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Abstract. We consider the class of all convex discs with areas and perimeters 
bounded by given constants. Which disc of this class has the least possible area 
deviation from a k-gon? This and related questions are the subject of the present 
paper. 

1. Introduction 

By a convex disc we mean a convex compact subset of the Euclidean plane with 
interior points. In this paper we shall deal with the approximation of  convex 
discs by convex polygons. There are several methods of measuring the deviation 
between two convex discs. The following are two of the most usual methods. We 
write a(M)  and p(M)  for the area, i.e., the Lebesgue measure, and the perimeter 
of the set M. If  X and Y are convex discs, the area deviation between X and Y 
is defined by 

&~(X, Y)  = a(X  u Y) - a (X  c~ Y), (1) 

and the perimeter deviation by 

Be(X, Y ) = p ( X u  Y ) - p ( X n  Y). (2) 

Equation (1) may also be written in the form 

8A(x, Y) = a ( X A Y ) ,  

* Dedicated to Professor E. Hlawka on the occasion of his birthday. 
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where 

X A  Y= ( X \  Y) w ( Y~X) 

is the symmetric difference of the two sets. Note that 8 A makes the class of all 
convex discs into a metric space, but 8 P does not. Various concepts of deviation 
of  two convex bodies are discussed in [17]. Gruber [14] gives an up-to-date 
review of  the results concerning the approximation of a convex body by polytopes. 
The approximation of convex discs by convex polygons is of interest by itself. 
Moreover, it is important in its application to problems of packing and covering 
(see [3, 5, 6, 8-11, 13]). 

Throughout this paper let a and p be positive numbers satisfying the 
isoperimetric inequality 

2 
P-->4~r. 
a 

Let qg(a, p) be the class ofaU convex discs with area not less than a and perimeter 
not greater than p. A convex polygon with at most k sides is simply called a 
k-gon. Let ~k denote the class of all k-gons. Two measures for the closeness of 
the approximation of k-gons to discs from ~(a,  p) are given by 

AA(a, p, k )=  inf 8A(C, P) (3) 

and 

Ae(a,p, k) = inf 8P(C, P), (4) 

where the infimum is taken over all C E ~(a, p) and all P E ~k.  Both functions 
are interesting only in the case when 

p2  "~ 77" 
"~- 4k tan ~, (5) 

which means that p is less than the perimeter of a regular k-gon of area a. 
Otherwise we have Cg(a, p) r~ ~k # 0 ,  SO that AA(a, p, k) = Ae(a, p, k) = O. 

By combining some results from [2], [5] we shall obtain AP(a, p, k) in Section 
2. Using ideas of Besicovitch [1], Eggleston [2], and Fejes T6th and Florian [5] 
we will find the supremum of a(C n P) taken over all C E ~(a, p) and all k-gons 
P of a given area; this is the subject of Section 3 and the main part of this paper. 
In Section 4 we will apply the results of Section 3 to determine those members 
of qg(a, p) and ~k for which 8A(C, P) is minimal. 



Approximation of Convex Discs by Polygons 243 

2.  T h e  P e r i m e t e r  D e v i a t i o n  

According to a remarkable result by Eggleston [2], the perimeter deviation of a 
given convex disc from an arbitrary convex k-gon is minimal for a k-gon inscribed 
in the disc. Thus we have 

Ae(a ,p ,k )=in f~e(C,P)  ( C ~ ( a , p ) , P ~ k ,  PCC) .  (6) 

Before we state the result, we need to describe a certain geometrical configura- 
tion. Let P* be a regular k-gon. We join each two consecutive vertices of P* by 
congruent circular arcs of  radius not less than the circum-radius of  P*. These 
arcs form the boundary of a convex disc C* which we call a regular arc-sided 
k-gon with kernel P* (Fig. 1). If  (5) is satisfied it can be shown (see [5]) that 

(i) there is exactly one regular arc-sided k-gon C* with area a and perimeter 
p, and 

(ii) the infimum on the right-hand side of (6) is attained only for C* and its 
kernel P*. 

Hence 

Ae(a, p, k) = 8P(c *, P*). (7) 

A simple expression for ~P(C*, P*) can be obtained in the following way 
(see [5]). Let 2a  be the central angle of  the circular arcs bounding C*, where 
0 <  a -  7r/k. We define a function O(q) by the parametric equations 

a 2 a - s i n o t c o s a  [ 0 < a < ~ r \  
~ ( q )  = sin 2 a '  q - sin 2 a 

(8) 

for 0 <  q - t ] ,  where # corresponds to a = ~'/k, and put O(0)=  1. Elementary 
calculation yields the equation 

p2 ~r qb(q) 
- -  = 4k sin ( 9 )  
a k cos(~'/k)+q sin(~r/k) '  

C* 

Fig. 1 
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which has a single root q e (0, 4]. Since p(P*) = (p sin a)/a, we finally conclude 
that 

8P(C*, P*) = p(1 - (~(q))-~/2). (10) 

3. A Maximum Problem 

Let ~k(ao) denote the class of all k-gons of  given area ao. In this section we 
shall deal with the following 

Problem. Find a member of ~(a,  p) and a member of ~ak(a0) such that their 
intersection has the greatest possible area. 

