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Abstract. We consider the class of all convex discs with areas and perimeters
bounded by given constants. Which disc of this class has the least possible area
deviation from a k-gon? This and related questions are the subject of the present

paper.
1. Introduction
By a convex disc we mean a convex compact subset of the Euclidean plane with
interior points. In this paper we shall deal with the approximation of convex
discs by convex polygons. There are several methods of measuring the deviation
between two convex discs. The following are two of the most usual methods. We
write a(M) and p(M) for the area, i.e., the Lebesgue measure, and the perimeter

of the set M. If X and Y are convex discs, the area deviation between X and Y
is defined by

54X, Y)=a(XuY)~a(XNnY), ¢))
and the perimeter deviation by
(X, )=p(XuY)-p(XnY) 2
Equation (1) may also be written in the form
84(X, Y)=a(XAY),

* Dedicated to Professor E. Hlawka on the occasion of his birthday.
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where

XAY=(X\Y)u(Y\X)

is the symmetric difference of the two sets. Note that §” makes the class of all
convex discs into a metric space, but 87 does not. Various concepts of deviation
of two convex bodies are discussed in [17]. Gruber [14] gives an up-to-date
review of the results concerning the approximation of a convex body by polytopes.
The approximation of convex discs by convex polygons is of interest by itself.
Moreover, it is important in its application to problems of packing and covering
(see [3, 5, 6, 8-11, 13]).

Throughout this paper let a and p be positive numbers satisfying the
isoperimetric inequality

v
>
3

e

Let €(aq, p) be the class of all convex discs with area not less than ¢ and perimeter
not greater than p. A convex polygon with at most k sides is simply called a
k-gon. Let 2, denote the class of all k-gons. Two measures for the closeness of
the approximation of k-gons to discs from %4{a, p) are given by

A*(a, p, k) =inf 8*(C, P) (3)
and

A% (a, p, k) =inf 8" (C, P), 4

where the infimum is taken over all C € 4(a, p) and all P e P,. Both functions
are interesting only in the case when

2

P 4k tan 3, (5)
a k

which means that p is less than the perimeter of a regular k-gon of area a.
Otherwise we have %(a, p) n P, # O, so that A*(a, p, k) =A"(a, p, k) =0.

By combining some results from [2], [5] we shall ohtain A”(a, p, k) in Section
2. Using ideas of Besicovitch [1], Eggleston [2], and Fejes Téth and Florian [5]
we will find the supremum of a(C ~ P) taken over all C € €(a, p) and all k-gons
P of a given area; this is the subject of Section 3 and the main part of this paper.
In Section 4 we will apply the results of Section 3 to determine those members
of €(a, p) and %, for which 6*(C, P) is minimal.
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2. The Perimeter Deviation

According to a remarkable result by Eggleston [2], the perimeter deviation of a
given convex disc from an arbitrary convex k-gon is minimal for a k-gon inscribed
in the disc. Thus we have

AP(a, p, k) =inf 8"(C, P) (Ce%(a,p), Pe P, PcC). (6)

Before we state the result, we need to describe a certain geometrical configura-
tion. Let P* be a regular k-gon. We join each two consecutive vertices of P* by
congruent circular arcs of radius not less than the circum-radius of P*. These
arcs form the boundary of a convex disc C* which we call a regular arc-sided
k-gon with kernel P* (Fig. 1). If (5) is satisfied it can be shown (see [5]) that

(i) there is exactly one regular arc-sided k-gon C* with area a and perimeter
p, and

(ii) the infimum on the right-hand side of (6) is attained only for C* and its
kernel P*.

Hence
AP(a, p, k)= 87(C*, P*). (7

A simple expression for 87(C*, P*) can be obtained in the following way
(see [5]). Let 2a be the central angle of the circular arcs bounding C*, where
0<a=w/k We define a function ®(q) by the parametric equations

2

a a —sin a cos a T
(D(q)_sinz o = sin® & (0<a5k> (8)

for 0<gq=g, where § corresponds to a=m/k, and put ®(0)=1. Elementary
calculation yields the equation
p’ o @(q)

24k z
g esin Sl k) + q sin(ar/ k)’

&)

p* C*

Fig. 1
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which has a single root q € (0, §]. Since p(P*) =(p sin a)/ a, we finally conclude
that

87(C*, P*)=p(1—(®(q))™"%). (10)

3. A Maximum Problem

Let ?.(a,) denote the class of all k-gons of given area a,. In this section we
shall deal with the following

Problem. Find a member of €(a, p) and a member of %, (a,) such that their
intersection has the greatest possible area.
Accordingly we introduce the function

M(a, p; k, @) =max a(C ~ P), (1)

where the maximum is to be taken over all discs C from €(q, p) and all k-gons
P from P.(a,). The existence of the maximum follows from the Blaschke selection
theorem.

