Approximation of Convex Discs by Polygons*

A. Florian

Institut für Mathematik, Universität Salzburg, Petersbrunnstrasse 19, A-5020 Salzburg, Austria

Abstract

We consider the class of all convex discs with areas and perimeters bounded by given constants. Which disc of this class has the least possible area deviation from a k-gon? This and related questions are the subject of the present paper.

1. Introduction

By a convex disc we mean a convex compact subset of the Euclidean plane with interior points. In this paper we shall deal with the approximation of convex discs by convex polygons. There are several methods of measuring the deviation between two convex discs. The following are two of the most usual methods. We write $a(M)$ and $p(M)$ for the area, i.e., the Lebesgue measure, and the perimeter of the set M. If X and Y are convex discs, the area deviation between X and Y is defined by

$$
\begin{equation*}
\delta^{A}(X, Y)=a(X \cup Y)-a(X \cap Y) \tag{1}
\end{equation*}
$$

and the perimeter deviation by

$$
\begin{equation*}
\delta^{P}(X, Y)=p(X \cup Y)-p(X \cap Y) \tag{2}
\end{equation*}
$$

Equation (1) may also be written in the form

$$
\delta^{A}(X, Y)=a(X \Delta Y)
$$

[^0]where
$$
X \Delta Y=(X \backslash Y) \cup(Y \backslash X)
$$
is the symmetric difference of the two sets. Note that δ^{A} makes the class of all convex discs into a metric space, but δ^{P} does not. Various concepts of deviation of two convex bodies are discussed in [17]. Gruber [14] gives an up-to-date review of the results concerning the approximation of a convex body by polytopes. The approximation of convex discs by convex polygons is of interest by itself. Moreover, it is important in its application to problems of packing and covering (see [3, 5, 6, 8-11, 13]).

Throughout this paper let a and p be positive numbers satisfying the isoperimetric inequality

$$
\frac{p^{2}}{a} \geq 4 \pi .
$$

Let $\mathscr{C}(a, p)$ be the class of all convex discs with area not less than a and perimeter not greater than p. A convex polygon with at most k sides is simply called a k-gon. Let \mathscr{P}_{k} denote the class of all k-gons. Two measures for the closeness of the approximation of k-gons to discs from $\mathscr{C}(a, p)$ are given by

$$
\begin{equation*}
\Delta^{A}(a, p, k)=\inf \delta^{A}(C, P) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta^{P}(a, p, k)=\inf \delta^{P}(C, P) \tag{4}
\end{equation*}
$$

where the infimum is taken over all $C \in \mathscr{C}(a, p)$ and all $P \in \mathscr{P}_{k}$. Both functions are interesting only in the case when

$$
\begin{equation*}
\frac{p^{2}}{a}<4 k \tan \frac{\pi}{k}, \tag{5}
\end{equation*}
$$

which means that p is less than the perimeter of a regular k-gon of area a. Otherwise we have $\mathscr{C}(a, p) \cap \mathscr{P}_{k} \neq \varnothing$, so that $\Delta^{A}(a, p, k)=\Delta^{P}(a, p, k)=0$.

By combining some results from [2], [5] we shall obtain $\Delta^{P}(a, p, k)$ in Section 2. Using ideas of Besicovitch [1], Eggleston [2], and Fejes Tóth and Florian [5] we will find the supremum of $a(C \cap P)$ taken over all $C \in \mathscr{C}(a, p)$ and all k-gons P of a given area; this is the subject of Section 3 and the main part of this paper. In Section 4 we will apply the results of Section 3 to determine those members of $\mathscr{C}(a, p)$ and \mathscr{P}_{k} for which $\delta^{A}(C, P)$ is minimal.

2. The Perimeter Deviation

According to a remarkable result by Eggleston [2], the perimeter deviation of a given convex disc from an arbitrary convex k-gon is minimal for a k-gon inscribed in the disc. Thus we have

$$
\begin{equation*}
\Delta^{P}(a, p, k)=\inf \delta^{P}(C, P) \quad\left(C \in \mathscr{C}(a, p), P \in \mathscr{P}_{k}, P \subset C\right) . \tag{6}
\end{equation*}
$$

Before we state the result, we need to describe a certain geometrical configuration. Let P^{*} be a regular k-gon. We join each two consecutive vertices of P^{*} by congruent circular arcs of radius not less than the circum-radius of P^{*}. These arcs form the boundary of a convex disc C^{*} which we call a regular arc-sided k-gon with kernel P^{*} (Fig. 1). If (5) is satisfied it can be shown (see [5]) that
(i) there is exactly one regular arc-sided k-gon C^{*} with area a and perimeter p, and
(ii) the infimum on the right-hand side of (6) is attained only for C^{*} and its kernel P^{*}.

Hence

$$
\begin{equation*}
\Delta^{P}(a, p, k)=\delta^{P}\left(C^{*}, P^{*}\right) \tag{7}
\end{equation*}
$$

A simple expression for $\delta^{P}\left(C^{*}, P^{*}\right)$ can be obtained in the following way (see [5]). Let 2α be the central angle of the circular arcs bounding C^{*}, where $0<\alpha \leq \pi / k$. We define a function $\Phi(q)$ by the parametric equations

$$
\begin{equation*}
\Phi(q)=\frac{\alpha^{2}}{\sin ^{2} \alpha}, \quad q=\frac{\alpha-\sin \alpha \cos \alpha}{\sin ^{2} \alpha} \quad\left(0<\alpha \leq \frac{\pi}{k}\right) \tag{8}
\end{equation*}
$$

for $0<q \leq \bar{q}$, where \bar{q} corresponds to $\alpha=\pi / k$, and put $\Phi(0)=1$. Elementary calculation yields the equation

$$
\begin{equation*}
\frac{p^{2}}{a}=4 k \sin \frac{\pi}{k} \frac{\Phi(q)}{\cos (\pi / k)+q \sin (\pi / k)}, \tag{9}
\end{equation*}
$$

Fig. 1
which has a single root $q \in(0, \bar{q}]$. Since $p\left(P^{*}\right)=(p \sin \alpha) / \alpha$, we finally conclude that

$$
\begin{equation*}
\delta^{P}\left(C^{*}, P^{*}\right)=p\left(1-(\Phi(q))^{-1 / 2}\right) \tag{10}
\end{equation*}
$$

3. A Maximum Problem

Let $\mathscr{P}_{k}\left(a_{0}\right)$ denote the class of all k-gons of given area a_{0}. In this section we shall deal with the following

Problem. Find a member of $\mathscr{C}(a, p)$ and a member of $\mathscr{P}_{k}\left(a_{0}\right)$ such that their intersection has the greatest possible area.

Accordingly we introduce the function

$$
\begin{equation*}
M\left(a, p ; k, a_{0}\right)=\max a(C \cap P) \tag{11}
\end{equation*}
$$

where the maximum is to be taken over all discs C from $\mathscr{C}(a, p)$ and all k-gons P from $\mathscr{P}_{k}\left(a_{0}\right)$. The existence of the maximum follows from the Blaschke selection theorem.

In the particular case when $p^{2} / a=4 \pi$, the class $\mathscr{C}(a, p)$ consists only of the circle of area a. Fejes Tóth [7] showed that the intersection of a given circle C and a k-gon P of given area has maximal area if P is regular and concentric with C; for alternative proofs of this "momentum lemma" see [4], [12], [15].

In certain cases the solution to our problem can be deduced from two previous results which we now recollect.