Accordingly we introduce the function 

M(a, p; k, ao) =max  a( C c~ P), (11) 

where the maximum is to be taken over all discs C from ~(a,  p) and all k-gons 
P from ~k(aO). The existence of  the maximum follows from the Blaschke selection 
theorem. 

In the particular case when p2/a = 4~-, the class CO(a, p) consists only of the 
circle of area a. Fejes T6th [7] showed that the intersection of  a given circle C 
and a k-gon P of given area has maximal area if P is regular and concentric 
with C; for alternative proofs of this "momentum lemma" see [4], [12], [15]. 

In certain cases the solution to our problem can be deduced from two previous 
results which we now recollect. 

Let the function fi(a, p, k) be defined by 

I 2 
p2 1 if F < 4~rt, 

A(a ,p ,k ) -  4-£~t~(q) a --[ p2 p2 
if ---> 4~rt, 

4~rt a 

(12) 

where t = t(k) = (k/1r) tan(~r/k), and ~ (q )  is given by (8). Let C be a disc from 
qg(a, p) and P a k-gon with P c C. It was proved in [5] that 

a(P)<f~(a,p, k), (13) 

with equality if and only if either C is a regular arc-sided k-gon of area a and 
perimeter p, and P is the kernel of  C (p2/a <4~rt), or C = P is a regular k-gon 
of  perimeter p (p2/a >= 4~rt). By (13) we have 

M(a,p;k, ao)=ao if ao<fl(a,p,k), and 
(14) 

M(a,p;k, ao)<ao if  fl(a,p,k)<ao. 
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Hence in the following we can assume that ao>f~(a, p, k). 
Let x be a convex disc with in radius r. X_p (0 < p < r) denotes the inner 

parallel domain and Xp (0 < p) the outer parallel domain of X at distance p. If 
/5 is a regular k-gon, we call a set of the form (/5_p)p a smooth regular k-gon with 
case /5 (Fig. 2). It will be convenient to consider both /5 and its in-circle as 
degenerate smooth regular k-gons with case /5. The corresponding values of p 
are 0 and r. 

We define the function F(p, k, ao) by 

F(p,  k, ao) = 

ao 

p a#-ff~o~t- p2/4 - aolr 

( t -1 )~"  

p2 

47r 

p2 
if  ao < 41rt' 

2 <p2 t 
if 4~ t  -- ao- 4~-' 

if P2t< 
4~r ao. 

(15) 

Let C be a convex disc of perimeter not greater than p and P a k-gon from 
~k(ao) with C c P. Fejes T6th ([6] or [8, p. 175]) proved that 

a( C) <- F(p, k, ao). (16) 

Let p2/4~rt <- ao <- p2t/47r. Then equality holds in (16) if and only if C is a (possibly 
degenerate) smooth regular k-gon with perimeter p, and P is the case of C. 

Let C be a disc from ~(a,  p) and P a k-gon with C c P. Since F is a strictly 
increasing function of ao for 0 < ao <-p2t/47r, it follows from (15) and (16) that 

a(P)>-f~(a,p, k), (17) 

where 

l r (p -x / (p2 '4aTr ) (1  ' i : i ) )  2 if P-<47rt,a 

f2(a, p, k) = 2 
if P-__ 4~rt. 

a 

(18) 

(Lp)p P 

Fig. 2 
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If p2/a <--4~rt and a(P)=f2(a,  p, k), then C is a (possibly degenerate) smooth 
regular k-gon of area a and perimeter p, and P is the case of C. Thus, by (18) 
we have 

fE(a, p, k) >- a (19) 

and 

M ( a , p ; k ,  ao)>-a if ao>f2(a,p,k).  (20) 

Returning to our problem, we distinguish the cases p2/a <~ 4rrt and p2/a >- 47rt, 
and begin with the simpler 

Case (a). p2/a >-4,n't 
From (12) and (18) we see that 

f2(a, p, k) <-fl(a, p, k). 

Let ao>fl(a, p, k), and let C and P be members of ~(a,  p) and ~k(ao) such that 

a( C c~ P) = M(a, p; k, ao). (21) 

Inequalities (13) and (20) imply that PC  C and 

a( C c~ P) >>- a. (22) 

We shall see in the proof of  Theorem 1 (Lemma 4) that, whenever (21) together 
with the assumptions PC  C and C ¢  P are satisfied, then a ( C ) = a ,  whence 
a(C c~ P ) <  a. By (22) this last inequality is impossible. Thus we conclude that 
C c p, and from (16) and (21) it follows that 

a( C c~ P) = F(p, k, ao). (23) 

Equations (14) and (23) can be summarized in 

Remark 1. If p 2 / a  > 4~rt we have 

M(a,  p; k, ao) = F(p, k, ao). 

From the suppositions (21) and p2/4~rt<<-ao<<-p2t/4~r it follows that C is a 
(possibly degenerate) smooth regular k-gon of perimeter p, and P is the case of C. 

Case (b). p2/ a < 41rt 
Because of (12) and (19) we obtain the inequality 

f~(a, p, k) <f2(a, p, k), (24) 

which is contrary to case (a). 
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Let ao>-fE(a, p, k), and let C e CO(a, p) and P ~ ~k(ao) satisfy (21). By repeating 
the argument used in case (a) we again come to the conclusion that C is contained 
in P and that (23) holds in case (b) as well. 

Remark 2. Ifp2/a<4~'t  we have 

ao if ao <-- fl( a, p, k), 

M(a,p;k ,  ao)= F(p,k,  ao) if f2(a,p,k)<a o. 