In the particular case when p®/a =4, the class €(a, p) consists only of the
circle of area a, Fejes Téth [7] showed that the intersection of a given circle C
and a k-gon P of given area has maximal area if P is regular and concentric
with C; for alternative proofs of this “momentum lemma” see [4], [12], [15].

In certain cases the solution to our problem can be deduced from two previous
results which we now recollect.

Let the function f,(a, p, k) be defined by

2 1 2

14 L P R
-— if —< 47t
47t O(q) a >
flapky={" 5 1 , (12)
£ it L=4m,
441t a

where t = t(k) = (k/ ) tan(w/ k), and ®(q) is given by (8). Let C be a disc from
%(a, p) and P a k-gon with Pc C. It was proved in [5] that

a(P)=fi(a, p, k), (13)

with equality if and only if either C is a regular arc-sided k-gon of area a and
perimeter p, and P is the kernel of C (p?/a <4mt), or C = P is a regular k-gon
of perimeter p (p*/a = 4wt). By (13) we have

M(a, p; k, ag) = a, if ao=fi(a,p k), and

(14)
M(a, p; k, ap)<a, if fi(a,p, k) <a,.
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Hence in the following we can assume that a,> fi(a, p, k).

Let x be a convex disc with in radius r. X_, (0<p <r) denotes the inner
parallel domain and X, (0 < p) the outer parallel domain of X at distance p. If
P is a regular k-gon, we call a set of the form (P_,), a smooth regular k-gon with
case P (Fig. 2). It will be convenient to consider both P and its in-circle as
degenerate smooth regular k-gons with case P. The corresponding values of p
are 0 and r.

We define the function F(p, k, a,) by

2

: P
f ag<t—
o W00 gt
_)pVagmt—p*/a—am . p* _ _p’t
F(psk’a())'—( (t"l)ﬂ' lf 4"7!‘—“0—41{; (15)
2 2
. t
p it 4 <o

Let C be a convex disc of perimeter not greater than p and P a k-gon from
Pi(ay) with C < P. Fejes Téth ([6] or [8, p. 175]) proved that

a(C)=F(p, k, ao). (16)

Let p*/ 4t < ay < p*t/ 4. Then equality holds in (16) if and only if C is a (possibly
degenerate) smooth regular k-gon with perimeter p, and P is the case of C.

Let C be a disc from €(a, p) and P a k-gon with C < P. Since F is a strictly
increasing function of a, for 0< ay= p*t/4, it follows from (15) and (16) that

a(P)=fy(a, p, k), (17)
where

2
L (p—V(p*—dam)(1—-t"")? if P 4m,
4 a
‘f2(a1 p! k)= ) (18)
.~ P
a if —‘1—241Tt.

-]

(P-,),

Fig. 2
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If p’/a=<4xt and a(P)=fy(a,p, k), then C is a (possibly degenerate) smooth
regular k-gon of area a and perimeter p, and P is the case of C. Thus, by (18)
we have

fla,pk)=a (19)
and

M(aa pa k9 a()) =a if ag Zfz(as pa k)~ (20)

Returning to our problem, we distinguish the cases p>/ a <4t and p*/a = 4w,
and begin with the simpler

Case (a). p°/a=4mt
From (12) and (18) we see that

fa,p, k)= fila, p, k).
Let ao> f\(a, p, k), and let C and P be members of 4{a, p) and P,(a,) such that
a(Cn P)=M(a, p; k ao). (21)
Inequalities (13) and (20) imply that P C and
a(CrnP)z=a (22)
We shall see in the proof of Theerem 1 (Lemma 4) that, whenever (21) together
with the assumptions P# C and C & P are satisfied, then a(C)=a, whence
a(C n P) < a. By (22) this last inequality is impossible. Thus we conclude that
C < P, and from (16) and (21) it follows that
a(Cn P)=F(p, k, a,). (23)
Equations (14) and (23) can be summarized in
Remark 1. If p?/a =4t we have

M(a, p; k, ag) = F(p, k, ao).

From the suppositions (21) and p?/4mt=<a,=<p’t/4n it follows that C is a
(possibly degenerate) smooth regular k-gon of perimeter p, and P is the case of C.

Case (b). p*/a<4mt
Because of (12) and (19} we obtain the inequality

fila, p, k) <fxa,p k), (24)

which is contrary to case (a).
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Letay= fy(a, p, k), and let C € €(a, p) and P € P, (a,) satisfy (21). By repeating
the argument used in case (a) we again come to the conclusion that C is contained
in P and that (23) holds in case (b) as well.

