resp. covariant) pair in the terminology of  
Cordovil and Duchet [10] if and only if ~d(v)=O (resp. ~ ( v ) = O ) ,  a special 
case of bipartiteness that leads to the notion of  max-realizability in the next 
section. 

Let (o'1, • • . ,  Crd-2, p,j)  ~ ~t( V) and (or1,.. . ,  O'd-2, r,j) ~ .~( V). 
Clearly, a chirotope II with 

I I (A)=E(A)  if A ~A(n, d ) \ ( ~ ( v ) u . ~ ( v ) ) ,  

n(o-, p, j )  = -X(~r, p,j), 

n(~r, ~-,j)= -X(Cr, ~', j) ,  

£e(v) ~t(v) 

Fig. 3 

A 
W 
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cannot exist because of  the obvious contradiction to the chirotope definition in 
the hyperline image H/t~. 

Hence, if  (R n .~(v),  R n ¢/(v)) is bipartite, the interval of  j on the line j/3~ 
is nonempty in every realization of  the restriction o f x  to A(n, d)\(°tt(v) u ~(v)) .  
Emptiness o f  this interval contradicts the chirotope property by the above 
argument. 

5. Solvability Sequences 

Given a simplicial d-chirotope X with n vertices and a basis/3 ~_ A(n, d) and an 
ordering ( v . . . . ,  Vd(n-d) ) of the set of  variables V~ := {vl . . . .  , Yds.-d)}, we denote 

{ OA O f ° r j > i ]  ~ , Ai: = A~A(n ,d ) :0% 

The  sequence ( v , . . . ,  Vd(,-d)) is called a solvability sequence for X if the following 
condition holds. 

For all " 0 b . . . ,  ~t-i ~ R with 

sign A~(71, . . . ,  rli-l) = X1A .... 

there exists an ~Tt e R with 

sign Ai(~h • • . ,  ~i) =XIA,. 

In other words, every ~t can be chosen by simply considering those determinants 
that do not contain ~t+t . . . . .  ~Td<,-d). This "nonprospective" choice of  variables 
never ends in a blind alley in the case of  a solvability sequence. 

Remark. A chirotope that has a solvability sequence is realizable. 

Theorem 3. Algorithm 4.2 is correct, i.e., any generated sequence vt . . . . .  vd(n-a) 
is a solvability sequence. 

Proof. Let ~ t , . . . ,  ~ t - t e  R such that sign A t ( ~ l , . . . ,  ~a(n-d))=XlA,_, and Ate  
At n ~(v i ) ,  A2 ~ At c~ qg(vi), vi = fl[~k[j]. Because of  the bipartiteness we can 
assume that Al = (o'1 . . . . .  ~d-2, p,j) and A2 = (o"1 . . . .  , era_2, %j). Hence 

OA t ¢3A2"! 
A~. 0v-7- At " ~ J ( ' " '  n,,...)= [ ( ~ ) "  (~pa,)-(~pJ)" (~,a,)]( . . . .  n,,...) 

= [ ( ~ ' p )  " ( ' ~ J a ~ ) ] ( . .  • ,  n , , . . . )  

> 0  
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by the Grassmann-Pliicker relations (compare also Example 3.3) which means 
that an appropriate ~7~ ~ R with 

OA1 OA2 

can be found. Since this holds for all i = l , . . . , d ( n - d )  the sequence 
(v l , . . . ,  Yds,-d)) is a solvability sequence. [] 

The fact that Algorithm 4.2 finds a solvability sequence for a sufficiently large 
class of realizable chirotopes can be established by three arguments: 

The max-realizable chirotopes, as described below, already form an extensive 
subclass having solvability sequences. 

Several realizability-compatible point extension techniques from oriented 
matroid theory and convexity like principal extensions [14], stellar subdivisions 
and their derivatives are special cases of solvability sequences. 

A huge class of practical problems from polyhedral combinatorics has been 
solved by the above methods [4], [5], [7], [9]. 

Consider the following addition and multiplication among the integers 

r ~ s  := max{Irt, Ist}. sign(r+ s), 

r®s := max{lrl, lsl)" sign(r- s). 

Given an integer n x d-matrix A =  (a0) such that for a fixed /3 e A(n, d) the 
d x d-submatrix with row indices/3~,.. . , /3d is the d x d-unit matrix and that all 
other entries a~j, i ~/3, have pairwise distinct absolute values. Under these condi- 
tions the d-vector/~----aA according to the above operations ~ and ® is well 
defined. A chirotope X with X = sign A-'~aA for such an integer matrix A will be 
called max-realizable. 

Example 5.1. The matrix 

1 0 0  t 
1 0 
0 1 

A= 9 -5 1 
10 - 6  2 
11 -7  3 
12 -8  4 

induces the cyclic 3-chirotope with seven vertices X 7"3= sign 7~dA = +1 which is 
therefore max-realizable. It can be easily seen that all cyclic chirotopes, i.e., 
alternating oriented matroids, are max-realizable. 
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T h e o r e m  4. For every max-realizable d-chirotope X with n vertices, Algorithm 4.2 
generates a solvability sequence. Hence X is realizable in the ordinary sense. 

Proof Let X := sign A--dA where 13 E A(~, d) is the corresponding basis. We order 
the variable set Vo = {vl . . . .  , Vd(n-d)} with respect to increasing absolute values 
of the corresponding entries in the matrix A. Then the max-realizability of X 
means that in the notation of  the proof  of  Theorem 3: 

X(V j )=+l~A ic~  °ll(vj)=O and 

x(v,) = - I ~ A ,  n ~ ( v , )  = O .  