From (21) and ao =fl(a, p, k) it follows that C is a regular arc-sided k-gon of 
area a and perimeter/7, and P is the kernel of  C. From (21) and f2(a, p, k) -< ao < - 
p2t/47r it follows that C is a (possibility degenerate) smooth regular k-gon of  
perimeter p, and P is the case of  C. 

We now proceed to find the maximum of  a ( C n P )  with C ~ ( a , p )  and 
PE ~k(aO) in the more difficult case when 

f~(a,p, k)<ao<f2(a,p, k). 

To describe the extremal configuration we consider the outer parallel domain C 
of a regular arc-sided k-gon at some distance p. We first assume that C is not a 
circle. Then C is bounded by k equal circular arcs of  radius F and k equal circular 
arcs of radius r, where ~ < r. The lines joning the endpoints of  every arc of  radius 
r enclose a regular k-gon P which we call the central k-gon of C (Fig. 3). By a 
central k-gon of a circle C we mean any regular k-gon concentric with C. 

Theorem 1. Let 

(i) fl(a, p, k) < ao <f2(a, p, k) 

Fig. 3 
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and let C and P be such members of  ~(a,  p) and ~k(ao) that 

(ii) a (C  n P) = M(a ,  p; k, ao). 

Then C is an outer parallel domain o f  a regular arc-sided k-gon, and P is 
the central k-gon of  C. Furthermore, C has area a and perimeter p. 

We shall, in fact, prove Theorem 1 by making the weaker assumptions (ii) and 

(iii) C ¢  P, P C  C 

instead of (i) and (ii). Theorem 1 together with Remarks 1 and 2 solve the problem 
set at the beginning of  this section. Observe that a regular arc-sided k-gon and 
its kernel as well as a smooth regular k-gon and its case may be regarded as a 
degenerate parallel domain of a regular arc-sided k-gon and its central k-gon. 

Proof of  Theorem 1. Let C and P satisfy suppositions (ii) and (iii). We will 
develop the properties of  C and P in the following 12 lemmas. The last lemma 
shows that C and P correspond with the statement of  our theorem. 

First, we remark that by (ii) and (iii) there is a vertex of P outside C, and 
there is a side of P intersecting the interior of  C 

Lemma 1. P has exactly k vertices. 

Proof. Suppose that P has fewer than k vertices. Let A~ be a vertex of  P outside 
C, and let A,A~+t be a side of  P containing interior points of C. We cut off from 
P a sufficiently small triangle with vertex At and displace A~A~+I toward the 
exterior of  P such that the new k-gon P '  obtained from P by this process has 
area ao. Then we have 

a (C  n P ' ) >  a (C  n P) (25) 

in contradiction to assumption (ii). [] 

We denote the vertices of  P in the anticlockwise sense by A~, A2 . . . .  , Ak and 
set Ak+ 1 = A1, Ao = Ak. 

Lemma 2. No vertex o f  P lies in the interior o f  C 

Proof. Suppose that A~ is outside C and A2 is an interior point of C. Let the 
side A~A2 rotate in the clockwise sense about a point between AI and A: such 
that the new k-gon P' = A~A~A3 • •. Ak has area ao. I f  the angle of rotation is 
small, A~ is exterior to C and A[ is an interior point of  C. This again leads to 
inequality (25). 
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Suppose that A~ lies on the boundary and A2 in the interior of C. Let the side 
A1A2 rotate about A~ in the clockwise sense through a small angle into the new 
position A~A~ with A~ in the interior of  C. If  A~ is one of  the vertices outside C 
we displace A~A~+~ toward the interior of P such that the k-gon P' finally obtained 
has area a0. Since P '  satisfies (25), the supposition was wrong, and Lemma 2 is 
proved. [] 

We shall use the symbol AB to denote both the segment AB and its length. 

Lemma 3. (a) A side A1A 2 of P that contains interior points of C meets the 
boundary of C at points Ull, U12, where Ul2 is between Ull and A2, such 
that 

A~ UH = UlzA2. (26) 

(b) Any side A~Ai+~ of P intersects C at the points of  a segment U~ Ui2 such that 

Uil Ui2~ UII UI2 (27) 
AfAH AIA2 

Proof. (a) Suppose that, contrary to (26), 

A1 Ull > Ut2A2. (28) 

This implies that A~ is outside C and 

MU1~ < MU~2, (29) 

where M is the midpoint of  A~A2. Let AlA2 rotate in the clockwise sense through 
a small angle ~ into the new position A~A;, such that P ' =  AiA~A3 • • • A k  has 
area ao. The segments A~A2 and AiA~ intersect at, say, M'. Denoting the triangle 
with vertices X, Y, Z by XYZ,  we have 

a ( C c ~ P ' ) - a ( C c ~ P ) = a ( C n M ' A 2 A ~ ) - a ( C n M ' A I A i ) .  (30) 

If M '  is outside or on the boundary of  (7, then a(Cc~M'A2A~)>O and 
a ( C n  M'A~Ai)=0,  so that P '  satisfies (25). Thus we can assume that M'  is an 
inner point of  C. Since M'  approaches M as ~ tends to zero, M belongs to C 
and we obtain 

lim a( C c~ M'AIA~) MU21 
~-,o a( C c~ M'A2A~) = MU22" (31) 

From (29), (30) and (31) we see that P '  satisfies (25) if 9 is sufficiently small. 
Because (25) is impossible, part (a) of Lemma 3 is proved. 