Remark 2. If p?/a<4mt we have

) if aOS.fl(aa P k)s

M(a, p; k, ao)={
F(p, k ag) if fi(a,p k)=<a,.

From (21) and a,=fi(q, p, k) it follows that C is a regular arc-sided k-gon of

area a and perimeter p, and P is the kernel of C. From (21) and fy(a, p, k) s a;=

p°t/4= it follows that C is a (possibility degenerate) smooth regular k-gon of

perimeter p, and P is the case of C.

We now proceed to find the maximum of a (Cn P) with Ce %(aq, p) and
Pe P (a,) in the more difficult case when

fila, p, k) <ao<fya,p, k).

To describe the extremal configuration we consider the outer parallel domain C
of a regular arc-sided k-gon at some distance p. We first assume that C is not a
circle. Then C is bounded by k equal circular arcs of radius 7 and k equal circular
arcs of radius r, where 7 < r. The lines joning the endpoints of every arc of radius
r enclose a regular k-gon P which we call the central k-gon of C (Fig. 3). By a
central k-gon of a circle C we mean any regular k-gon concentric with C.

Theorem 1. Let

(1) fl(aa D, k)<a0<f2(a’ D, k)
P
4 N
C
A\ y.

Fig. 3



248 A. Florian
and let C and P be such members of €(a, p) and ?;(a,) that
(ii) a(C n P)=M(a, p; k, a,).

Then C is an outer parallel domain of a regular arc-sided k-gon, and P is
the central k-gon of C. Furthermore, C has area a and perimeter p.

We shall, in fact, prove Theorem 1 by making the weaker assumptions (ii} and
(iii) Ce P, Pz C

instead of (i) and (ii). Theorem 1 together with Remarks 1 and 2 solve the problem
set at the beginning of this section. Observe that a regular arc-sided k-gon and
its kernel as well as a smooth regular k-gon and its case may be regarded as a
degenerate parallel domain of a regular arc-sided k-gon and its central k-gon.

Proof of Theorem 1. Let C and P satisfy suppositions (ii) and (iii). We will
develop the properties of C and P in the following 12 lemmas. The last lemma
shows that C and P correspond with the statement of our theorem.

First, we remark that by (ii) and (iii) there is a vertex of P outside C, and
there is a side of P intersecting the interior of C.

Lemma 1. P has exactly k vertices.

Proof. Suppose that P has fewer than k vertices. Let A, be a vertex of P outside
C, and let AA,., be a side of P containing interior points of C. We cut off from
P a sufficiently small triangle with vertex A; and displace AA;., toward the
exterior of P such that the new k-gon P’ obtained from P by this process has
area a,. Then we have

a{(CnPYy>a(CnP) 2%5)
in contradiction to assumption (ii). O

We denote the vertices of P in the anticlockwise sense by A,, A,, ..., A, and
set Ak+1 = Al N Ao = Ak.

Lemma 2. No vertex of P lies in the interior of C.

Proof. Suppose that A, is outside C and A, is an interior point of C. Let the
side A,A,; rotate in the clockwise sense about a point between A, and A, such
that the new k-gon P’'= A]A}A, -« A, has area a,. If the angle of rotation is
small, A] is exterior to C and Aj; is an interior point of C. This again leads to
inequality (25).
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Suppose that A, lies on the boundary and A; in the interior of C. Let the side
A, A, rotate about A, in the clockwise sense through a small angle into the new
position A; A} with A} in the interior of C. If A, is one of the vertices outside C
we displace A;A,.; toward the interior of P such that the k-gon P’ finally obtained
has area a,. Since P’ satisfies (25), the supposition was wrong, and Lemma 2 is
proved. 0

We shall use the symbol AB to denote both the segment AB and its length.

Lemma 3. (a) A side A|A, of P that contains interior points of C meets the
boundary of C at points U,,, U,,, where U,, is between U,, and A,, such
that

AU = UpA;. (26)
(b) Any side A;A;.. of Pintersects C at the points of a segment U,, U,, such that
(]il IJi2 - Ull Ul2

= 2 27
AiAi+1 AIAZ ( )

Proof. (a) Suppose that, contrary to (26),
AU, > UpA,. (28)

This implies that A, is outside C and
MU, < MU,,, (29)

where M is the midpoint of A,A,. Let A, A, rotate in the clockwise sense through
a small angle ¢ into the new position AjAj, such that P'= A{A}A; - - - A has
area ao. The segments A, A, and A}A) intersect at, say, M'. Denoting the triangle
with vertices X, Y, Z by XYZ, we have

a(CAPY)—a(CnP)=a(CnMAA)—a(Cn MAA]. (30)

If M’ is outside or on the boundary of C, then a(Cn M'A,A})>0 and
a(Cn M'A,A}) =0, so that P’ satisfies (25). Thus we can assume that M’ is an
inner point of C. Since M’ approaches M as ¢ tends to zero, M belongs to C
and we obtain

. a(CoM'AA) MUY,
0 a(CnM'AAY) MU,

From (29), (30) and (31) we see that P’ satisfies (25) if ¢ is sufficiently small.
Because (25) is impossible, part (a) of Lemma 3 is proved.

