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Abstract. We introduce the notion of generalized Delaunay triangulation of a
planar straight-line graph G=(V, E) in the Euclidean plane and present some
characterizations of the triangulation. It is shown that the generalized Delaunay
triangulation has the property that the minimum angle of the triangles in the
triangulation is maximum among all possible triangulations of the graph. A general
algorithm that runs in O(] V|?) time for computing the generalized Delaunay triangu-
lation is presented. When the underlying graph is a simple polygon, a divide-and-
conquer algorithm based on the polygon cutting theorem of Chazelle is given that
runs in O(|V|log|V]) time.

1. Introduction

A triangulation of a set of points is a straight-line maximally connected planar
graph G =(V, E), whose vertices are the given set of points and whose edges do
not intersect each other except at the endpoints. Each face, except the exterior
one, of the graph is a triangle. Triangulations of a set of points in the plane have
been extensively studied and have applications in closest point problem [6, 14,
21, 28], finite element method [1]-[3], stress analysis of two-dimensional continua
[8], and interpolation [15, 16, 23, 25, 26]. In this paper we shall consider the
Delaunay triangulation [23], [28] which has the property that the circumcircle
of any triangle does not contain any other point in its interior. It has been shown
[23], [28] that the Delaunay triangulation of a set of N points in the plane can
be constructed in O(N log N) time, which is asymptotically optimal by a result
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of Shamos and Hoey [28] who have shown that any triangulation algorithm can
also sort. In a sense, a triangulation embeds the given set of points by containing
it as its set of vertices. It is natural to see if it can be generalized so as to embed
an arbitrary planar straight-line graph (PSLG) which may or may not be con-
nected. Indeed, a triangulation of a simple polygon with N vertices can be found
in O(N log N) time [4], [5], [9]. With slight modifications, the approach given
in [9] can be extended to find a triangulation which embeds a PSLG with N
vertices in O(N log N) time. Along this line we shall address the problem of
finding a Delaunay-like triangulation which embeds a given PSLG and satisfies
a certain property similar to the circumcircle property mentioned earlier. For any
given PSLG G, there are a number of possible triangulations T(G). We are
interested in the following two criteria based on which triangulations T(G) are
constructed: (i) the circle criterion as given in Definition 2, and (ii) the maxmin
angle criterion, i.e., the minimum measure of angles of all the triangles in a
triangulation is maximized. As will be shown later, these two criteria are equivalent
and the resulting triangulation is the generalized Delaunay triangulation, to be
defined later.

What motivates the consideration of the generalized Delaunay triangulation
stems from a problem in terrain interpolation. Given a terrain surface z = f(x, y)
for which some of the function values are known at irregularly scattered points,
we want to find a triangular faceted surface to approximate on the set of points
whose functional values are known. Each triangle of the triangulation will
correspond to a triangular faceted plane in three-dimensional space. The collec-
tion of triangular faceted planes is then used to approximate the terrain surface.
The functional value of a point p=(x, y) is then linearly interpolated by the
functional values of the vertices of the triangle in the triangulation which contains
p in its interior.

The performance of this interpolation depends heavily on the choice of the
triangular grid. Intuitively, the Delaunay triangulation can be viewed as one in
which the triangles look more like equilateral triangles and is believed to provide
the best triangular grid for this purpose. However, information other than just a
set of points is often available, especially in geographical interpolation. For
example, the boundary of a lake and the ridge of a mountain range are also
located. Then it would be nice if the triangular grid could preserve the additional
information as well. This leads us to consider the construction of a “nice”
triangulation for a set of points and line segments. The generalized Delaunay
triangulation defined below can be viewed as a triangular grid that retains the
edges of the original graph and, whenever it is not obstructive to the original
graph, tries to capture the flavour of the Delaunay triangulation as much as
possible.