Let the function $f_{1}(a, p, k)$ be defined by

$$
f_{1}(a, p, k)= \begin{cases}\frac{p^{2}}{4 \pi t} \frac{1}{\Phi(q)} & \text { if } \frac{p^{2}}{a}<4 \pi i \tag{12}\\ \frac{p^{2}}{4 \pi t} & \text { if } \frac{p^{2}}{a} \geq 4 \pi t\end{cases}
$$

where $t=t(k)=(k / \pi) \tan (\pi / k)$, and $\Phi(q)$ is given by (8). Let C be a disc from $\mathscr{C}(a, p)$ and P a k-gon with $P \subset C$. It was proved in [5] that

$$
\begin{equation*}
a(P) \leq f_{1}(a, p, k) \tag{13}
\end{equation*}
$$

with equality if and only if either C is a regular arc-sided k-gon of area a and perimeter p, and P is the kernel of $C\left(p^{2} / a<4 \pi t\right)$, or $C=P$ is a regular k-gon of perimeter $p\left(p^{2} / a \geqq 4 \pi t\right)$. By (13) we have

$$
\begin{array}{lll}
M\left(a, p ; k, a_{0}\right)=a_{0} & \text { if } & a_{0} \leqq f_{1}(a, p, k), \quad \text { and } \\
M\left(a, p ; k, a_{0}\right)<a_{0} & \text { if } & f_{1}(a, p, k)<a_{0} . \tag{14}
\end{array}
$$

Hence in the following we can assume that $a_{0}>f_{1}(a, p, k)$.
Let x be a convex disc with in radius $r . X_{-\rho}(0<\rho<r)$ denotes the inner parallel domain and $X_{\rho}(0<\rho)$ the outer parallel domain of X at distance ρ. If \bar{P} is a regular k-gon, we call a set of the form ($\left.\bar{P}_{-\rho}\right)_{\rho}$ a smooth regular k-gon with case \bar{P} (Fig. 2). It will be convenient to consider both \bar{P} and its in-circle as degenerate smooth regular k-gons with case \bar{P}. The corresponding values of ρ are 0 and r.

We define the function $F\left(p, k, a_{0}\right)$ by

$$
F\left(p, k, a_{0}\right)= \begin{cases}a_{0} & \text { if } a_{0}<\frac{p^{2}}{4 \pi t} \tag{15}\\ \frac{p \sqrt{a_{0} \pi t}-p^{2} / 4-a_{0} \pi}{(t-1) \pi} & \text { if } \frac{p^{2}}{4 \pi t} \leq a_{0} \leq \frac{p^{2} t}{4 \pi} \\ \frac{p^{2}}{4 \pi} & \text { if } \frac{p^{2} t}{4 \pi}<a_{0}\end{cases}
$$

Let C be a convex disc of perimeter not greater than p and P a k-gon from $\mathscr{P}_{k}\left(a_{0}\right)$ with $C \subset P$. Fejes Tóth ([6] or [8, p. 175]) proved that

$$
\begin{equation*}
a(C) \leq F\left(p, k, a_{0}\right) \tag{16}
\end{equation*}
$$

Let $p^{2} / 4 \pi t \leq a_{0} \leq p^{2} t / 4 \pi$. Then equality holds in (16) if and only if C is a (possibly degenerate) smooth regular k-gon with perimeter p, and P is the case of C.

Let C be a disc from $\mathscr{C}(a, p)$ and P a k-gon with $C \subset P$. Since F is a strictly increasing function of a_{0} for $0<a_{0} \leq p^{2} t / 4 \pi$, it follows from (15) and (16) that

$$
\begin{equation*}
a(P) \geq f_{2}(a, p, k) \tag{17}
\end{equation*}
$$

where

$$
f_{2}(a, p, k)= \begin{cases}\frac{t}{4 \pi}\left(p-\sqrt{\left(p^{2}-4 a \pi\right)\left(1-t^{-1}\right)}\right)^{2} & \text { if } \frac{p^{2}}{a}<4 \pi t \tag{18}\\ a & \text { if } \frac{p^{2}}{a} \geq 4 \pi t\end{cases}
$$

Fig. 2

If $p^{2} / a \leq 4 \pi t$ and $a(P)=f_{2}(a, p, k)$, then C is a (possibly degenerate) smooth regular k-gon of area a and perimeter p, and P is the case of C. Thus, by (18) we have

$$
\begin{equation*}
f_{2}(a, p, k) \geq a \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
M\left(a, p ; k, a_{0}\right) \geq a \quad \text { if } \quad a_{0} \geq f_{2}(a, p, k) \tag{20}
\end{equation*}
$$

Returning to our problem, we distinguish the cases $p^{2} / a<4 \pi t$ and $p^{2} / a \geq 4 \pi t$, and begin with the simpler

Case (a). $p^{2} / a \geq 4 \pi t$
From (12) and (18) we see that

$$
f_{2}(a, p, k) \leq f_{1}(a, p, k)
$$

Let $a_{0}>f_{1}(a, p, k)$, and let C and P be members of $\mathscr{C}(a, p)$ and $\mathscr{P}_{k}\left(a_{0}\right)$ such that

$$
\begin{equation*}
a(C \cap P)=M\left(a, p ; k, a_{0}\right) \tag{21}
\end{equation*}
$$

Inequalities (13) and (20) imply that $P \not \subset C$ and

$$
\begin{equation*}
a(C \cap P) \geq a \tag{22}
\end{equation*}
$$

We shall see in the proof of Theorem 1 (Lemma 4) that, whenever (21) together with the assumptions $P \not \subset C$ and $C \not \subset P$ are satisfied, then $a(C)=a$, whence $a(C \cap P)<a$. By (22) this last inequality is impossible. Thus we conclude that $C \subset P$, and from (16) and (21) it follows that

$$
\begin{equation*}
a(C \cap P)=F\left(p, k, a_{0}\right) \tag{23}
\end{equation*}
$$

Equations (14) and (23) can be summarized in
Remark 1. If $p^{2} / a \geq 4 \pi t$ we have

$$
M\left(a, p ; k, a_{0}\right)=F\left(p, k, a_{0}\right)
$$

From the suppositions (21) and $p^{2} / 4 \pi t \leq a_{0} \leq p^{2} t / 4 \pi$ it follows that C is a (possibly degenerate) smooth regular k-gon of perimeter p, and P is the case of C.

Case (b). $p^{2} / a<4 \pi t$
Because of (12) and (19) we obtain the inequality

$$
\begin{equation*}
f_{1}(a, p, k)<f_{2}(a, p, k), \tag{24}
\end{equation*}
$$

which is contrary to case (a).

Let $a_{0} \geq f_{2}(a, p, k)$, and let $C \in \mathscr{C}(a, p)$ and $P \in \mathscr{P}_{k}\left(a_{0}\right)$ satisfy (21). By repeating the argument used in case (a) we again come to the conclusion that C is contained in P and that (23) holds in case (b) as well.

Remark 2. If $p^{2} / a<4 \pi t$ we have

$$
M\left(a, p ; k, a_{0}\right)= \begin{cases}a_{0} & \text { if } a_{0} \leq f_{1}(a, p, k) \\ F\left(p, k, a_{0}\right) & \text { if } f_{2}(a, p, k) \leq a_{0}\end{cases}
$$

From (21) and $a_{0}=f_{1}(a, p, k)$ it follows that C is a regular arc-sided k-gon of area a and perimeter p, and P is the kernel of C. From (21) and $f_{2}(a, p, k) \leq a_{0} \leq$ $p^{2} t / 4 \pi$ it follows that C is a (possibility degenerate) smooth regular k-gon of perimeter p, and P is the case of C.

We now proceed to find the maximum of a $(C \cap P)$ with $C \in \mathscr{C}(a, p)$ and $P \in \mathscr{P}_{k}\left(a_{0}\right)$ in the more difficult case when

$$
f_{1}(a, p, k)<a_{0}<f_{2}(a, p, k)
$$

To describe the extremal configuration we consider the outer parallel domain C of a regular arc-sided k-gon at some distance ρ. We first assume that C is not a circle. Then C is bounded by k equal circular arcs of radius \hat{r} and k equal circular arcs of radius r, where $\hat{r}<r$. The lines joning the endpoints of every arc of radius r enclose a regular k-gon P which we call the central k-gon of C (Fig. 3). By a central k-gon of a circle C we mean any regular k-gon concentric with C.