Therefore Algorithm 4.2, using the basis/3, finds a trivial bipartite partition in 
every step. [] 

Let X be a d-chirotope with n -  1 vertices. A chirotope X' with n vertices is 
called a principal extension of  X if 

t 

X IA(n,d-l) -- X, 

and for a basis/3 E A(n, d) and some ordering of  variables {v~, . . . ,  Vd(n-d) } with 

{Dd(n_d_l)+l . . . .  , Vd(n_d) } = {~[~,[n], i=  I , . . . ,  d}, 

we have 

~(v~)=O or ~ ( v j ) = O  f o r j = d ( n - d - 1 ) + l , . . . , d ( n - d ) .  

This definition is a reformulation of  the definition of Las Vergnas [14] or Billera 
and Munson [2] for oriented matroids. Clearly, X' is realizable if and only if X 
is realizable. This type of  problem reduction will be carried oiit by Algorithm 
4.2, too. In that sense, inductive principal extensions of  the simplex are special 
cases o f  max-realizable chirotopes, indicating the richness of this class. 

Furthermore, let us mention that several standard extension techniques from 
convexity like stellar subdivisions [11], pulling the vertices or the concept of  
strong coverability [ 1 ] can be expressed in terms of solvability sequences as well. 

Problem. Does there exist a realizable chirotope X without solvability sequence ? 

Although it seems likely that those configurations do exist, no example is 
known to the authors)  

If Algorithm 4.2 has found a solvability sequence, the realizability of  the 
corresponding problem can be proved in the most constructive way, namely, by 
exhibiting coordinates. Nonrealizability proofs, however, need more efforts and 
it is not possible to construct obvious contradictions with the described algorithm. 
Nevertheless the problem reduction by passing over to a minimal system and 
deleting at least some variables can be very helpful for nonrealizability proofs, 
too, compare [6]. 

2 In the meantime Jiirgen Richter from Darmstadt gave an example with 13 points in the plane. 
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6. The Isotopy Property 

The isotopy problem, posed again by Goodman and Pollack in 1984 [18], deals 
with a very natural question concerning point configurations in euclidean space. 
Although it is still open for the general case, a proof for the isotopy property of 
configurations with solvability sequence will be given in this chapter, showing 
an interesting connection between realizability and isotopy problems. 

Let M(n x d, R) denote the topological space of all real n x d-matrices with 
the canonical topology. The map Aa is an imbedding of M(n x d, R) in the dth 
exterior power Ad Rn of R ". For every chirotope g let 

~7 x := {E e AdR", sign E = g}. 

Conjecture 6.1 (Isotopy Problem) [ 18 ]. For every simplicial chirotope X the topologi- 
cal space A d M  ( n x d, R) n ~x, also called realization space of X, is path connected. 

In other words, two equivalent nondegenerate point configurations can always 
be deformed into each other in a continuous way whilst keeping the corresponding 
chirotope. 

Theorem 5. For every simplicial chirotope X with solvability sequence the space 
AuM(n x d, R) n ~7 x is contractible, hence path connected. 

Proof. We shall construct a homeomorphism 

~ :  (0, 1)~(n-a)-~ AdM(n x d, R) n tT~. 

Let v~, . . . ,  va(n-a) be a solvability seuqence o fx  according to the basis f le  A(n, d) 
and A ,  ~(vi),  ~(vi) c A(n, d) as before. Every A~ A~ will be interpreted as a 
homogeneous polynomial A(v~,. . . ,  vi). We define continuous functions f~ and 
g~ in i -  1 variables. 

f~(v l , . . . ,  v~_~):=min{-A(v~,.., v~_~, 0 ) / a A ( v ~ , . . .  v~_~): AE 0g(vi) } 
' / O v i  ' 

gi(v~,., v~_~):=max{-A(vl,. . . ,  vH, o ) /OA(v~ , . . ,  vi-1): AE~(v~)} 
• ' I 0  v i  ' ' 

which describe the upper and lower bound for vi if the Vk, k < i, are already 
chosen. Since we have a solvability sequence, f~ > gi whenever v~ . . . . .  vH realizes 
XlA,_,. 

Let h(t; a, b) for a, b e R u { - o o ,  oo}, tE(0, 1) be a real-valued continuous 
function such that 

l i m h ( t ; a , b ) = a  and l imh( t ;a ,b)=b.  
t -~  O t "~  1 
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Using this function we can construct the desired homeomorphism between 
(0, 1) d~"-a) and the realization space of  X as 

~'.  (0, 1) d(n-d)-> A d M ( n  × d )  c~ ~ x ,  

( t t  . . . . .  t a ¢ , _ a ) ) ~ *  A ( n ,  d ) (  v ~ , . . . ,  v a ~ , - a ) ) ,  

with 

v~ := h (  t i;  g , (  v , ,  . . . , V a ( n - a ) , f (  v , ,  . . . , Va~n-a) )  ). 

Note that if we consider ~f as a mapping ~ :  (0, 1)a<"-a)--> AdM(n x d, R ) ,  

is a homeomorphism onto its image Im Yf for every chirotope X. I f  v~ . . . .  , v a ~ , - a )  

fails to be a solvability sequence, however, Im ~ will exceed ~ .  [] 
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