This paper is organized as follows. In the next section we give the definition
and some characterizations of the generalized Delaunay triangulation (GDT). A
quadratic algorithm is given in Section 3 that computes the GDT(G) of any
PSLG G. In Section 4 we consider a special case when the edges in G form a
simple polygon and provide an O{} V| log| V}) algorithm for computing the GDT.
Finally, we discuss possible directions for further research.
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2. Preliminaries

We first give a formal definition of the generalized Delaunay triangulation of a
PSLG G ={(V, E) [17] and then derive certain interesting properties of the gen-
eralized Delaunay triangulation.

Definition 1. For any PSLG G =(V, E), a triangulation T(G) of G is a PSLG
G'=(V, E'), where E < E’, such that no edges can be added without intersecting
an existing edge.

Definition 2. For any PSLG G =(V, E) the generalized Delaunay triangulation
(GDT) of G, denoted by GDT(G) is a triangulation T(G) = (V, E’) in which the
circumcircle of each face or triangle Avw;v,, denoted by O(v;, v;, v5) does not
contain in its interior any other vertex which is visible from the vertices v;, v;,
and v, of the triangle. The edges of the set E'~E are called Delaunay edges,
and the edges of E are called sides. The vertices u and v, u, ve V are visible
from each other if the line segment u, v does not intersect an edge of E at an
interior point.

Figure 1 shows the GDT of a graph G with Delaunay edges shown in dotted
line. Note that for graphs G =(V, ¢), the GDT(G) becomes the conventional
Delaunay triangulation of a set V of points. The following lemma, which relates
the numbers of triangles and edges to the number of vertices in V, can be
established fairly easily.

Lemmal. Givenany PSLG G =(V, E), any triangulation T(G) has 2(|V|—-1)—B
triangles, and 3(|V|—1) — B edges, where B is the number of vertices that are on
the convex hull of the set V of points and | V| denotes the cardinality of V.

We now establish the relationship between the circle criterion and the maxmin
angle criterion for the Delaunay triangulation. Given a strictly convex quadri-
lateral abcd so that the four vertices are not cocircular, there are two possible

Fig. 1. Generalized Detaunay Triangulation of a PSLG.
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triangulations as shown in Fig. 2(a). If the quadrilateral is not convex or one of
the diagonals is a side, i.e., an edge of the given graph, then only one triangulation
is possible (Fig. 2(b)). If we use the circle criterion, i.e., if the circumcircle of
Aabc contains vertex d, then vertex d is connected to vertex b, otherwise vertices
a and c are connected. The resulting triangulation is the Delaunay triangulation
of the quadrilateral. However, if the maxmin angle criterion is used, i.e., if the
minimum angle of the two triangles is to be maximized, the resulting triangulation
must also satisfy the circle property, as shown below.

Lemma 2. Let abed be a convex quadrilateral such that vertex ¢ is outside the
circle O(a, b, d). The minimum angle of the triangulation obtained by adding
t_litigonal b, d is strictly larger than the minimum angle obtained by adding diagonal
a,c.

Proof. As shown in Fig. 3 let 8, be the smallest angle and let edge b, ¢ inter-
sect O(a, b,d) at ¢’. It is clear that angle Xacd <Xac'b=xadb. Thus, the
minmum angle of the triangles in the triangulation obtained by adding diagonal
a, ¢ is smaller than the minimum angle in the triangulation obtained by adding
diagonal b, d. The other cases in which the smallest angle is not 6, can be shown
similarly. a

Indeed, based on this result, Lawson [16] devised a local optimization procedure
(LOP) to construct the Delaunay triangulation for a set of N points. The LOP
works as follows. Suppose e is an internal edge, in contrast to the edges on the
convex hull, of a triangulation and Q is the quadrilateral formed by two triangles
having e as the common edge. Consider the circumcircle of one of the triangles

(a) (b}

Fig. 2. Triangulation of quadrilateral.
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b
Fig. 3. Ilustration for the proof of Lemma 2.