(b) It suffices to show (27) for 2=<i=k—1. We displace the side A;A; of P
outward parallel to itself through a small distance 7,>0. Let P'= A1A} - - A}
be the new k-gon, where A) = A, for j=3,..., k. From P’ we obtain the further
k-gon P” by displacing the side A]A},, inward parallel to itself through a small
distance 7,<0, such that a(P")=a,. Write P"=A{--- A} with Af=A] for
J#1i,i+1. We shall use the notations

CAP=S, CnAP=8, CnpP'=§ (32)

@31
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and note that S« §' and §” < §’. From the definitions of P’ and ' we obtain the
relations

im 8E0=aP) _ 4, A8y (33)

m=>0 T m>0 ™
Because A'Al, = AA;.,, we have

a(P)—a(P')=a(P")—a(P)=3(A[Aj, + AlAL)n,
<3iAA . 1,<0. (34)

Together with lim,, ., a(P’) = a(P) this implies that

lim n,=0. (35)

PN
By the definitions of P’ and P” there are constants v, and v, such that
AlALa=AAg+tym,  AlALL=AlAL . (36)
From (33) to (36) we deduce that

li M2 _ AlA;
im — = —~———

. 37
m=>0 1, AAi (37)

Observe that the intersection of C with AA;,, is nonempty. Otherwise we
would have

a(8"y=a(S")> a(8)

if %, is sufficiently small, and this contradicts the maximum property of P. Thus
Cnr AA;;, is a segment, say U, U,. We now proceed to prove that

. a(8)-a(s")
m -

1 =—UyUp. (38)
m>0 72
By (32) we have
a(8")—a(8")=a(S"\8")=a(C n(P\P"). (39)

Decomposing P\ P” into two disjoint sets according to

P\P"=[(P\P")n PJU[(P\P")(P\P)], (40)
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we distinguish two cases. In both we assume, as we clearly may, that %, is
sufficiently small.

(a) If i=2 then (P'\P")n(P'\P) is a parallelogram with sides A,A} and
ALA5. Hence

a[(P'\P")n (P'\P)]=O(mm,). (41)
(B) If i>2 then
(P\P")n(P\P)=0. (42)

Let [ be the line joining A; and A,,,, and let L(7,) be the parallel strip bounded
by [ and the line through A} and A7, ,. Let s(x) denote the length of the intersection
of C n P with the line parallel to / at distance x>0 from . Then we have

a[CH PN (P\P")]=a[Cn Pn L(n)]=—n5(x) (43)
for some x between 0 and —7,. Because lim s(x) = U;, U, as x tends to zero, the
required equation (38) follows from (35) and (39) to (43).

Supposing the contrary to (27), we obtain by (33), (37) and (38) that

a(S')—a(S") _ Uy Uz /Ai Aiy

= <1
"llr'po a(S’)—a(S) U Ui, /A A, ’
which implies by (32) that
a(CnP")>a(Cn P). (44)

The contradiction of (44) to assumption (ii) of Theorem 1 completes the proof
of part (b). O

Corollary 1. Any side of P intersects C at the points of a segment of positive length.
A side of P which intersects the interior of C has its endpoints outside C.

Following the notation used in Lemma 3 we shall constantly denote the points
at which the side A;A;;, meets the boundary of C by U;; and U;,. The points
Uy, U, . .., Ui, Uk, are round the boundary of C in the anticlockwise sense.

In the proofs of the above lemmas C is a given convex disc and P runs through
the class P(a,). In the proofs of the following seven lemmas P is a given k-gon
while C varies on €(a, p).

Lemma 4. p(C)=pand a(C)=a.
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Proof. If p(C)<p we choose p>0 such that p(C,)<p. Thus C, belongs to
%(a, p). Since the boundary of C intersects the interior of P we have

a(C,nP)>a(CnP)

in contradiction to the maximum property of C.
Suppose that a{C) > a. Since there are interior points of C outside P, we can
find a proper convex subset of C, say C’, such that C’ is a member of €(aq, p) and

a{C'nP)=a(Cn P).
Because p(C’) <p this is impossible. O

Lemma 5. Suppose that the side A, A, contains interior points of C. Let s, be the
arc on the boundary of C between U,, and U,,, which is outside P. s, is a circular
arc.