Theorem 1. Let

$$
\begin{equation*}
f_{1}(a, p, k)<a_{0}<f_{2}(a, p, k) \tag{i}
\end{equation*}
$$

Fig. 3
and let C and P be such members of $\mathscr{C}(a, p)$ and $\mathscr{P}_{k}\left(a_{0}\right)$ that
(ii)

$$
a(C \cap P)=M\left(a, p ; k, a_{0}\right)
$$

Then C is an outer parallel domain of a regular arc-sided k-gon, and P is the central k-gon of C. Furthermore, C has area a and perimeter p.

We shall, in fact, prove Theorem 1 by making the weaker assumptions (ii) and

$$
\begin{equation*}
C \not \subset P, \quad P \not \subset C \tag{iii}
\end{equation*}
$$

instead of (i) and (ii). Theorem 1 together with Remarks 1 and 2 solve the problem set at the beginning of this section. Observe that a regular arc-sided k-gon and its kernel as well as a smooth regular k-gon and its case may be regarded as a degenerate parallel domain of a regular arc-sided k-gon and its central k-gon.

Proof of Theorem 1. Let C and P satisfy suppositions (ii) and (iii). We will develop the properties of C and P in the following 12 lemmas. The last lemma shows that C and P correspond with the statement of our theorem.

First, we remark that by (ii) and (iii) there is a vertex of P outside C, and there is a side of P intersecting the interior of C.

Lemma 1. P has exactly k vertices.

Proof. Suppose that P has fewer than k vertices. Let A_{1} be a vertex of P outside C, and let $A_{i} A_{i+1}$ be a side of P containing interior points of C. We cut off from P a sufficiently small triangle with vertex A_{1} and displace $A_{i} A_{i+1}$ toward the exterior of P such that the new k-gon P^{\prime} obtained from P by this process has area a_{0}. Then we have

$$
\begin{equation*}
a\left(C \cap P^{\prime}\right)>a(C \cap P) \tag{25}
\end{equation*}
$$

in contradiction to assumption (ii).
We denote the vertices of P in the anticlockwise sense by $A_{1}, A_{2}, \ldots, A_{k}$ and set $A_{k+1}=A_{1}, A_{0}=A_{k}$.

Lemma 2. No vertex of P lies in the interior of C.
Proof. Suppose that A_{1} is outside C and A_{2} is an interior point of C. Let the side $A_{1} A_{2}$ rotate in the clockwise sense about a point between A_{1} and A_{2} such that the new k-gon $P^{\prime}=A_{1}^{\prime} A_{2}^{\prime} A_{3} \cdots A_{k}$ has area a_{0}. If the angle of rotation is small, A_{1}^{\prime} is exterior to C and A_{2}^{\prime} is an interior point of C. This again leads to inequality (25).

Suppose that A_{1} lies on the boundary and A_{2} in the interior of C. Let the side $A_{1} A_{2}$ rotate about A_{1} in the clockwise sense through a small angle into the new position $A_{1} A_{2}^{\prime}$ with A_{2}^{\prime} in the interior of C. If A_{i} is one of the vertices outside C we displace $A_{i} A_{i+1}$ toward the interior of P such that the k-gon P^{\prime} finally obtained has area a_{0}. Since P^{\prime} satisfies (25), the supposition was wrong, and Lemma 2 is proved.

We shall use the symbol $A B$ to denote both the segment $A B$ and its length.
Lemma 3. (a) A side $A_{1} A_{2}$ of P that contains interior points of C meets the boundary of C at points U_{11}, U_{12}, where U_{12} is between U_{11} and A_{2}, such that

$$
\begin{equation*}
A_{1} U_{11}=U_{12} A_{2} \tag{26}
\end{equation*}
$$

(b) Any side $A_{i} A_{i+1}$ of P intersects C at the points of a segment $U_{i 1} U_{i 2}$ such that

$$
\begin{equation*}
\frac{U_{i 1} U_{i 2}}{A_{i} A_{i+1}} \geq \frac{U_{11} U_{12}}{A_{1} A_{2}} . \tag{27}
\end{equation*}
$$

Proof. (a) Suppose that, contrary to (26),

$$
\begin{equation*}
A_{1} U_{11}>U_{12} A_{2} \tag{28}
\end{equation*}
$$

This implies that A_{1} is outside C and

$$
\begin{equation*}
M U_{11}<M U_{12} \tag{29}
\end{equation*}
$$

where M is the midpoint of $A_{1} A_{2}$. Let $A_{1} A_{2}$ rotate in the clockwise sense through a small angle φ into the new position $A_{1}^{\prime} A_{2}^{\prime}$, such that $P^{\prime}=A_{1}^{\prime} A_{2}^{\prime} A_{3} \cdots A_{k}$ has area a_{0}. The segments $A_{1} A_{2}$ and $A_{1}^{\prime} A_{2}^{\prime}$ intersect at, say, M^{\prime}. Denoting the triangle with vertices X, Y, Z by $X Y Z$, we have

$$
\begin{equation*}
a\left(C \cap P^{\prime}\right)-a(C \cap P)=a\left(C \cap M^{\prime} A_{2} A_{2}^{\prime}\right)-a\left(C \cap M^{\prime} A_{1} A_{1}^{\prime}\right) \tag{30}
\end{equation*}
$$

If M^{\prime} is outside or on the boundary of C, then $a\left(C \cap M^{\prime} A_{2} A_{2}^{\prime}\right)>0$ and $a\left(C \cap M^{\prime} A_{1} A_{1}^{\prime}\right)=0$, so that P^{\prime} satisfies (25). Thus we can assume that M^{\prime} is an inner point of C. Since M^{\prime} approaches M as φ tends to zero, M belongs to C and we obtain

$$
\begin{equation*}
\lim _{\varphi \rightarrow 0} \frac{a\left(C \cap M^{\prime} A_{1} A_{1}^{\prime}\right)}{a\left(C \cap M^{\prime} A_{2} A_{2}^{\prime}\right)}=\frac{M U_{11}^{2}}{M U_{12}^{2} .} \tag{31}
\end{equation*}
$$

From (29), (30) and (31) we see that P^{\prime} satisfies (25) if φ is sufficiently small. Because (25) is impossible, part (a) of Lemma 3 is proved.
(b) It suffices to show (27) for $2 \leq i \leq k-1$. We displace the side $A_{1} A_{2}$ of P outward parallel to itself through a small distance $\eta_{1}>0$. Let $P^{\prime}=A_{1}^{\prime} A_{2}^{\prime} \cdots A_{k}^{\prime}$ be the new k-gon, where $A_{j}^{\prime}=A_{j}$ for $j=3, \ldots, k$. From P^{\prime} we obtain the further k-gon $P^{\prime \prime}$ by displacing the side $A_{i}^{\prime} A_{i+1}^{\prime}$ inward parallel to itself through a small distance $\eta_{2}<0$, such that $a\left(P^{\prime \prime}\right)=a_{0}$. Write $P^{\prime \prime}=A_{1}^{\prime \prime} \cdots A_{k}^{\prime \prime}$ with $A_{j}^{\prime \prime}=A_{j}^{\prime}$ for $j \neq i, i+1$. We shall use the notations

$$
\begin{equation*}
C \cap P=S, \quad C \cap P^{\prime}=S^{\prime}, \quad C \cap P^{\prime \prime}=S^{\prime \prime} \tag{32}
\end{equation*}
$$

and note that $S \subset S^{\prime}$ and $S^{\prime \prime} \subset S^{\prime}$. From the definitions of P^{\prime} and S^{\prime} we obtain the relations

$$
\begin{equation*}
\lim _{\eta_{1} \rightarrow 0} \frac{a\left(P^{\prime}\right)-a(P)}{\eta_{1}}=A_{1} A_{2}, \quad \lim _{\eta_{1} \rightarrow 0} \frac{a\left(S^{\prime}\right)-a(S)}{\eta_{1}}=U_{11} U_{12} \tag{33}
\end{equation*}
$$

Because $A_{i}^{\prime} A_{i+1}^{\prime} \geq A_{i} A_{i+1}$, we have

$$
\begin{align*}
a(P)-a\left(P^{\prime}\right)=a\left(P^{\prime \prime}\right)-a\left(P^{\prime}\right) & =\frac{1}{2}\left(A_{i}^{\prime} A_{i+1}^{\prime}+A_{i}^{\prime \prime} A_{i+1}^{\prime \prime}\right) \eta_{2} \\
& <\frac{1}{2} A_{i} A_{i+1} \eta_{2}<0 \tag{34}
\end{align*}
$$