in Q. If the circle contains the other vertex, replace e by the other diagonal of
Q, otherwise leave e as it is. An edge of the triangulation is said to be locally
optimal if the application of the LOP to it would not swap it. The edges on the
convex hull are locally optimal by default. Initially the convex hull of the set of
points is obtained and an initial triangulation of the convex hull is constructed
either by the procedure described below or by other methods. (See, e.g. [22].)
The points not on the convex hull are added to the triangulation one at a time.
Suppose that the new point p is contained in triangle Aabc. First p is connected
to the vertices of the triangle a, b, and ¢ to form three new triangles. Each of
these triangles, in general, will form a quadrilateral with a neighboring triangle.
The LOP is then applied to each of these quadrilaterals. Whenever a new triangle
is created by swapping the two diagonals of the quadrilateral on which the LOP
is applied, the same LOP will be applied to the newly created quadrilateral. In
this manner the LOP is repeatedly applied until all the edges in the triangulation
are locally optimal. It has been shown [16], [ 17] that this process terminates and
the resultant triangulation after all N points have been added is the Delaunay
triangulation of the set of points. The overall time required is O(N?), since for
each point one needs to spend linear time for locating the triangle containing
the point and for applying the LOP to the edges of the triangulation.

Note that the above LOP can be applied to any triangulation as we elaborate
below. Consider any triangulation T(G) of a PSLG G =(V, E). Assume by default
that the edges in E are locally optimal. We examine first the effect of each
application of LOP to an internal edge of T(G). Let N, denote the number of
triangles in T(G). Recall that the number of triangles in any triangulation of G
is a constant when the graph G is given (Lemma 1). For each triangulation T(G)
we define a characteristic vector Cr with N, components, each of which corre-
sponds to a triangle and is the measure of the minimum angle of the triangle.
These values are sorted in nondecreasing order. Given triangulations T(G) and
T(G), we define T(G) < T'(G) if and only if the associated characteristic vector
of T, Cr, is lexicographically less than Cy.
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Lemma 3. Given a triangulation T(G), if an application of the LLOP to an edge
e results in a swapping of the edge with another edge ¢’ and thus producing a new
triangulation T'(G), then T(G)<T'(G).

Proof. Let the two triangles of T sharing edge e have the minimum angles
appear as two components of Cy, say Cr, and Cy, j<k Thus Cy=Cr,.
Since a swap was made, from Lemma 2 the smaller of the two smallest angles
of the two new triangles resulting from the swap is strictly greater than Cr.
Thus, it follows that Cr must be lexicographically less than C, and hence
T(G) < T(G). O

Lemma 4. The edges of a triangulation T(G) of a PSLG G =(V, E) are locally
optimal if and only if each triangle of T(G) satisfies the circle property, i.e.,
circumcircle of any triangle A abc of T(G) does not contain in its interior any vertex
of V visible from all three vertices a, b, and c.

Proof. Suppose that all triangles of T{G) satisfy the circle property. Since by
definition of local optimality, we need only to consider internal edges that are
not in E. Consider Aabc such that b, ¢ is an internal edge and is shared by Abcd.
If both Aabc and Abcd satisfy the circle property, i.e., vertex d £ O(a, b, ¢) and
vertex a £ O(b, ¢, d), application of LOP to b, ¢ will not swap it. Thus, all edges
are locally optimal. To show the converse suppose that all edges are locally
optimal and that the circumcircle K of Aabec contains a point p visible from q,
b, and c. Let & be the distance from p to its nearest edge, say a, ¢ (Fig. 4). Assume
that among all triangles of T whose circumcircles contain p as an interior point,
none has an edge which is at a distance less than & from p. Since p is on the
opposite side of ‘@, ¢ from b, the edge @, ¢ must be shared with another triangle
Aacq, and vertex g cannot be interior to K, as this would contradict the hypothesis
that g, ¢ is locally optimal. The vertex q cannot be in the cross-lined region as
shown in Fig. 4, or Aacgq would contain p in its interior. Thus, one of the edges,

Fig. 4. lustration for the proof of Lemma 4.
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a, g and ¢, q is at a distance less than & from p. If we can show that the circumcircle
of Aacq also contains p in its interior, then we would have a contradiction that
Aabc is the triangle with an edge at the smallest distance from p. Note that the
circumcircle K’ of Aacp must contain b in its interior and the quadrilateral abcp
lies entirely in the intersection of K and K'. Since the portion of K’ that lies on
the same side of g, ¢ as p, lies totally in K| the vertex g, which is outside of K|
must be exterior to K'. Thus, the circumcircle of Aacg must contain p in its
interior, since for any convex quadrilateral abed if O{a, b, ¢) does not contain
vertex d, then O{a, b, d) must contain vertex c. O