Proof. Let ¢ be the circular arc on the same side of the line A A, as s, that has
endpoints U,; and U,, and the same length as s;. Let us assume that 5,7 c.
Denoting the convex hull of the set M by conv M and the (not necessarily
convex) disc (C\conv 5,) U conv ¢ by D we have

p(D)=p(C), a(Dn P)=a{CnP). {45)

We now refer to the well-known fact that the area of a convex disc which is
bounded by a given straight segment and an arc of given length attains its
maximum if and only if the disc is a circular segment. Thus

a(conv s,) < a(conv ¢), (46)
whence
a(D)> a(C). (47)

From (45) and (47) it follows that C' = conv D belongs to %(a, p) and
a(C'nPy=a(CnP).

By (47), however, we have a{C’)> a, which contradicts Lemma 4. Thus the
assumption s, # ¢ was wrong and Lemma 5 is proved. ]

Lemma 6. C is strictly convex.

Proof. Suppose that the straight segment V, V; is part of the boundary of C. Let
S be a circular segment of C\P, the chord of which has length less than V,V,.
We cut S off from C and join it to V;V,, obtaining a nonconvex disc D with
a(D)=a(C), p(D)=p(C) and a a(D P)=a(C r P). Then C'=conv D has
the properties
p(C)<p, a(C’)>a
and
a(C’'nP)=a(CnP)

in contradiction to Lemma 4. Thus Lemma 6 is proved. g
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From Lemma 3, Corollary 1 and Lemma 6 we infer
Corollary 2. (i) Every vertex of P is exterior to C.

{(ii) Every side of P intersects the interior of C.

(iii) AUy = UpAiyy for i=1,...,k (48)
. UnUp,  UalUe
(iv) _—A:Az =...= —AkAl . (49)

Lemma 7. Let s; be the circular arc on the boundary of C between U, and U,,,
which is outside P. s; is less than a semicircle, fori=1,..., k

Proof. Suppose that s, is greater than or equal to a semicircle. Let ¢; and t, be
the tangent lines to s, at Uy, and U,,, respectively. By (48) and (49) the segments
U, U,, and Uy, U, are parallel. Since C is contained in the set bounded by s,,
1, and t,, s; is at most a semicircle. In this case U,, lies on £, and U,; on ;.
Thus A, and A, are separated from C by #,, showing that the sides A;A,, ..., A4,
do not intersect C. But by Corollary 2(ii) this is impossible. O

Lemma 8. The circular arcs s,, ..., s considered in Lemma 7 have the same
radius, say r.

Proof. Suppose that s, and s, have different radii. Let ¢, and ¢, be two chords
of the arcs s, and s,, other than U,,U,, and U,, U,,, and having equal lengths.
Let s} and s} be the respective subarcs of s, and s,. From C we obtain a new
disc, say D, by exchanging the positions of the circular segments conv s; and
conv s5. This means that we cut them off from C and join them to ¢, and ¢,
respectively. Obviously,

p(D)=p(C), a(D)=a(C), a(DnP)=a(CnP). (50)

Since s, and s, have different radii and ¢, # U, Uj,, ¢, # U, Uy, D is not convex.
Thus by (50) we have for C’'=conv D

C’e €(a, p), a(C") > aq, a(C'AnPy=a(CnP). (51)
The contradiction to Lemma 4 proves the lemma. d

Lemma 9. Let §; be the arc on the boundary of C between U,.., , and U,,, which
is contained in P, fori=1,...,k
(i) §; is a circular arc,
(i) the arcs §,,..., § have the same radius, say f;
(iii) if r is the radius of the arcs considered in Lemma 8, then

F=<r (52)
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Proof. (i) Let V,, V, be two distinct points of §,= U/,szz, other than U,; and
U,;. In order to show that &, is a circular arc it suffices to prove this for the arc
V/ﬁ’z Observe that Vl V, has positive distance, say d, from the boundary of P.
We cover Vl V, by a finite number of its subarcs such that each of them overlaps
the following and has length less than d. By Lemma 6, not one is a straight
segment. If any of these subarcs is not a circular arc, we replace it by a circular
arc ¢ of the same length in exactly the same way as in the proof of Lemma S.
By construction, the convex hull of ¢ is contained in P. We obtain a (not necessarily
convex) disc D with

p(D)=p(C), a(D)> a(C), a(Dn P)>a{Cn P).

Thus C'=conv D sati;ﬁ\es (51) which is impossible. Hence each of the subarcs
is circular, and so is V, V.

(ii) Suppose that §, and §, have different radii. We obtain a nonconvex disc
D satisfying (50) by exchanging the positions of two small circular segments,
the arcs of which are part of §, and §,, respectively. Since the proof is quite
similar to that of Lemma 5 we omit the details.