(b) It suffices to show (27) for 2_<i_< k - 1 .  We displace the side AIA2 of P 
outward parallel to itself through a small distance 7/t > 0. Let P ' =  A i A ~ . . .  A'k 
be the new k-gon, where A~ = Aj for j = 3 . . . . .  k; From P'  we obtain the further 
k-gon P" by displacing the side A~A~+~ inward parallel to itself through a small 
distance ~2<0,  such that a(P")=ao. Write P"=A~ . . .A ' ~  with A'f=A~ for 
j # i, i + 1. We shall use the notations 

C c~ P = S, C n P ' =  S', C c~ P" = S" (32) 
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and note that S c S'  and S " c  S'. From the definitions of  P '  and S' we obtain the 
relations 

a ( P ' ) - a ( P )  a ( S ' ) - a ( S )  
lim = A1A2, lim - Un  U12. 
rtl--,O "t]l nl--.O T/I 

Because A~A~+~ > A~A~+1, we have 

a ( P )  - a (P ' )  = a(P")  - a (P ' )  - l t a ' a '  " " -- ~ ' ~ ' ~ i + 1  + A i  A~+l)772 

< ½AiAi+l rl2 < O. 

Together with limn,_,o a (P ' )  = a ( P )  this implies that 

(33) 

(34) 

lim 772 = 0.  ( 3 5 )  
~,/t --}0 

By the definitions of  P '  and P" there are constants yl and T2 such that 

I t  t?  _ _  ! f Ai  Ai+l - AiAi+l + 72r/2. A~A[+t = AiA~+I + "h ~ql, 

From (33) to (36) we deduce that 

lim ~__2 = A1A2 
nl~O 171 AiAi+I" 

(36) 

(37) 

a(S ' )  - a (S")  
lim = - U~ U~2. (38) 

a(  S')  - a(  S") = a( S ' \  S") = a(  C ra ( P'k  P")). 

Decomposing P ' \ P "  into two disjoint sets according to 

P'\e" = [(e'\P") e l  u [ (e ' \  P") (e ' \  e)] ,  

(39) 

(40) 

By (32) we have 

if  ~1 is sufficiently small, and this contradicts the maximum property of  P. Thus 
C c~ A~A~+I is a segment, say Uj~ U~2. We now proceed to prove that 

a(S")  = a ( S ' ) >  a ( S )  

Observe that the intersection of C with A~Ai+I is nonempty. Otherwise we 
would have 
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we distinguish two cases. In both we assume, as we clearly may, that ~t is 
sufficiently small. 

(a )  If  i = 2  then ( P ' \ P " ) n ( P ' \ P )  is a parallelogram with sides A2A'2 and 
A[A~. Hence 

(/3) If i > 2  then 

a[(P'\P") ~ ( P ' \ P ) ]  = O(n,n2). (41) 

(P'\P") n (P ' \P)  = 0 .  (42) 

Let I be the line joining A~ and A~+~, and let L(~72) be the" parallel strip bounded 
by ! and the line through A~' and A,"÷~. Let s(x) denote the length of the intersection 
of C n P with the line parallel to l at distance x > 0 from /. Then we have 

a[ C c~ P n ( P'\P") ] = a[ C n P c~ L(n2)] = -n2s(x)  (43) 

for some x between 0 and -~72. Because lim s(x) = U~I Ui2 as x tends to zero, the 
required equation (38) follows from (35) and (39) to (43). 

Supposing the contrary to (27), we obtain by (33), (37) and (38) that 

a( S') - a( S") Ui1U~2 /A, Ai+I 
lim 
~,~o a ( S ' ) - a ( S )  UIIUt2/AtA2 <1,  

which implies by (32) that 

a( C c~ P")> a( C n P). (44) 

The contradiction of  (44) to assumption (ii) of Theorem 1 completes the proof 
of part (b). [] 

Corollary I. Any side of P intersects C at the points of a segment of positive length. 
A side of P which intersects the interior of C has its endpoints outside C. 

Following the notation used in Lemma 3 we shall constantly denote the points 
at which the side A~Ai+t meets the boundary of C by Ui~ and U~2. The points 
Ul~, Ut2 , . . . ,  Uk~, Uk2 are round the boundary of C in the anticlockwise sense. 

In the proofs of  the above lemmas C is a given convex disc and P runs through 
the class ~k(ao). In the proofs of the following seven lemmas P is a given k-gon 
while C varies on Ca(a, p). 

Lemma 4. p ( C )  = p  and a ( C )  = a. 
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Proof If  p ( C ) < p  we choose p > 0  such that p(Cp)<p. Thus Cp belongs to 
qg(a, p). Since the boundary of C intersects the interior of P we have 

a (CpnP)>  a(C n P )  

in contradiction to the maximum property of  C. 
Suppose that a(C)> a. Since there are interior points of  C outside P, we can 

find a proper  convex subset of  C, say C', such that C '  is a member of  C~(a, p) and 

a(C' n P) = a(C n P). 

Because p(C ' )<p  this is impossible. [] 

Lemma 5. Suppose that the side AIA2 contains interior points of C. Let sl be the 
arc on the boundary of C between U~I and U12, which is outside P. s~ is a circular 
arc. 