Theorem 1. A triangulation T(G) of a PSLG G = (V, E) is a generalized Delaunay
triangulation if and only if its characteristic vector is lexicographically maximum.,

Proof. If the characteristic vector of T((G) is lexicographically maximum, appli-
cation of LOP to any edge of T(G) will not swap it and hence all the edges must
be locally optimal. This implies from Lemma 4 that T(G) is the GDT(G).
Conversely, if T(G) is a GDT(() then it must satisfy the circle property and
from Lemma 4 it follows that the edges in a T(G) are locally optimal. Suppose
now that there exists a trangulation T'(G) which is lexicographically maximum,
but T'(G) # T(G). Since T'(G) is lexicographically maximum, no edges will be
swapped when the LOP is applied to any internal edge. Hence all edges in T'(G)
must be locally optimal. Since T'(G) # T((G), there must exist a Delaunay edge
a, d in T'(G) that intersects Aabc of T(G). We may assume that a, d is the edge
closest to vertex ¢ among those that intersect Aabc. Let the intersection of a, d
and b, ¢ be denoted p (Fig. 5). Note that the edge b, ¢ of T(G) intersected by
a,d must be a Delaunay edge, and vertices b and ¢ and vertices a and d are
visible from each other. We shall show that g, d cannot be locally optimal and

Fig. 5. Both edges a,d and b, ¢ cannot be locally optimal.
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hence cannot be a Delaunay edge as claimed. We claim that there exist two
vertices b’ and ¢’ in G that lie on different sides of a, 4 such that vertices a, ¢/,
d and b’ form a convex quadrilateral and they are all visible from one another.
If vertex c is visible from d then ¢’ = ¢, otherwise we can find in Acdp a vertex
¢’ which is visible from both @ and d, since vertices b and ¢ and vertices a and
d are visible and no side of E intersects a, d or b, c. For example, vertex ¢’ can
be chosen from the endpoints of sides of E that lie in Acdp so that it is closest
to a, d. Similarly, vertex b’ can be found. Consider K = 0O(a, ¢’,d) and K'=
O(a, b’, d). It is obvious that K U K' contains the circle B(a, d) with a, d as the
diameter, and B(aq, d) contains the quadrilateral ac’db’. That is, any circle that
passes through vertices a and d will either contain vertex ¢’ or vertex b'. Note
that a, d must be an edge shared by two triangles in T'(G). In fact, one of these
two triangles must be Aac’d, since other choices of triangles would contain vertex
¢’ in the interior or violate the assumption that a, d is the closest edge to vertex
c. (Recall that vertex ¢’ is closest to @, d.) Therefore a, d cannot be locally optimal,
a contradiction. Thus, T(G) must be lexicographically maximum. O

Corollary 1. If no four points of V in a PSLG G =(V, E) are cocircular, the
generalized Delaunay triangulation GDT(G) is unique, and furthermore, it satisfies
the maxmin angle property and the smallest angle of the triangles in GDT(G)
is maximum among all possible triangulation T(G).

3. A General Algorithm

So far we have concentrated on the characterizations of the generalized Delaunay
triangulation. Let us now turn our focus on the problem of constructing GDT(G)
of a given PSLG G =(V, E). We shall present below an O(|V|?) algorithm for
computing the GDT(G) of a given PSLG G = (V, E). The main idea is to compute
for each vertex ve V, the Delaunay edges incident with it. We begin by proving
the following lemma, on which the algorithm is based.

Lemma5. Forany PSLG G=(V, E), an edge v, t is a Delaunay edge in GDT(G)
if and only if v and t are visible from each other and there exists a circle passing
through v and t that does not contain any vertex visible from both v and t.