(iii) Suppose that 7> r. Similarly, as in the proof of Lemma 5, we exchange
the positions of two small circular segments, the arcs of which are part of §, and
5,, respectively. We obtain a nonconvex disc D with p(D) = p(C), a(D)=a(C),
and a{Dn P)> a(C n P). Hence C'=conv D satisfies {(51), and the proof of
Lemma 9 is complete. O

We next prove that C has a smooth boundary.
Lemma 10. Through every boundary point of C there passes exactly one support line.

Proof. Let t and { be the tangent lines to the arcs s, and §, at U,,. To prove
Lemma 10 we have to show that ¢ = . Suppose that ¢ 7. Let XY be a chord of
C parallel to f, where X lies on §, and Y on s, (Fig. 4). We denote the convex

S
A Unfg Y TNUn gy,

Fig. 4
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hull of @ by S,, the angle between XT and the arc )?I\Ju by XX, and
the angle between YX and the arc YU, by X Y. Let VW be a subarc of 8,
contained in the interior of P and such that VW = XY. Write S, for the convex
hull of V/W, and XV for the angle of S, at the vertex V. By exchanging the
positions of S, and S, we obtain the sets T, and T,, which are congruent to S,
and §,, respectively.

If the segment XY has a sufficiently small distance from 7, the following
conditions are satisfied:

(i) X<V,
(ii) SlﬁS2= Tlﬁ T2=®;
(iii) T,<P.

Since ¢ f, we have X V<xX, and by (i) £ V<X Y. Hence
< S, {53)

By cutting S; and S, off from C and replacing them by T, and T, we obtain a
nonconvex disc D with

p(D)=p(C), a(D)=a(C).
By using (ii), (iii), and (53) we find

a(DNnP)=a(CrP)—a(S;nP)—a(S;n P)+a(TynP)+a(T,n P)
=a(CnP)+a(S\T,)-a((S\T:)n P)
=a(CnP),

which shows that C’ = conv D satisfies (51). Thus the supposition ¢ # f was wrong,
and Lemma 10 is proved. O

In the case when 7= r all the arcs s;, §, (i=1,..., k) have the same radius.
Lemma 10 shows that C is a circle. By (48) P is inscribed in a circle concentric
with C, and from (49) it follows that P is regular, as stated in Theorem 1. By
(52) we can from now on suppose that

F<r, (54)

We shall denote the center of the circle to which the arc §; belongs by M,, for
i=1,...,k

Lemma 11. P,=M, - - M, is a convex k-gon inscribed in a circle that has its
center O in the interior of Py. Let C, be the convex disc obtained from P, by joining
each two consecutive vertices by circular arcs of radius r—7. Then C is the outer
parallel domain of C, at distance f. P and P, are homothetic with respect to O.
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Proof. Let O, be the center of the circle to which s, = ﬁ:ﬁ,z belongs. By (48),
O, lies on the perpendicular bisector b of the segment A;A,. In view of Lemma
7, O, and the k-gon P are on the same side of the line A, A,. From Lemma 10
and (54) it follows that M, is between O, and U,,, and M, between O, and U,,.
Because M, U,, = M,U,, =, we see that M, M, is parallel to A,;A, and

MM, 7
—m ] -, 55
Un Uy, r (53)

Writing U,, U,/ A1 A; = g, we have by (49)

UaUs;

AAL for i=1,...,k (56)

and by (55)

MM, < r‘)
—_—t={1--]g
AA; 4 (57)

Since M; and M, are symmetric with respect to b, the lines A;M,; and A, M,
intersect at a point, say O, on b. Hence OA,; = OA,. Because M|M,<AA,, O
and P are on the same side of the line A;A,, and the line M, M, separates O
and A, A,. Equation (57) implies that

A

OM, = OM, = (1 —;’)q- OA,. (58)

In the same way it can be shown that the lines A,M, and A;M; intersect at a
point, say O’, on the same side of the line A,A, as P such that O'A; = O’'A,; and

AN

O'M;=0'M,= (1 —i;) q- O'A,. (59)

From (58) and (59) we infer that O'= O, OM, = OM, = OM;, and OA,= OA,=
OA;. By applying this argument to A;A,, ... we conclude that

OM,=---=0M, (60)

and
OA, == 0A,. (61)

By (58) P, is obtained from P by homothety of center O and ratio (1—7/r)q. In
view of the construction, O is an inner point of P, Since OM,<O,M,, the
circular arcs of radius r— 7 joining each two consecutive vertices of P, form the
boundary of a convex disc C,. C is the outer parallel domain of C, at distance
7 as required. a
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The following lemma completes the proof of Theorem 1. We shall use the
same notation as in Lemma 11.