Proof. Let c be the circular arc on the same side of the line AIA2 as s~ that has 
endpoints U1~ and U~2 and the same length as s~. Let us assume that s~ ~ c. 
Denoting the convex hull of  the set M by conv M and the (not necessarily 
convex) disc (C \conv  s l ) u  cony c by D we have 

p(D) = p(C), a(O n P) = a(C n P). (45) 

We now refer to the well-known fact that the area of  a convex disc which is 
bounded by a given straight segment and an arc of  given length attains its 
maximum if and only if the disc is a circular segment. Thus 

a(conv sl) < a(conv c), (46) 
whence 

a(D) > a(C). (47) 

From (45) and (47) it follows that C' =conv  D belongs to ~(a,  p) and 

a(C' n P ) > a ( C n P ) .  

By (47), however, we have a ( C ' ) >  a, which contradicts Lemma 4. Thus the 
assumption sl ~ c was wrong and Lemma 5 is proved. [] 

Lemma 6. C is strictly convex. 

Proof. Suppose that the straight segment V~ V2 is part of  the boundary of  C. Let 
S be a circular segment o f  C\P, the chord of  which has length less than V~ V2. 
We cut S off from C and join it to V~ V2, obtaining a nonconvex disc D with 
a(D) = a(C),  p(D) = p ( C )  and a a(D n P) > a(C n P). Then C'= conv D has 
the properties 

p(C')<p, a (C ' )>a  
and 

a(C 'n  P) >- a(C n P) 

in contradiction to Lemma 4. Thus Lemma 6 is proved. [] 
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From Lemma 3, Corollary 1 and Lemma 6 we infer 

Corollary 2. (i) Every vertex of  P is exterior to C. 

(ii) Every side o f  P intersects the interior o f  C. 

(iii) A,U/I = U~2A~+I for i= 1 , . . . ,  k. 

U, tU,~ Uk, Uk~ (iv) . . . . .  

AIA2 AkAI 

(48) 

(49) 

Lemma 7. Let s~ be the circular arc on the boundary o f  C between Ui~ and U~2, 
which is outside P. s~ is less than a semicircle, for i = 1 , . . . ,  k. 

Proof. Suppose that s~ is greater than or equal to a semicircle. Let tl and t 2 be 
the tangent lines to sl at Utt and U~2, respectively. By (48) and (49) the segments 
Ut2U2~ and UtIU22 are parallel. Since C is contained in the set bounded by st, 
tt and t2, s~ is at most a semicircle. In this case U2t lies on t2, and U22 on tl. 
Thus A~ and A3 are separated from C by tt, showing that the sides A 3 A 4 , . . . ,  AkAt 
do not intersect C. But by Corollary 2(ii) this is impossible. [] 

Lemma 8. The circular arcs sl . . . .  , Sk considered in Lemma 7 have the same 
radius, say r. 

Proof Suppose that st and s 2 have different radii. Let ct and c2 be two chords 
of the arcs st and s2, other than Utt U12 and U21 U22, and having equal lengths. 
Let s~ and s~ be the respective subarcs of st and s2. From C we obtain a new 
disc, say D, by exchanging the positions of the circular segments conv s~ and 
conv s~. This means that we cut them off from C and join them to c2 and Cl, 
respectively. Obviously, 

p ( D ) = p ( C ) ,  a ( D ) = a ( C ) ,  a ( D n P ) = a ( C c ~ P ) .  (50) 

Since st and s2 have different radii and cl ~ UH U~2, c2 ~ U2~ U22, D is not convex. 
Thus by (50) we have for C'  = cony D 

C ' e ~ ( a , p ) ,  a ( C ' ) > a ,  a(C'nP)>>-a(Cc~P) .  (51) 

The contradiction to Lemma 4 proves the lemma. [] 

Lemma 9. Let s~ be the arc on the boundary o f  C between U/-t.2 and Ull, which 
is contained in P, for i = 1 . . . .  , k. 

(i) ~i is a circular arc; 
(ii) the arcs ~,  . . . , sk have the same radius, say F; 

(iii) i f  r is the radius o f  the arcs considered in Lemma 8, then 

F-< r. (52) 
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Proof. (i) Let V~, V2 be two distinct points of  s~= U ~ 2 ~  other than U~2 and 
U2~. In order to show that ~2 is a circular arc it suffices to prove this for the arc 
V~'~2. Observe that VI'-V2 has positive distance, say d, from the boundary of  P. 
We cover V~ V2 by a finite number of  its subarcs such that each of them overlaps 
the following and has length less than d. By Lemma 6, not one is a straight 
segment. If  any of these subarcs is not a circular arc, we replace it by a circular 
arc c of the same length in exactly the same way as in the proof of  Lemma 5. 
By construction, the convex hull of c is contained in P. We obtain a (not necessarily 
convex) disc D with 

p(D)=p(C) ,  a(D)>a(C) ,  a ( D n P ) > a ( C c ~ P ) .  

Thus C'  =conv  D sa t i s~s  (51) which is impossible. Hence each of  the subarcs 
is circular, and so is V~ V2. 

(ii) Suppose that ~ and s2 have different radii. We obtain a nonconvex disc 
D satisfying (50) by exchanging the positions of two small circular segments, 
the arcs of  which are part of g~ and s~, respectively. Since the proof  is quite 
similar to that of  Lemma 5 we omit the details. 