Proof. If v, t is a Delaunay edge, then v and ¢ must be visible from each other
and there exists a triangle A tuv in GDT(G) with v, t as an edge. Since the triangle
satisfies the circle property, the claim follows. Conversely, suppose there exists
a circle K passing through vertices v and ¢ and K does not contain any vertex
visible from both v and t. We now move the center of K along the perpendicular
bisector of v, ¢ until the first vertex u visible from both v and ¢ is on the circle.
Note that the size of the circle changes as its center moves. The circle O(1, u, v)
obtained by enlarging K certainly satisfies the circle property, for if it contained
a vertex u' visible from all three vertices t, 4, and v in the interior, it would not
be the first circle found in this manner. Hence v, f is a Delaunay edge, and so
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are edges t, u and v, u. The existence of vertex u can be argued simply by the
fact that the set of vertices visible from vertex, say v, must contain at least one
vertex other than ¢ and that among the vertices in the set we can always find one
which is also visible from ¢ and satisfies the claimed property. a

We now proceed to find for each vertex ve V the set S, of vertices visible
from v, i.e., S, = {u]|u is visible from v}. The graph obtained by connecting v to
all ue S, for each ue V is called the visibility graph and it has been shown that
the visibility graph can be computed in O(|V}?) time [12]. Once the visibility
giaph is obtained, we shall eliminate those edges that are not Delaunay edges
based on the above lemma.

We note that the vertices in S, for v are ordered by angles around v when
they are computed [12]. We first find u € S, such that the edge u, v is the shortest.
Since the circle X with u, v as the diameter is totally contained in the circle of
radius d(u, v) and centered at v, no vertex in S, is interior to K. (Fig. 6(a)). It
follows from Lemma 5 that u, v must be a Delaunay edge. We then scan the
vertices in §, around vertex v in counterclockwise order starting with the vertex
after u. The procedure is similar to the Graham scan [10], [27] for computing
the convex hull of the set S,. We take three consecutive vertices x, y, z at a time,
and these three vertices along with vertex v form a quadrilateral vxyz. At each
step we apply the LOP to the edge v, y of the quadrilateral, if v, yg E. If
ze€ O(p, x, y), the vertex y is deleted from S,, since edge v, y is not a Delaunay
edge (Fig. 6(b)). Once vertex y is deleted from S,, we need to backtrack to
consider vertices w, x, and z, since deletion of y may make edge 7, x non-Delaunay.
We summarize it as follows.

Procedure Scan (S,, u)
(Comment: Let the vertices be ordered as w,=u, u,, ..., Uy, U = u,;, where
k=|S,>2)

(Comment: SUCC(u;) = u,,, and PRED(y;) =u;_,.)
(Comment: Note that v, u is a Delaunay edge.)
1. x«u; y« SUCC(x); z< SUCC(y)
2. while z+# x do
3.  beginifv,ye Eorzg O(v,x,y)

thenx « y, y« z; z« SUCC(y)

else if v,y2 E

then begin delete y
ifx # uthen y « x;, x « PRED(y)
elsey« z;, z« SUCC(y)
end
end

It is easy to see that in a single scan the edges in S, that remain are Delaunay
edges and the total time spent is O(|S,)). Since 2,|S,| = O(|VI*), we thus have
the following.
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“Annasn deleted edge

(b)

Fig. 6. Computing Delaunay edges incident with vertex ».

Theorem 2. Given a PSLG G=(V, E), the generalized Delaunay triangulation
GDT(G) can be computed in O(|V|*) time.

We remark that the above algorithm actually takes O(|V|?) time and space
due to the computation of the visibility graph {12]. But we can easily obtain an
O(| V)’ log|V]) time and O(]V]) space algorithm by using a straightforward
approach (see, e.g., [17]) to computing the visibility set S, for each vertex ve V
and then apply procedure Scan to each set S,.
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4. A Special Case—Simple Polygons

We consider the problem of finding the generalized Delaunay triangulation of a
simple polygon, i.e., finding GDT(G) where G=(V, E) is a simple cycle. When
the polygon is monotone, Yeung [30] provides an O(N log N) time algorithm
where N =| V]|, using a straightforward divide-and-conquer scheme. In this section
we show that the generalized Delaunay triangulation of an arbitrary simple
polygon can also be computed by divide-and-conquer paradigm, except that it
rests on a crucial result, the polygon cutting theorem, of Chazelle [4].