Lemma 12. P is regular.

Proof. 1t suffices to show that
A1A2 = A2A3. (62)

The segments OA, and OA; meet the boundary of C at two points, say A}
and Aj, belonging to §; and §,, respectively. Observe that by (60) OA]= OAj,
and by (61) OA,= OA,. Thus A;A; and AjAj have the same perpendicular
bisector ¢ passing through O. Write X' for the convex set obtained from the
convex set X by Steiner symmetrization about the line ¢ If T denotes the triangle
A,;A3A,, then P'=(P\T)u T’ is a k-gon which is, by (61), convex. Since a(T*) =
a(T), P’ is a member of P, (a,).

The chord AjA} dissects C into two convex subsets. Let C, be that subset
which contains the arc §,. Since a(C}) = a(C;) and p(C}) = p(C,), the (possibly
nonconvex) set D= (C\C;)u Cj has the properties

a(D)=a(C), p(D)=p(C). (63)
We proceed to show that
a(DnP)Y=a(Cn P). (64)

Let [ be any line perpendicular to & We have to consider three possible cases:

(i) ! meets the interiors of C; and T. Denoting the length of the segment s
by |s| we have

HACAPl=|InCn Ti=min{{ln Cy|,|InT}}
=|InCinT'I={InDn P (65)

(ii) I meets neither the interior of C; nor that of T, Then
HACAP|=|{iInDnPY|. (66)

(iii) I meets either the interior of C; or that of T. Let t; and t; be the tangents
to §, and §, at A} and A} respectively. 1, 1,, A;A; and AjA] enclose a
(possibly degenerate) trapezium S that is symmetric with respect to ¢
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(see Figs. 5 and 6). Because OA,A; is contained in P, so is S. Since ¢,
and t; are support lines of C, S contains the intersection of C with the
parallel strip bounded by the lines A;A; and AjAj. Thus, if | meets the
interior of C; we have

HACAP=InCl=linC|=lInCi=|lnDn P, (67)
and if [ meets the interiorof T
HACAP|=|InCl=lInCAT|=|InDNP]| (68)

Now (64) follows from (65) to (68).
By (63) and (64), C’'=conv D is a member of €(a, p) satisfying

a{(C'nP)za(CnP). (69)

In view of supposition (ii) of Theorem 1 equality holds in (69). Using Lemma 4
we obtain from (63) that

p=p(C)=p(D)=p(C)=p,

Iy

AS A’3\

Fig. 6
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and p(D) = p(C) implies that

p(C1)=p(Cy). (70)

Since C,; is not contained in a line perpendicular to t we conclude from (70)
(see [16, p. 208]) that C, is symmetric with respect to a line ¢’ paraliel to t. Since
A} A} is symmetric with respect to ¢t we see that t'=t. By (49) the lines U,,Us,
and U,, U,, are perpendicular to . Hence U,, and U,, as well as U,, and U,,
are pairs of symmetric points, so that

Uy U= Uy U (71

Equation (62) follows from (71) and (49). This completes the proof of Lemma
12 and that of Theorem 1. d

Let C be a parallel domain of a regular arc-sided k-gon, and let P be the
central k-gon of C. We conclude this section by showing that C is uniquely
determined by the parameters a(C)=a, p(C)=p, a(P) = a,.

Let C=(C,),, where C, is a regular arc-sided k-gon, and let a(C)=a and
p(C)=p be given. If a(C,)=a,, p(C,)=p,, and 2« is the central angle of the
arcs bounding C,, we have by (9)

(72)

g and ®(q) are given by (8), and u = cot(w/ k). The discs C form an array joining
the smooth regular k-gon, corresponding to a =0, with the regular arc-sided
k-gon, corresponding to @ = a*, where q = g(a™) is determined by (8) and (9).
By applying Steiner’s formulas to (C,), we obtain from (72) that

_ (| (p’—dam)®
p(a)_Zw(P (D—-vr(u-i-q)/k)' (73)

Differentiation yields

Jp*—dam(v—u) sina—acosa
2k[® — w(u+q)/k]? sin® a

p'(a)= - : (74)

where v =cot a. Since a < 7/k, we can remark for later use that
pla)<0. (75

By using Steiner’s formula and (73) we find the in-radius of the kernel of C

_u p’—darm
(@) =N o= m(ut )k’ (76)
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and observe that

_uvp’—4an(a—m/k) sina—acosa
2k[®— m(u+q)/k]? sin® &

ri(a)= >0. (717)

For the in-radius of P
re{a)=r,+pcos a (78)
we obtain by (74) and (77)

_m(utq)

. o
2k sin [‘D k

3/2
. ] sin® e(rp+ p sin @)

= —Vp?—4an(sin a —a cos a) cos « cos(%—a)
X[tan(£—-a>~<z-— )+(1’_ )t (7_7'_ )t na]
k k o k a an k a a .

re{a)<0. (79)

Hence

Thus a(P) is a strictly decreasing function of &, and « is uniquely determined
by a(P) = a,. This proves the above statement.