Together with $\lim _{\eta_{1} \rightarrow 0} a\left(P^{\prime}\right)=a(P)$ this implies that

$$
\begin{equation*}
\lim _{\eta_{1} \rightarrow 0} \eta_{2}=0 . \tag{35}
\end{equation*}
$$

By the definitions of P^{\prime} and $P^{\prime \prime}$ there are constants γ_{1} and γ_{2} such that

$$
\begin{equation*}
A_{i}^{\prime} A_{i+1}^{\prime}=A_{i} A_{i+1}+\gamma_{1} \eta_{1}, \quad A_{i}^{\prime \prime} A_{i+1}^{\prime \prime}=A_{i}^{\prime} A_{i+1}^{\prime}+\gamma_{2} \eta_{2} \tag{36}
\end{equation*}
$$

From (33) to (36) we deduce that

$$
\begin{equation*}
\lim _{\eta_{1} \rightarrow 0} \frac{\eta_{2}}{\eta_{1}}=-\frac{A_{1} A_{2}}{A_{i} A_{i+1}} . \tag{37}
\end{equation*}
$$

Observe that the intersection of C with $A_{i} A_{i+1}$ is nonempty. Otherwise we would have

$$
a\left(S^{\prime \prime}\right)=a\left(S^{\prime}\right)>a(S)
$$

if η_{1} is sufficiently small, and this contradicts the maximum property of P. Thus $C \cap A_{i} A_{i+1}$ is a segment, say $U_{i 1} U_{i 2}$. We now proceed to prove that

$$
\begin{equation*}
\lim _{\eta_{1} \rightarrow 0} \frac{a\left(S^{\prime}\right)-a\left(S^{\prime \prime}\right)}{\eta_{2}}=-U_{i 1} U_{i 2} \tag{38}
\end{equation*}
$$

By (32) we have

$$
\begin{equation*}
a\left(S^{\prime}\right)-a\left(S^{\prime \prime}\right)=a\left(S^{\prime} \backslash S^{\prime \prime}\right)=a\left(C \cap\left(P^{\prime} \backslash P^{\prime \prime}\right)\right) \tag{39}
\end{equation*}
$$

Decomposing $P^{\prime} \backslash P^{\prime \prime}$ into two disjoint sets according to

$$
\begin{equation*}
P^{\prime} \backslash P^{\prime \prime}=\left[\left(P^{\prime} \backslash P^{\prime \prime}\right) \cap P\right] \cup\left[\left(P^{\prime} \backslash P^{\prime \prime}\right) \cap\left(P^{\prime} \backslash P\right)\right] \tag{40}
\end{equation*}
$$

we distinguish two cases. In both we assume, as we clearly may, that η_{1} is sufficiently small.
(α) If $i=2$ then ($\left.P^{\prime} \backslash P^{\prime \prime}\right) \cap\left(P^{\prime} \backslash P\right)$ is a parallelogram with sides $A_{2} A_{2}^{\prime}$ and $A_{2}^{\prime} A_{2}^{\prime \prime}$. Hence

$$
\begin{equation*}
a\left[\left(P^{\prime} \backslash P^{\prime \prime}\right) \cap\left(P^{\prime} \backslash P\right)\right]=O\left(\eta_{1} \eta_{2}\right) \tag{41}
\end{equation*}
$$

(β) If $i>2$ then

$$
\begin{equation*}
\left(P^{\prime} \backslash P^{\prime \prime}\right) \cap\left(P^{\prime} \backslash P\right)=\varnothing \tag{42}
\end{equation*}
$$

Let l be the line joining A_{i} and A_{i+1}, and let $L\left(\eta_{2}\right)$ be the parallel strip bounded by l and the line through $A_{i}^{\prime \prime}$ and $A_{i+1}^{\prime \prime}$. Let $s(x)$ denote the length of the intersection of $C \cap P$ with the line parallel to l at distance $x>0$ from l. Then we have

$$
\begin{equation*}
a\left[C \cap P \cap\left(P^{\prime} \backslash P^{\prime \prime}\right)\right]=a\left[C \cap P \cap L\left(\eta_{2}\right)\right]=-\eta_{2} s(x) \tag{43}
\end{equation*}
$$

for some x between 0 and $-\eta_{2}$. Because $\lim s(x)=U_{i 1} U_{i 2}$ as x tends to zero, the required equation (38) follows from (35) and (39) to (43).

Supposing the contrary to (27), we obtain by (33), (37) and (38) that

$$
\lim _{\eta_{1} \rightarrow 0} \frac{a\left(S^{\prime}\right)-a\left(S^{\prime \prime}\right)}{a\left(S^{\prime}\right)-a(S)}=\frac{U_{i 1} U_{i 2} / A_{i} A_{i+1}}{U_{11} U_{12} / A_{1} A_{2}}<1
$$

which implies by (32) that

$$
\begin{equation*}
a\left(C \cap P^{\prime \prime}\right)>a(C \cap P) \tag{44}
\end{equation*}
$$

The contradiction of (44) to assumption (ii) of Theorem 1 completes the proof of part (b).

Corollary 1. Any side of P intersects C at the points of a segment of positive length. A side of P which intersects the interior of C has its endpoints outside C.

Following the notation used in Lemma 3 we shall constantly denote the points at which the side $A_{i} A_{i+1}$ meets the boundary of C by $U_{i 1}$ and $U_{i 2}$. The points $U_{11}, U_{12}, \ldots, U_{k 1}, U_{k 2}$ are round the boundary of C in the anticlockwise sense.

In the proofs of the above lemmas C is a given convex disc and P runs through the class $\mathscr{P}_{k}\left(a_{0}\right)$. In the proofs of the following seven lemmas P is a given k-gon while C varies on $\mathscr{C}(a, p)$.

Lemma 4. $p(C)=p$ and $a(C)=a$.

Proof. If $p(C)<p$ we choose $\rho>0$ such that $p\left(C_{\rho}\right)<p$. Thus C_{ρ} belongs to $\mathscr{C}(a, p)$. Since the boundary of C intersects the interior of P we have

$$
a\left(C_{\rho} \cap P\right)>a(C \cap P)
$$

in contradiction to the maximum property of C.
Suppose that $a(C)>a$. Since there are interior points of C outside P, we can find a proper convex subset of C, say C^{\prime}, such that C^{\prime} is a member of $\mathscr{C}(a, p)$ and

$$
a\left(C^{\prime} \cap P\right)=a(C \cap P)
$$

Because $p\left(C^{\prime}\right)<p$ this is impossible.
Lemma 5. Suppose that the side $A_{1} A_{2}$ contains interior points of C. Let s_{1} be the arc on the boundary of C between U_{11} and U_{12}, which is outside P. s_{1} is a circular arc.

Proof. Let c be the circular arc on the same side of the line $A_{1} A_{2}$ as s_{1} that has endpoints U_{11} and U_{12} and the same length as s_{1}. Let us assume that $s_{1} \neq c$. Denoting the convex hull of the set M by conv M and the (not necessarily convex) disc ($C \backslash \operatorname{conv} s_{1}$) \cup conv c by D we have

$$
\begin{equation*}
p(D)=p(C), \quad a(D \cap P)=a(C \cap P) \tag{45}
\end{equation*}
$$

We now refer to the well-known fact that the area of a convex disc which is bounded by a given straight segment and an arc of given length attains its maximum if and only if the disc is a circular segment. Thus

$$
\begin{equation*}
a\left(\operatorname{conv} s_{1}\right)<a(\operatorname{conv} c) \tag{46}
\end{equation*}
$$

whence

$$
\begin{equation*}
a(D)>a(C) \tag{47}
\end{equation*}
$$

From (45) and (47) it follows that $C^{\prime}=\operatorname{conv} D$ belongs to $\mathscr{C}(a, p)$ and

$$
a\left(C^{\prime} \cap P\right) \geq a(C \cap P)
$$

By (47), however, we have $a\left(C^{\prime}\right)>a$, which contradicts Lemma 4. Thus the assumption $s_{1} \neq c$ was wrong and Lemma 5 is proved.