(iii) Suppose that P> r. Similarly, as in the proof  of  Lemma 5, we exchange 
the positions of two small circular segments, the arcs of which are part of ~t and 
s~, respectively. We obtain a nonconvex disc D with p (D) = p (C),  a (D)  = a (C) ,  
and a(D n P) > a(C r~ P). Hence C '  = cony D satisfies (51), and the proof of  
Lemma 9 is complete. [] 

We next prove that C has a smooth boundary. 

L e m m a  10. Through every boundary point of C there passes exactly one support line. 

Proof Let t and t' be the tangent lines to the arcs sl and s2 at U~2. To prove 
Lemma 10 we have to show that t = ~'. Suppose that t # t ~. Let X Y  be a chord of  
C parallel to i', where X lies on s2 and Y on st (Fig. 4). We denote the convex 

? 

r - -  S 4  

A2o -A l 

Fig. 4 
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hull of X U t 2 Y  by S1, the angle between X T  and the arc XU~2 by A-X, and 
the angle between YX and the arc Y'012 by ~.Y. Let ' ~ ¢  be a subarc of 82 
contained in the interior of P and such that VW = XY. Write $2 for the convex 
hull of VW, and ~_V for the angle of $2 at the vertex V. By exchanging the 
positions of $1 and $2 we obtain the sets Tt and T2, which are congruent to S~ 
and $2, respectively. 

If  the segment X Y  has a sufficiently small distance from i', the following 
conditions are satisfied: 

(i) ~X<z~ I~ 
(ii) S i n S 2 =  T~n T2=~; 

(iii) T~ c p. 

Since t ~  t', we have N V < L X ,  and by (i) ~ .V<~Y. Hence 

T2 c Sl. (53) 

By cutting S~ and $2 off from C and replacing them by T2 and T~ we obtain a 
nonconvex disc D with 

p ( D ) = p ( C ) ,  a ( D ) = a ( C ) .  

By using (ii), (iii), and (53) we find 

a( D n P) = a( C c~ P) - a( Si c~ P) - a( S2 n P) + a( T i n  P) + a ( T2 n P) 

= a(C n P) + a (S l \  T2) - a ( (S l \  T:) n P) 

> - a ( C n P ) ,  

which shows that C' =conv  D satisfies (51). Thus the supposition t ~ ~'was wrong, 
and Lemma 10 is proved. [] 

In the case when : = r all the arcs st, st (i = 1 , . . . ,  k) have the same radius. 
Lemma 10 shows that C is a circle. By (48) P is inscribed in a circle concentric 
with C, and from (49) it follows that P is regular, as stated in Theorem 1. By 
(52) we can from now on suppose that 

: <  r. (54) 

We shall denote the center of the circle to which the arc s~ belongs by Mr, for 
i = l  . . . .  , k .  

Lemma 11. Po = M ~ . . .  Mk is a convex k-gon inscribed in a circle that has its 
center 0 in the interior o f  Po. Let Co be the convex disc obtained from Po by joining 
each two consecutive vertices by circular arcs of  radius r - ~ .  Then C is the outer 
parallel domain o f  Co at distance ~. P and Po are homothetic with respect to O. 



256 A. Florian 

Proof. Let O 1 be the center of  the circle to which s~ = Ull U12 belongs. By (48), 
O1 lies on the perpendicular bisector b of  the segment AIA2. In view of  Lemma 
7, O1 and the k-gon P are on the same side of  the line AIA2. From Lemma 10 
and (54) it follows that M1 is between O1 and UH, and M2 between O1 and U12. 
Because MI Ull = M2U12 = ~, we see that M1M2 is parallel to A1A2 and 

MtM: 
- -  - 1 . ( 5 5 )  
U11 U12 r 

Writing Ull U12/A1A2 = q, we have by (49) 

and by (55) 

Uil U~2 

A~Ai+I q 
for i = 1 , . . . ,  k (56) 

MIME= 1 -  q. (57) 
A1A2 

Since MI and M2 are symmetric with respect to b, the lines ArM1 and A2M2 
intersect at a point, say O, on b. Hence OAI = OA2. Because M1M2 < AIA2, 0 
and P are on the same side of the line AIA2, and the line MIM2 separates O 
and AIA2. Equation (57) implies that 

OM~ = OM2 = (1 - r~)  q • OA2. (58) 

In the same way it can be shown that the lines A2M2 and A3M3 intersect at a 
point, say O', on the same side of  the line AeA 3 as P such that O'A3 = O'A2 and 

O'M3= O'M2=(1-r~)  q • O'A2. (59) 

From (58) and (59) we infer that O '=  O, OMI = OM2 = OM3, and OAI = OA2 = 
OA3. By applying this argument to A3A4,.. .  we conclude that 

OMI . . . . .  OMk ( 6 0 )  

and 

OAl . . . . .  OAk. (61) 

By (58) Po is obtained from P by homothety of  center O and ratio (1 - ~/r)q. In 
view of  the construction, O is an inner point of  Po. Since OMI< 01M1, the 
circular arcs of  radius r -  ~ joining each two consecutive vertices of Po form the 
boundary of  a convex disc Co. C is the outer parallel domain of  Co at distance 

as required. [] 
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The following lemma completes the proof  of Theorem 1. We shall use the 
same notation as in Lemma 11. 