4. The Area Deviation

We now turn to the problem of finding such members of 4(a, p) and %, for

which 64(C, P) is minimal. In view of a remark made in Section 1, we have to
consider only such values of q, p, and k that

2

P ar
—<4ktan —.
a an k

For a disc C from 4(aq, p) and a k-gon P from %;(a,) we have by (1)
84(C, P)=a(C)+ay,—2a(C A P). (80)
Because a(C) = aq, it follows from (80) and (11) that
84(C, P)=a+ay,—2M(a, p; k, a,). (81)
If ap=<fi(qa, p, k), Remark 2 implies that
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with equality if and only if C is a regular arc-sided k-gon of area a and perimeter
p, and P is the kernel of C. Let P’ be the k-gon obtained from P by displacing
a side of P outward parallel to itself through a sufficiently small distance. By
using (33) it follows easily that

84(C, Py <3*(C, P),

which shows that 8*(C, P) is not minimal. Thus we can assume in the following
that a,> f,(qa, p, k).
Since a(C) = a(C n P), we conclude from (80) and (11) that

84(C, P)z ao~ M(a, p;k, a). (82)
If ao= fo{a, p, k) we have by (82) and Remark 2
aA(C) P) = Ao~ F(P, k, aO): (83)

where F is given by (15). As can be shown by differentiation, the function of a,
on the right-hand side of (83) is strictly increasing for a, = f){a, p, k). This function
thus attains its minimum for a, = f,(aq, p, k). Therefore, we need to consider only
such values of a, for which

fila, p, k) <ao=fia,p, k). (84)

We shall again make use of (81) and observe that, by Theorem 1 and Remark 2,
equality occurs in (81) if and only if C is an outer parallel domain of a regular
arc-sided k-gon of area a and perimeter p, and P is the central k-gon of C. If
a,=f5(a, p, k) C is degenerate, which means that C is a smooth regular k-gon
with case P.

Let us first assume that §*(C, P) is minimal for some a, from the interior of
the interval (84). Resuming the notation used in Section 3, we can state that (see
also [2, p. 363])

U, U, 1 .
f;zAzz =5 if fi(a,p, k)<a,<fia,p k). (85)

Otherwise we could reduce 8”(C, P) by displacing A, A, parallel to itself through
a small distance. This follows from (33). Second, if we assume that §*(C, P) is
minimal for a,=f5(q, p, k), the same argument as above shows that

Unsz)E

> i = k). 86
A4, =2 if ao=fa,p k) (86)
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Using the notation introduced at the end of Section 3 we have

A1A222rp tan "’E

and

UnUnIZ(r, tan §+p sin a).

Hence by (78)

Ull Ul2_ r; tan(?f/k)+p sina
AA; rt+pcosa

cot 7= g(a), (87)
where p{a) and r,(a) are given by (73) and (76). From
’ 2.2 ki 1L K T
g'la)r,+pcosa)sin—=rpsinla——)+rpcosia——
k k k
’ : (" ) 2 T
+rp sin —’;—a +p cos —,

and (75) and (77) we see that
g'(a)>0. (88)

Thus we have to consider two cases.

(i) If g(0)<31, (86) is impossible, and the minimum of §“(C, P) is attained
in the case indicated by (85). C is a parallel domain of a (proper) regular
arc-sided k-gon, and P is the central k-gon of C.

(ii) If g(0)=1, (85) is impossible and the minimum of §“(C, P) is attained
in the case indicated by (86). C is a smooth regular k-gon, and P is the
case of C.

g(0) can easily be evaluated by (87), (73), and (76). Writing (k/ 7) tan(w/ k) = ¢
and referring to (3) we can summarize the result of this section in

Theorem 2. Suppose that p*/4amw <t There is exactly one disc C from %(a, p)
and one k-gon P such that

8*(C, P)=A%(a, p, k).

C and P are characterized by the following properties:

(i) a(C)=a, p(C)=p.

(ii) if p*/4amw <(1+1)*/(1+31), C is a parallel domain of a regular arc-sided
k-gon, and P is the central k-gon of C. Any side of P, say A,A,, meets the
boundary of C at points Uy, U,, such that

AUy =UpA, ”%AlAz-
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(iii) ifp*/4am=(1+1)*/(1+31), C is a smooth regular k-gon, and P is the case
of C.
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