In [4] Chazelle has shown that given a simple polygon P with N vertices, two
vertices @ and b can be found in O(N) time such that g, b lies entirely in P and
each of the two simple subpolygons of P resulting from the “cut” by q, b, has
at least N/3 vertices. With this polygon cutting theorem it is possible to triangulate
(the interior of) a simple polygon in O(N log N) time [4]. This triangulation
procedure can be used to construct a decomposition tree for the simple polygon.
The decomposition tree is a binary tree in which the root represents the simple
polygon P and the leaves represent triangles in the interior of P. Each node,
escept the root, represents a polygon which is a proper subset of its parent and
has at least one-third of its vertices. At each node we store the ‘“‘cut,” called
diagonal, which results in decomposing the corresponding polygon to the smaller
polygons represented by its sons. Note that the tree has height O(log N). A
decomposition tree of the polygon shown in Fig. 7(a)} is depicted in Fig. 7(b),
where the internal nodes represent subpolygons specified as circular lists and
associated with each internal node is a diagonal; the leaves correspond to triangles
in the decomposition.

Assume that a simple polygon decomposition tree is constructed by using the
polygon cutting theorem. Suppose the simple polygon represented by the root is
divided into two subpolygons Q, and Q, by the diagonal. We recursively construct
the GDT(Q,) and GDT(Q,) for the two subpolygons @, and Q,, respectively. If
these two triangulations can be merged to form GDT(P) in linear time, the overall
time required for the construction of GDT(P) is O(N log N).

We now describe below the merge process which is similar to the merge
algorithm described in [23].

Procedure Merge (GDT(Q,), GDT(Q,), v, v;)

(Comment: GDT(G) is maintained as a doubly connected edge list (DCEL) [27]
so that the edges incident with any vertex can be traversed in either
counterclockwise or clockwise order.)

(Comment: v, v, is the diagonal shared by GDT(Q;) and GDT(Q,).)

(Comment: It computes, given GDT(Q;) and GDT(Q,), the GDT(Q) where Q
is the union of the polygons @, and Q,.)

1. Find Avww e GDT(Q,) and Avwv, € GDT(Q,).

2. If there is no vertex in Q; visible from v, that lies in O(v;, v;, v,), then v, Y

is a Delaunay edge.
Return (GDT(Q)), where GDT(Q) is just the union of GDT(Q,) and
GDT(Q,)-
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{(a)

P=(1,2,3,4,5,6,7)

P,=(2,3,4,5,6) P,=(6,7,1,2)

Py=(3,4,5,6)

Pm = A345

(b)

Fig. 7. Decomposition tree of a simple polygon based on polygon cutting theorem.

3. Let T, ={vy, t4,,..., U} be the set of vertices of @, that are visible from v,
and are in O(v,, v;, v,). Let B(v,, v,) be the smallest circle that passes through
v, € T, and v, and that is totally contained in and tangent to O(v, v;, 1,) at v,.

(Comment: No vertices in T,, are inside B(v,, v,).)

(Comment: Note that v,, v, called the base, is a Delaunay edge and it intersects
v, v, and possibly many others in GDT(Q,), and cuts polygon Q into two
subpolygons Q; and Q;, where v;€ Q; and v;€ Q,.)

4. Insert the base v,, v, into the edge lists of v, and v, in GDT(Q,) and GDT(Q,),
respectively. Delete those edges of GDT(Q,) that intersect v,, v, from corre-
sponding edge lists accordingly.

5. Assume now that edge v,, v, is positioned horizontally and v, and v, are at
the left and right ends respectively. We now concentrate on the problem of
computing GDT(Q;), since GDT(Q;) can be computed similarly. Let
Uy, Up, Uy Uy o o, Uy Uy, be Delaunay edges in GDT(Q,) incident on v, in
clockwise direction and they are above the line ?JTE: Similarly, let
Up, Uy, Usy Uyyy ..o, Uy U, e Delaunay f",flﬁ.e.f’ in GDT(Qy) incident on v, in
counterclockwise direction and above v, v,.