Lemma 6. C is strictly convex.
Proof. Suppose that the straight segment $V_{1} V_{2}$ is part of the boundary of C. Let S be a circular segment of $C \backslash P$, the chord of which has length less than $V_{1} V_{2}$. We cut S off from C and join it to $V_{1} V_{2}$, obtaining a nonconvex disc D with $a(D)=a(C), p(D)=p(C)$ and a $a(D \cap P) \geq a(C \cap P)$. Then $C^{\prime}=\operatorname{conv} D$ has the properties

$$
p\left(C^{\prime}\right)<p, \quad a\left(C^{\prime}\right)>a
$$

and

$$
a\left(C^{\prime} \cap P\right) \geq a(C \cap P)
$$

in contradiction to Lemma 4. Thus Lemma 6 is proved.

From Lemma 3, Corollary 1 and Lemma 6 we infer
Corollary 2. (i) Every vertex of P is exterior to C.
(ii) Every side of P intersects the interior of C.

$$
\begin{gather*}
A_{i} U_{i 1}=U_{i 2} A_{i+1} \quad \text { for } \quad i=1, \ldots, k \tag{iii}\\
\frac{U_{11} U_{12}}{A_{1} A_{2}}=\cdots=\frac{U_{k 1} U_{k 2}}{A_{k} A_{1}} \tag{iv}
\end{gather*}
$$

Lemma 7. Let s_{i} be the circular arc on the boundary of C between $U_{i 1}$ and $U_{i 2}$, which is outside P. s_{i} is less than a semicircle, for $i=1, \ldots, k$.

Proof. Suppose that s_{1} is greater than or equal to a semicircle. Let t_{1} and t_{2} be the tangent lines to s_{1} at U_{11} and U_{12}, respectively. By (48) and (49) the segments $U_{12} U_{21}$ and $U_{11} U_{22}$ are parallel. Since C is contained in the set bounded by s_{1}, t_{1} and t_{2}, s_{1} is at most a semicircle. In this case U_{21} lies on t_{2}, and U_{22} on t_{1}. Thus A_{1} and A_{3} are separated from C by t_{1}, showing that the sides $A_{3} A_{4}, \ldots, A_{k} A_{1}$ do not intersect C. But by Corollary 2(ii) this is impossible.

Lemma 8. The circular arcs s_{1}, \ldots, s_{k} considered in Lemma 7 have the same radius, say r.

Proof. Suppose that s_{1} and s_{2} have different radii. Let c_{1} and c_{2} be two chords of the arcs s_{1} and s_{2}, other than $U_{11} U_{12}$ and $U_{21} U_{22}$, and having equal lengths. Let s_{1}^{\prime} and s_{2}^{\prime} be the respective subarcs of s_{1} and s_{2}. From C we obtain a new disc, say D, by exchanging the positions of the circular segments conv s_{1}^{\prime} and conv s_{2}^{\prime}. This means that we cut them off from C and join them to c_{2} and c_{1}, respectively. Obviously,

$$
\begin{equation*}
p(D)=p(C), \quad a(D)=a(C), \quad a(D \cap P)=a(C \cap P) \tag{50}
\end{equation*}
$$

Since s_{1} and s_{2} have different radii and $c_{1} \neq U_{11} U_{12}, c_{2} \neq U_{21} U_{22}, D$ is not convex. Thus by (50) we have for $C^{\prime}=\operatorname{conv} D$

$$
\begin{equation*}
C^{\prime} \in \mathscr{C}(a, p), \quad a\left(C^{\prime}\right)>a, \quad a\left(C^{\prime} \cap P\right) \geq a(C \cap P) \tag{51}
\end{equation*}
$$

The contradiction to Lemma 4 proves the lemma.
Lemma 9. Let \hat{s}_{i} be the arc on the boundary of C between $U_{i-1,2}$ and $U_{i 1}$, which is contained in P, for $i=1, \ldots, k$.
(i) \hat{s}_{i} is a circular arc;
(ii) the arcs $\hat{s}_{1}, \ldots, \hat{s}_{k}$ have the same radius, say \hat{r};
(iii) if r is the radius of the arcs considered in Lemma 8, then

$$
\begin{equation*}
\hat{r} \leq r . \tag{52}
\end{equation*}
$$

Proof. (i) Let V_{1}, V_{2} be two distinct points of $\hat{s}_{2}=\widehat{U}_{12} U_{21}$ other than U_{12} and U_{21}. In order to show that \hat{S}_{2} is a circular arc it suffices to prove this for the arc $\widehat{V}_{1} V_{2}$. Observe that $\overparen{V}_{1} V_{2}$ has positive distance, say d, from the boundary of P. We cover $\widehat{V}_{1} V_{2}$ by a finite number of its subarcs such that each of them overlaps the following and has length less than d. By Lemma 6, not one is a straight segment. If any of these subarcs is not a circular arc, we replace it by a circular arc c of the same length in exactly the same way as in the proof of Lemma 5. By construction, the convex hull of c is contained in P. We obtain a (not necessarily convex) disc D with

$$
p(D)=p(C), \quad a(D)>a(C), \quad a(D \cap P)>a(C \cap P)
$$

Thus $C^{\prime}=\operatorname{conv} D$ satisfies (51) which is impossible. Hence each of the subarcs is circular, and so is $V_{1} V_{2}$.
(ii) Suppose that \hat{s}_{1} and \hat{s}_{2} have different radii. We obtain a nonconvex disc D satisfying (50) by exchanging the positions of two small circular segments, the arcs of which are part of \hat{s}_{1} and \hat{s}_{2}, respectively. Since the proof is quite similar to that of Lemma 5 we omit the details.
(iii) Suppose that $\hat{r}>r$. Similarly, as in the proof of Lemma 5, we exchange the positions of two small circular segments, the arcs of which are part of \hat{s}_{1} and s_{1}, respectively. We obtain a nonconvex disc D with $p(D)=p(C), a(D)=a(C)$, and $a(D \cap P)>a(C \cap P)$. Hence $C^{\prime}=\operatorname{conv} D$ satisfies (51), and the proof of Lemma 9 is complete.

We next prove that C has a smooth boundary.
Lemma 10. Through every boundary point of C there passes exactly one support line.
Proof. Let t and \hat{t} be the tangent lines to the arcs s_{1} and \hat{s}_{2} at U_{12}. To prove Lemma 10 we have to show that $t=\hat{t}$. Suppose that $t \neq \hat{i}$. Let $X Y$ be a chord of C parallel to \hat{t}, where X lies on \hat{s}_{2} and Y on s_{1} (Fig. 4). We denote the convex

Fig. 4
hull of $\widehat{X U_{12} Y}$ by S_{1}, the angle between $X T$ and the arc $\widehat{X U}_{12}$ by $\Varangle X$, and the angle between $Y X$ and the arc $\widehat{Y U}_{12}$ by $\Varangle Y$. Let $\widehat{V W}$ be a subarc of \hat{s}_{2} contained in the interior of P and such that $V W=X Y$. Write S_{2} for the convex hull of $\overparen{V W}$, and $\Varangle V$ for the angle of S_{2} at the vertex V. By exchanging the positions of S_{1} and S_{2} we obtain the sets T_{1} and T_{2}, which are congruent to S_{1} and S_{2}, respectively.

If the segment $X Y$ has a sufficiently small distance from \hat{t}, the following conditions are satisfied:
(i) $\Varangle X<\not \subset Y$;
(ii) $S_{1} \cap S_{2}=T_{1} \cap T_{2}=\varnothing$;
(iii) $T_{1} \subset P$.