Lemma 12. P is regular. 

Proof. It suffices to show that 

AIA2 = A2A3. (62) 

The segments OA~ and OA3 meet the boundary of C at two points, say A~ 
and A~, belonging to ~ and ~3, respectively. Observe that by (60) OA~ = OA'3, 
and by (61) OA! = OA3. Thus AIA3 and A~A~ have the same perpendicular 
bisector t passing through (9. Write X '  for the convex set obtained from the 
convex set X by Steiner symmetrization about the line t. If T denotes the triangle 
A~A3A2, then P' = ( P \ T )  u T' is a k-gon which is, by (61), convex. Since a(T ' )  = 
a(T) ,  P' is a member of  ~k(aO). 

The chord A~A'~ dissects C into two convex subsets. Let C~ be that subset 
which contains the arc s2. Since a(C~) = a(CO and p( C~) <- p( CO, the (possibly 
nonconvex) set D = ( C \ C I ) u  Ctl has the properties 

a ( D ) = a ( C ) ,  

We proceed to show that 

p(D)  <- p(C) .  (63) 

a (D  n P') >- a( C n P). (64) 

Let I be any line perpendicular to t. We have to consider three possible eases: 

(i) l meets the interiors of C1 and T. Denoting the length of the segment s 
by Isl we have 

[ In  C n P [  =[/n  C1 n T[-  min{]l n Cd, ]In TI} 

= l l n  C~n T'] = l l n  D n  P'I- (65) 

(ii) l meets neither the interior of  C1 nor that of  T. Then 

l ln C n P l=l ln  D n  e'l. (66) 

(iii) l meets either the interior of  C1 or that of  T. Let t~ and t3 be the tangents 
A , A1A3 a to s~ and s3 at A1 and A~ respectively, h, t3, A~A3 and ' ' enclose 

(possibly degenerate) trapezium S that is symmetric with respect to t 
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Is A2 

a 3 ~  

t! 

Fig. 5 

(see Figs. 5 and 6). Because OA~As is contained in P, so is S. Since tl 
and t3 are support lines of C, S contains the intersection of C with the 
parallel strip bounded by the lines AIA3 and A~A~. Thus, if I meets the 
interior of C~ we have 

It n C n PI = tl n Cl  = I1 n Cd  = I I :', C~I = II n D n P'I, (67) 

and if I meets the interior of T 

tl m C  n P l = l l n C l = l l m C  n T ' I = l l n D n P ' I .  (68) 

Now (64) follows from (65) to (68). 

By (63) and (64), C'  =conv D is a member of C~(a, p) satisfying 

a(C '  n P') >- a ( C  c~ P). (69) 

In view of  supposition (ii) of Theorem 1 equality holds in (69). Using Lemma 4 
we obtain from (63) that 

p = p(C')  <- p ( O )  <- p ( C )  = p, 

A2 
ts 

As 

t t I 

Fig. 6 
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and p(D)  = p( C) implies that 

p(C~) = p(C~). (70) 

Since C1 is not contained in a line perpendicular to t we conclude from (70) 
(see [16, p. 208]) that C1 is symmetric with respect to a line t' parallel to t. Since 
A~A'3 is symmetric with respect to t we see that t ' =  t. By (49) the lines U~2 U2~ 
and UH U22 are perpendicular to t. Hence U~2 and U2~ as well as Uu and U22 
are pairs of  symmetric points, so that 

UH U~2 = U2a U22. (71) 

Equation (62) follows from (71) and (49). This completes the proof  of  Lemma 
12 and that o f  Theorem 1. [] 

Let C be a parallel domain of a regular arc-sided k-gon, and let P be the 
central k-gon of C. We conclude this section by showing that C is uniquely 
determined by the parameters a( C) = a, p( C) = p, a( P) = ao. 

Let C = (C1)p, where C1 is a regular arc-sided k-gon, and let a ( C ) =  a and 
p(C) =p be given. I f  a(Ct) = al, p(CO =Pl, and 2a  is the central angle of  the 
arcs bounding (;1, we have by (9) 

pl 2 
=4k ~'q'.( ~ (72) 

al u + q  

q and ~ (q )  are given by (8), and u = cot( I t /k) .  The discs C form an array joining 
the smooth regular k-gon, corresponding to a =0 ,  with the regular arc-sided 
k-gon, corresponding to a = a*, where q = q(a*) is determined by (8) and (9). 
By applying Steiner's formulas to (Cl)p we obtain from (72) that 

p(a)=-~(p-~/ (p2-4aTr)qb 
¥ ~-S ~---~ - ~ ' k  ] . 

(73) 

Differentiation yields 

x/p 2 - 4a~r(v - u) sin a - a cos a 
p ' ( a )  = 2k[d~_Tr(u+q)/k]3/2 sin2 a , (74) 

where v = cot a. Since a < ~r/k, we can remark for later use that 

p ' ( a )  <0 .  (75) 

By using Steiner's formula and (73) we find the in-radius of  the kernel o f  C1 

u ] ....... p2-4a~r 
r , ( ) = " / k , (76) 
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and observe that 

r ~ ( a )  = 

For the in-radius of  P 

we obtain by (74) and (77) 

ux/p 2-4a~r(a - at~k) sin a - a cos a 
>0 .  2k[dp-Tr(u+q)/k] 3/2 sin 3 a 

re(a) = r~ + p cos a 

2k sin ~ k sin 3 a(r'v+p sin a )  

= _~/p2_ 4alr(sin a - a  cos a )  cos a cos - a  

x [ t a n ( k - a ) - ( k - a ) + ( ~ - a ) t a n ( ~ - a ) t a n a  ]. 