Since $t \neq \hat{t}$, we have $\Varangle V<\Varangle X$, and by (i) $\Varangle V<\chi Y$. Hence

$$
\begin{equation*}
T_{2} \subset S_{1} \tag{53}
\end{equation*}
$$

By cutting S_{1} and S_{2} off from C and replacing them by T_{2} and T_{1} we obtain a nonconvex disc D with

$$
p(D)=p(C), \quad a(D)=a(C)
$$

By using (ii), (iii), and (53) we find

$$
\begin{aligned}
a(D \cap P) & =a(C \cap P)-a\left(S_{1} \cap P\right)-a\left(S_{2} \cap P\right)+a\left(T_{1} \cap P\right)+a\left(T_{2} \cap P\right) \\
& =a(C \cap P)+a\left(S_{1} \backslash T_{2}\right)-a\left(\left(S_{1} \backslash T_{2}\right) \cap P\right) \\
& \geq a(C \cap P),
\end{aligned}
$$

which shows that $C^{\prime}=$ conv D satisfies (51). Thus the supposition $t \neq \hat{\imath}$ was wrong, and Lemma 10 is proved.

In the case when $\hat{r}=r$ all the arcs $s_{i}, \hat{s}_{1}(i=1, \ldots, k)$ have the same radius. Lemma 10 shows that C is a circle. By (48) P is inscribed in a circle concentric with C, and from (49) it follows that P is regular, as stated in Theorem 1. By (52) we can from now on suppose that

$$
\begin{equation*}
\hat{r}<r . \tag{54}
\end{equation*}
$$

We shall denote the center of the circle to which the arc \hat{s}_{i} belongs by M_{i}, for $i=1, \ldots, k$.

Lemma 11. $P_{0}=M_{1} \cdots M_{k}$ is a convex k-gon inscribed in a circle that has its center O in the interior of P_{0}. Let C_{0} be the convex disc obtained from P_{0} by joining each two consecutive vertices by circular arcs of radius $r-\hat{r}$. Then C is the outer parallel domain of C_{0} at distance $\hat{r} . P$ and P_{0} are homothetic with respect to O.

Proof. Let O_{1} be the center of the circle to which $s_{1}=U_{11} U_{12}$ belongs. By (48), O_{1} lies on the perpendicular bisector b of the segment $A_{1} A_{2}$. In view of Lemma 7, O_{1} and the k-gon P are on the same side of the line $A_{1} A_{2}$. From Lemma 10 and (54) it follows that M_{1} is between O_{1} and U_{11}, and M_{2} between O_{1} and U_{12}. Because $M_{1} U_{11}=M_{2} U_{12}=\hat{r}$, we see that $M_{1} M_{2}$ is parallel to $A_{1} A_{2}$ and

$$
\begin{equation*}
\frac{M_{1} M_{2}}{U_{11} U_{12}}=1-\frac{\hat{r}}{r} . \tag{55}
\end{equation*}
$$

Writing $U_{11} U_{12} / A_{1} A_{2}=q$, we have by (49)

$$
\begin{equation*}
\frac{U_{i 1} U_{i 2}}{A_{i} A_{i+1}}=q \quad \text { for } \quad i=1, \ldots, k \tag{56}
\end{equation*}
$$

and by (55)

$$
\begin{equation*}
\frac{M_{1} M_{2}}{A_{1} A_{2}}=\left(1-\frac{\hat{r}}{r}\right) q . \tag{57}
\end{equation*}
$$

Since M_{1} and M_{2} are symmetric with respect to b, the lines $A_{1} M_{1}$ and $A_{2} M_{2}$ intersect at a point, say O, on b. Hence $O A_{1}=O A_{2}$. Because $M_{1} M_{2}<A_{1} A_{2}, O$ and P are on the same side of the line $A_{1} A_{2}$, and the line $M_{1} M_{2}$ separates O and $A_{1} A_{2}$. Equation (57) implies that

$$
\begin{equation*}
O M_{1}=O M_{2}=\left(1-\frac{\hat{r}}{r}\right) q \cdot O A_{2} \tag{58}
\end{equation*}
$$

In the same way it can be shown that the lines $A_{2} M_{2}$ and $A_{3} M_{3}$ intersect at a point, say O^{\prime}, on the same side of the line $A_{2} A_{3}$ as P such that $O^{\prime} A_{3}=O^{\prime} A_{2}$ and

$$
\begin{equation*}
O^{\prime} M_{3}=O^{\prime} M_{2}=\left(1-\frac{\hat{r}}{r}\right) q \cdot O^{\prime} A_{2} \tag{59}
\end{equation*}
$$

From (58) and (59) we infer that $O^{\prime}=O, O M_{1}=O M_{2}=O M_{3}$, and $O A_{1}=O A_{2}=$ $O A_{3}$. By applying this argument to $A_{3} A_{4}, \ldots$ we conclude that

$$
\begin{equation*}
O M_{1}=\cdots=O M_{k} \tag{60}
\end{equation*}
$$

and

$$
\begin{equation*}
O A_{1}=\cdots=O A_{k} \tag{61}
\end{equation*}
$$

By (58) P_{0} is obtained from P by homothety of center O and ratio ($1-\hat{r} / r$) q. In view of the construction, O is an inner point of P_{0}. Since $O M_{1}<O_{1} M_{1}$, the circular arcs of radius $r-\hat{r}$ joining each two consecutive vertices of P_{0} form the boundary of a convex disc C_{0}. C is the outer parallel domain of C_{0} at distance \hat{r} as required.

The following lemma completes the proof of Theorem 1 . We shall use the same notation as in Lemma 11.

Lemma 12. P is regular.

Proof. It suffices to show that

$$
\begin{equation*}
A_{1} A_{2}=A_{2} A_{3} . \tag{62}
\end{equation*}
$$

The segments $O A_{1}$ and $O A_{3}$ meet the boundary of C at two points, say A_{1}^{\prime} and A_{3}^{\prime}, belonging to \hat{s}_{1} and \hat{s}_{3}, respectively. Observe that by (60) $O A_{1}^{\prime}=O A_{3}^{\prime}$, and by (61) $O A_{1}=O A_{3}$. Thus $A_{1} A_{3}$ and $A_{1}^{\prime} A_{3}^{\prime}$ have the same perpendicular bisector t passing through O. Write X^{t} for the convex set obtained from the convex set X by Steiner symmetrization about the line t. If T denotes the triangle $A_{1} A_{3} A_{2}$, then $P^{\prime}=(P \backslash T) \cup T^{t}$ is a k-gon which is, by (61), convex. Since $a\left(T^{t}\right)=$ $a(T), P^{\prime}$ is a member of $\mathscr{P}_{k}\left(a_{0}\right)$.

The chord $A_{1}^{\prime} A_{3}^{\prime}$ dissects C into two convex subsets. Let C_{1} be that subset which contains the arc \hat{s}_{2}. Since $a\left(C_{1}^{\prime}\right)=a\left(C_{1}\right)$ and $p\left(C_{1}^{t}\right) \leq p\left(C_{1}\right)$, the (possibly nonconvex) set $D=\left(C \backslash C_{1}\right) \cup C_{1}^{t}$ has the properties

$$
\begin{equation*}
a(D)=a(C), \quad p(D) \leq p(C) \tag{63}
\end{equation*}
$$

We proceed to show that

$$
\begin{equation*}
a\left(D \cap P^{\prime}\right) \geq a(C \cap P) \tag{64}
\end{equation*}
$$

Let l be any line perpendicular to t. We have to consider three possible cases:
(i) l meets the interiors of C_{1} and T. Denoting the length of the segment s by $|s|$ we have

$$
\begin{align*}
|I \cap C \cap P| & =\left|I \cap C_{1} \cap T\right| \leq \min \left\{\left|l \cap C_{1}\right|,|I \cap T|\right\} \\
& =\left|I \cap C_{1} \cap T^{t}\right|=\left|I \cap D \cap P^{\prime}\right| \tag{65}
\end{align*}
$$

(ii) l meets neither the interior of C_{1} nor that of T. Then

$$
\begin{equation*}
|I \cap C \cap P|=\left|l \cap D \cap P^{\prime}\right| \tag{66}
\end{equation*}
$$