Hence 

A. Florian 

(77) 

(78) 

r~(a) <0 .  (79) 

Thus a(P) is a strictly decreasing function of a, and a is uniquely determined 
by a(P) = ao. This proves the above statement. 

4. The Area Deviation 

We now turn to the problem of finding such members of  ~(a, p) and ~k for 
which 6A(C, P) is minimal. In view of a remark made in Section 1, we have to 
consider only such values of  a, p, and k that 

2 

P-<4ka tan k" 

For a disc C from ~g(a,p) and a k-gon P from ~k(ao) we have by (1) 

6A(c,  P) = a( C) + ao- 2a( C c~ P). (80) 

Because a(C) > - a, it follows from (80) and (11) that 

/~A(C, P)>-a+ao-2M(a ,p;  k, ao). (81) 

I f  ao-<f~(a, p, k), Remark 2 implies that 

8a(C,  P)>-a- f l (a ,p ,  k), 
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with equality if and only if C is a regular arc-sided k-gon of area a and perimeter 
p, and P is the kernel of C. Let P' be the k-gon obtained from P by displacing 
a side of P outward parallel to itself through a sufficiently small distance. By 
using (33) it follows easily that 

~A(c~, P')(  ~A(c~ P), 

which shows that 8A(c, P) is not minimal. Thus we can assume in the following 
that ao> fl(a,p, k). 

Since a(C)>-a(C n P), we conclude from (80) and (11) that 

8A(c, P) >- ao- M ( a, p;k, ao). (82) 

If ao>-f2(a,p, k) we have by (82) and Remark 2 

8A( c, P) >- ao- F(p, k, ao), (83) 

where F is given by (15). As can be shown by differentiation, the function of  ao 
on the right-hand side of  (83) is strictly increasing for ao-> f2(a, p, k). This function 
thus attains its minimum for ao =f2(a, p, k). Therefore, we need to consider only 
such values of ao for which 

fl(a,p, k)<ao <-f2(a,p, k). (84) 

We shall again make use of (81) and observe that, by Theorem 1 and Remark 2, 
equality occurs in (81) if and only if C is an outer parallel domain of a regular 
arc-sided k-gon of area a and perimeter p, and P is the central k-gon of C. If  
ao =f2(a, p, k) C is degenerate, which means that C is a smooth regular k-gon 
with case P. 

Let us first assume that 8A(c, P) is minimal for some a0 from the interior of 
the interval (84). Resuming the notation used in Section 3, we can state that (see 
also [2, p. 363]) 

U11 U12 1 
if A(a,p, k ) <  ao<f2(a,p, k). (85) 

A1A2 2 

Otherwise we could reduce 8A(C, P)  by displacing AIA2 parallel to itself through 
a small distance. This follows from (33). Second, if we assume that 8A(C, P)  is 
minimal for ao =f2(a, p, k), the same argument as above shows that 

ull 
U12>_-1 if ao=f2(a,p, k). (86) 

AIA2 2 
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Using the notation introduced at the end of Section 3 we have 

and 

Hence by (78) 

~rr 
A1A2= 2rp tan 

Ull UI2=2(rt tan + p  sin t~). 

UI1UI2 rl tan( ~r/k)+ p sin a ~r 
- cot ~ = g(a) ,  

A~A2 r~ + p cos a 

where p (a )  and rl(a) are given by (73) and (76). From 

g'(a)(rl+pcosot)2sin-~=rlp'sin a -  + r l p c o s  a -  

+ rip sin - a  +p2 cos ~ ,  

and (75) and (77) we see that 

(87) 

g'(a) > o. (88) 

Thus we have to consider two cases. 

(i) If  g(0)<½, (86) is impossible, and the minimum of 5A(C, P) is attained 
in the case indicated by (85). C is a parallel domain of a (proper) regular 
arc-sided k-gon, and P is the central k-gon of C. 

(ii) If  g(0)->½, (85) is impossible and the minimum of 8A(C, P) is attained 
in the case indicated by (86). C is a smooth regular k-gon, and P is the 
case of C. 

g(0) can easily be evaluated by (87), (73), and (76). Writing (k/~r) tan(T r /k)  = t 
and referring to (3) we can summarize the result of this section in 

T h e o r e m  2. Suppose that p2/4acr < t. There is exactly one disc C from C¢(a,p) 
and one k-gon P such that 

8A(C, P)=AA(a,p, k). 

C and P are characterized by the following properties: 

(i) a(C)=a,  p(C)=p.  
(ii) if p2/ 4aTr < ( l + t)2/ ( l + 3t), C is a parallel domain of a regular arc-sided 

k-gon, and P is the central k-gon of  C. Any side of  P, say A1A2, meets the 
boundary of C at points U1~, U~2 such that 

A1 Ull = U12A2 = ¼AIAz. 
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( i i i )  i f  p 2 / 4a~r > -- (1 + t )2 / (1  + 3 t ) ,  C is a s m o o t h  regu lar  k-gon,  a n d  P is the  case  

of C. 
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