(iii) l meets either the interior of C_{1} or that of T. Let t_{1} and t_{3} be the tangents to \hat{s}_{1} and \hat{s}_{3} at A_{1}^{\prime} and A_{3}^{\prime} respectively. $t_{1}, t_{3}, A_{1} A_{3}$ and $A_{1}^{\prime} A_{3}^{\prime}$ enclose a (possibly degenerate) trapezium S that is symmetric with respect to t

Fig. 5
(see Figs. 5 and 6). Because $O A_{1} A_{3}$ is contained in P, so is S. Since t_{1} and t_{3} are support lines of C, S contains the intersection of C with the parallel strip bounded by the lines $A_{1} A_{3}$ and $A_{1}^{\prime} A_{3}^{\prime}$. Thus, if l meets the interior of C_{1} we have

$$
\begin{equation*}
|I \cap C \cap P|=|I \cap C|=\left|I \cap C_{1}\right|=\left|I \cap C_{1}^{\prime}\right|=\left|l \cap D \cap P^{\prime}\right| \tag{67}
\end{equation*}
$$

and if l meets the interior of T

$$
\begin{equation*}
|l \cap C \cap P|=|l \cap C|=\left|l \cap C \cap T^{\prime}\right|=\left|l \cap D \cap P^{\prime}\right| \tag{68}
\end{equation*}
$$

Now (64) follows from (65) to (68).
By (63) and (64), $C^{\prime}=\operatorname{conv} D$ is a member of $\mathscr{C}(a, p)$ satisfying

$$
\begin{equation*}
a\left(C^{\prime} \cap P^{\prime}\right) \geq a(C \cap P) \tag{69}
\end{equation*}
$$

In view of supposition (ii) of Theorem 1 equality holds in (69). Using Lemma 4 we obtain from (63) that

$$
p=p\left(C^{\prime}\right) \leq p(D) \leq p(C)=p
$$

Fig. 6
and $p(D)=p(C)$ implies that

$$
\begin{equation*}
p\left(C_{1}^{t}\right)=p\left(C_{1}\right) \tag{70}
\end{equation*}
$$

Since C_{1} is not contained in a line perpendicular to t we conclude from (70) (see [16, p. 208]) that C_{1} is symmetric with respect to a line t^{\prime} parallel to t. Since $A_{1}^{\prime} A_{3}^{\prime}$ is symmetric with respect to t we see that $t^{\prime}=t$. By (49) the lines $U_{12} U_{21}$ and $U_{11} U_{22}$ are perpendicular to t. Hence U_{12} and U_{21} as well as U_{11} and U_{22} are pairs of symmetric points, so that

$$
\begin{equation*}
U_{11} U_{12}=U_{21} U_{22} \tag{71}
\end{equation*}
$$

Equation (62) follows from (71) and (49). This completes the proof of Lemma 12 and that of Theorem 1.

Let C be a parallel domain of a regular arc-sided k-gon, and let P be the central k-gon of C. We conclude this section by showing that C is uniquely determined by the parameters $a(C)=a, p(C)=p, a(P)=a_{0}$.

Let $C=\left(C_{1}\right)_{p}$, where C_{1} is a regular arc-sided k-gon, and let $a(C)=a$ and $p(C)=p$ be given. If $a\left(C_{1}\right)=a_{1}, p\left(C_{1}\right)=p_{1}$, and 2α is the central angle of the arcs bounding C_{1}, we have by (9)

$$
\begin{equation*}
\frac{p_{1}^{2}}{a_{1}}=4 k \frac{\Phi(q)}{u+q} \tag{72}
\end{equation*}
$$

q and $\Phi(q)$ are given by (8), and $u=\cot (\pi / k)$. The discs C form an array joining the smooth regular k-gon, corresponding to $\alpha=0$, with the regular arc-sided k-gon, corresponding to $\alpha=\alpha^{*}$, where $q=q\left(\alpha^{*}\right)$ is determined by (8) and (9). By applying Steiner's formulas to $\left(C_{1}\right)_{\rho}$ we obtain from (72) that

$$
\begin{equation*}
\rho(\alpha)=\frac{1}{2 \pi}\left(p-\sqrt{\frac{\left(p^{2}-4 a \pi\right) \Phi}{\Phi-\pi(u+q) / k}}\right) . \tag{73}
\end{equation*}
$$

Differentiation yields

$$
\begin{equation*}
\rho^{\prime}(\alpha)=-\frac{\sqrt{p^{2}-4 a \pi}(v-u)}{2 k[\Phi-\pi(u+q) / k]^{3 / 2}} \frac{\sin \alpha-\alpha \cos \alpha}{\sin ^{2} \alpha} \tag{74}
\end{equation*}
$$

where $v=\cot \alpha$. Since $\alpha<\pi / k$, we can remark for later use that

$$
\begin{equation*}
\rho^{\prime}(\alpha)<0 \tag{75}
\end{equation*}
$$

By using Steiner's formula and (73) we find the in-radius of the kernel of C_{1}

$$
\begin{equation*}
r_{1}(\alpha)=\frac{u}{2 k} \sqrt{\frac{p^{2}-4 a \pi}{\Phi-\pi(u+q) / k}} \tag{76}
\end{equation*}
$$

and observe that

$$
\begin{equation*}
r_{1}^{\prime}(\alpha)=-\frac{u \sqrt{p^{2}-4 a \pi}(\alpha-\pi / k)}{2 k[\Phi-\pi(u+q) / k]^{3 / 2}} \frac{\sin \alpha-\alpha \cos \alpha}{\sin ^{3} \alpha}>0 . \tag{77}
\end{equation*}
$$

For the in-radius of P

$$
\begin{equation*}
r_{P}(\alpha)=r_{1}+\rho \cos \alpha \tag{78}
\end{equation*}
$$

we obtain by (74) and (77)

$$
\begin{aligned}
2 k \sin & \frac{\pi}{k}\left[\Phi-\frac{\pi(u+q)}{k}\right]^{3 / 2} \sin ^{3} \alpha\left(r_{P}^{\prime}+\rho \sin \alpha\right) \\
= & -\sqrt{p^{2}-4 a \pi}(\sin \alpha-\alpha \cos \alpha) \cos \alpha \cos \left(\frac{\pi}{k}-\alpha\right) \\
& \times\left[\tan \left(\frac{\pi}{k}-\alpha\right)-\left(\frac{\pi}{k}-\alpha\right)+\left(\frac{\pi}{k}-\alpha\right) \tan \left(\frac{\pi}{k}-\alpha\right) \tan \alpha\right]
\end{aligned}
$$

Hence

$$
\begin{equation*}
r_{P}^{\prime}(\alpha)<0 \tag{79}
\end{equation*}
$$

Thus $a(P)$ is a strictly decreasing function of α, and α is uniquely determined by $a(P)=a_{0}$. This proves the above statement.

4. The Area Deviation

We now turn to the problem of finding such members of $\mathscr{C}(a, p)$ and \mathscr{P}_{k} for which $\delta^{A}(C, P)$ is minimal. In view of a remark made in Section 1 , we have to consider only such values of a, p, and k that

$$
\frac{p^{2}}{a}<4 k \tan \frac{\pi}{k}
$$

For a disc C from $\mathscr{C}(a, p)$ and a k-gon P from $\mathscr{P}_{k}\left(a_{0}\right)$ we have by (1)

$$
\begin{equation*}
\delta^{A}(C, P)=a(C)+a_{0}-2 a(C \cap P) \tag{80}
\end{equation*}
$$

Because $a(C) \geq a$, it follows from (80) and (11) that

$$
\begin{equation*}
\delta^{A}(C, P) \geq a+a_{0}-2 M\left(a, p ; k, a_{0}\right) \tag{81}
\end{equation*}
$$

If $a_{0} \leq f_{1}(a, p, k)$, Remark 2 implies that

$$
\delta^{A}(C, P) \geq a-f_{1}(a, p, k)
$$

with equality if and only if C is a regular arc-sided k-gon of area a and perimeter p, and P is the kernel of C. Let P^{\prime} be the k-gon obtained from P by displacing a side of P outward parallel to itself through a sufficiently small distance. By using (33) it follows easily that

$$
\delta^{A}\left(C, P^{\prime}\right)<\delta^{A}(C, P)
$$

which shows that $\delta^{A}(C, P)$ is not minimal. Thus we can assume in the following that $a_{0}>f_{1}(a, p, k)$.

Since $a(C) \geq a(C \cap P)$, we conclude from (80) and (11) that

$$
\begin{equation*}
\delta^{A}(C, P) \geq a_{0}-M\left(a, p ; k, a_{0}\right) \tag{82}
\end{equation*}
$$

If $a_{0} \geq f_{2}(a, p, k)$ we have by (82) and Remark 2

$$
\begin{equation*}
\delta^{A}(C, P) \geq a_{0}-F\left(p, k, a_{0}\right) \tag{83}
\end{equation*}
$$

where F is given by (15). As can be shown by differentiation, the function of a_{0} on the right-hand side of (83) is strictly increasing for $a_{0} \geq f_{2}(a, p, k)$. This function thus attains its minimum for $a_{0}=f_{2}(a, p, k)$. Therefore, we need to consider only such values of a_{0} for which

$$
\begin{equation*}
f_{1}(a, p, k)<a_{0} \leq f_{2}(a, p, k) \tag{84}
\end{equation*}
$$

We shall again make use of (81) and observe that, by Theorem 1 and Remark 2, equality occurs in (81) if and only if C is an outer parallel domain of a regular arc-sided k-gon of area a and perimeter p, and P is the central k-gon of C. If $a_{0}=f_{2}(a, p, k) C$ is degenerate, which means that C is a smooth regular k-gon with case P.

Let us first assume that $\delta^{A}(C, P)$ is minimal for some a_{0} from the interior of the interval (84). Resuming the notation used in Section 3, we can state that (see also [2, p. 363])

$$
\begin{equation*}
\frac{U_{11} U_{12}}{A_{1} A_{2}}=\frac{1}{2} \quad \text { if } \quad f_{1}(a, p, k)<a_{0}<f_{2}(a, p, k) \tag{85}
\end{equation*}
$$

Otherwise we could reduce $\delta^{A}(C, P)$ by displacing $A_{1} A_{2}$ parallel to itself through a small distance. This follows from (33). Second, if we assume that $\delta^{A}(C, P)$ is minimal for $a_{0}=f_{2}(a, p, k)$, the same argument as above shows that

$$
\begin{equation*}
\frac{U_{11} U_{12}}{A_{1} A_{2}} \geq \frac{1}{2} \quad \text { if } \quad a_{0}=f_{2}(a, p, k) \tag{86}
\end{equation*}
$$

Using the notation introduced at the end of Section 3 we have

$$
A_{1} A_{2}=2 r_{P} \tan \frac{\pi}{k}
$$

and

$$
U_{11} U_{12}=2\left(r_{1} \tan \frac{\pi}{k}+\rho \sin \alpha\right)
$$

Hence by (78)

$$
\begin{equation*}
\frac{U_{11} U_{12}}{A_{1} A_{2}}=\frac{r_{1} \tan (\pi / k)+\rho \sin \alpha}{r_{1}+\rho \cos \alpha} \cot \frac{\pi}{k}=g(\alpha), \tag{87}
\end{equation*}
$$

where $\rho(\alpha)$ and $r_{1}(\alpha)$ are given by (73) and (76). From

$$
\begin{aligned}
g^{\prime}(\alpha)\left(r_{1}+\rho \cos \alpha\right)^{2} \sin \frac{\pi}{k}= & r_{1} \rho^{\prime} \sin \left(\alpha-\frac{\pi}{k}\right)+r_{1} \rho \cos \left(\alpha-\frac{\pi}{k}\right) \\
& +r_{1}^{\prime} \rho \sin \left(\frac{\pi}{k}-\alpha\right)+\rho^{2} \cos \frac{\pi}{k},
\end{aligned}
$$

and (75) and (77) we see that

$$
\begin{equation*}
g^{\prime}(\alpha)>0 \tag{88}
\end{equation*}
$$

Thus we have to consider two cases.
(i) If $g(0)<\frac{1}{2}$, (86) is impossible, and the minimum of $\delta^{A}(C, P)$ is attained in the case indicated by (85). C is a parallel domain of a (proper) regular arc-sided k-gon, and P is the central k-gon of C.
(ii) If $g(0) \geq \frac{1}{2}$, (85) is impossible and the minimum of $\delta^{A}(C, P)$ is attained in the case indicated by (86). C is a smooth regular k-gon, and P is the case of C.
$g(0)$ can easily be evaluated by (87), (73), and (76). Writing $(k / \pi) \tan (\pi / k)=t$ and referring to (3) we can summarize the result of this section in

Theorem 2. Suppose that $p^{2} / 4 a \pi<t$. There is exactly one disc C from $\mathscr{C}(a, p)$ and one k-gon P such that

$$
\delta^{A}(C, P)=\Delta^{A}(a, p, k)
$$

C and P are characterized by the following properties:
(i) $a(C)=a, p(C)=p$.
(ii) if $p^{2} / 4 a \pi<(1+t)^{2} /(1+3 t)$, C is a parallel domain of a regular arc-sided k-gon, and P is the central k-gon of C. Any side of P, say $A_{1} A_{2}$, meets the boundary of C at points U_{11}, U_{12} such that

$$
A_{1} U_{11}=U_{12} A_{2}=\frac{1}{4} A_{1} A_{2}
$$

(iii) if $p^{2} / 4 a \pi \geq(1+t)^{2} /(1+3 t)$, C is a smooth regular k-gon, and P is the case of C.

References

1. A. S. Besicovitch, Variants of a classical isoperimetric problem, Quart. J. Math. Oxford ser. 23 (1952), 42-49.
2. H. G. Eggleston, Approximation to plane convex curves, I. Dowker-type theorems, Proc. London Math. Soc. (3) 7 (1957), 351-377.
3. G. Fejes Tóth, Covering the plane by convex discs, Acta Math. Acad. Sci. Hungar. 23 (1972), 263-270.
4. G. Fejes Tóth, Sum of moments of convex polygons, Acta Math. Acad. Sci. Hungar. 24 (1973), 417-421.
5. G. Fejes Tóth and A. Florian, Covering of the plane by discs, Geom. Dedicata 16 (1984), 315-333.
6. L. Fejes Tóth, Filling of a domain by isoperimetric discs, Publ. Math. Debrecen, 5 (1957), 119-127.
7. L. Fejes Tóth, On the isoperimetric property of the regular hyperbolic tetrahedra, Magyar Tud. Akad. Mat. Kut. Int. Közl. 8A (1963), 53-57.
8. L. Fejes Tóth, Regular Figures, Pergamon Press, Oxford, 1964.
9. L. Fejes Tóth, Lagerungen in der Ebene, auf der Kugel und im Raum, 2nd ed., Springer-Verlag, Berlin-Heidelberg-New York, 1972.
10. L. Fejes Tóth and A. Florian, Packing and covering with convex discs, Mathematika 29 (1982), 181-193.
11. L. Fejes Tóth and A. Heppes, Filling of a domain by equiareal discs, Publ. Math. Debrecen 7 (1960), 198-203.
12. A. Florian, Integrale auf konvexen Mosaiken, Period. Math. Hungar. 6 (1975), 23-38.
13. A. Florian, Packing and covering with convex discs, Studia Sci. Math. Hungar., to appear.
14. P. M. Gruber, Approximation of convex bodies, Convexity and Its Applications, Birkhäuser-Verlag, Basel-Boston-Stuttgart, 1983.
15. G. Hajós, Über den Durchschnitt eines Kreises und eines Polygons, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 11 (1968), 137-144.
16. K. Leichtweiss, Konvexe Mengen, Springer-Verlag, Berlin-Heidelberg-New York, 1980.
17. G. C. Shephard and R.J. Webster, Metrics for sets of convex bodies, Mathematika 12 (1965), 73-88.

Received June 17, 1985.

[^0]: * Dedicated to Professor E. Hlawka on the occasion of his birthday.