Generalized Delaunay Triangulation for Planar Graphs 213

6. Scan the edges incident with v, in clockwise direction, and let O(v,, v, , v, ,,)
be the first circle which does not contain v,, 1=g=<m~1. If no such circle
exists, let v, = v, . Delete the edges 7,7,,, w=1,2,...,¢—1, from GDT(Q))
since they are not Delaunay edges.

7. Scan the edges incident with o, in counterclockwise direction, and let
O(v,, v,, v,,,,) be the first circle which does not contain v, 1=z=n-1.If no
such circle exists, let v, be v,,. Delete the edges vy, v, w=1,2,...,z—1, from
GDT(Q)) since they are not Delaunay edges.

8. If v, =v; and v, = v;, then we are done, i.e., the computation of GDT(Q;) is
completed. Otherwise, we have obtained a quadrilateral v,v,v, v, as shown in
Fig. 8. Use the maxmin angle criterion on the quadrilateral to decide if 7,7,
or 7, 0, is a Delaunay edge. If 7,7, is 2 Delaunay edge, v, = v,,. If 9,7, is
a Delaunay edge, v, = v, . In either case we obtain a new base 7,, 7, o1 T, 7, -
Go to Step 4, with either 7,, D, or 7,;7;, replacing the old base 7,,7,.

We now prove a few lemmas that establish the correctness of the above
procedure.

Lemma 6. If no vertex of Q, visible from v, lies in O{(v,, v;, v,), then v, v; is a
Delaunay edge. (Step 2.)

Proof. Consider the circle O(v;, v;, vy). Since it must satisfy the circle property
in GDT(Q,), it cannot contain any vertex ;€ Q, that is visible from v;, v; and
v;. Suppose now that 3:?;: were not a Delaunay edge. Then there must exist a
vertex v, € Q, visible from v;, v; and v, that is contained in O(v;, v;, v;). Referring
to Fig. 9, vertex v, must lie on different sides of v;, v; from v,, for otherwise v,
is, by simplicity of the polygon, invisible from either v; or v;. Furthermore vertex
v,, together with Avvy;, must form a convex quadrilateral, and hence it must
be contained in O(v;, v;, v,). Since O(wv;, v;, v,) satisfies the circle property in
GDT(Q,), v, must be invisible from v,. That is, v,, v, must intersect a side of
the polygon. Since no side of the polygon can intersect v;, v,, we can find a vertex
v, € Q, visible from all three vertices v;, v; and v, such that it lies in O(v;, v;, v,),
a contradiction. O

D’q«- 1

v’z+!

v, v,

Fig. 8. [lllustration of the scanning procedure in Step 8.
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Fig. 9. Illustration for the proof of Lemma 6.

Lemma 7. The base v,, v, found in Step 4 is a Delaunay edge.

Proof. Since the circle B(v, v,) is the smallest circle, it cannot contain any
vertex v, € Q, visible from wv,. Moreover, B(v,v,) is totally contained in
O(v;, v;, v,) and so it does not contain any vertex u € Q, visible from v,. We
therefore conclude that B(v,, v,) does not contain any vertex of Q visible from
v, and that v,, v, is a Delaunay edge by Lemma 5. O

Lemma 8. Let v, be a vertex above v,, o I If v, v, and v,,, v, are Delaunay edges
in GDT(Q), then v, e{v,,v,,...,0,,0,,0,,..., 0.}, iLe, v, must be adjacent
to either v, or v, in GDT(Q,) or GDT(Q,) respectively.

Proof. Since Av,vu, is a triangle in GDT(Q), O(wv,, v,, v,) does not contain
any vertex visible from v,, v, and v,.. Therefore, if v, € Q,, v,, v, is a Delaunay
edge in GDT(Q,), otherwise, v,, v, is a Delaunay edge in GDT(Q;). The claim
follows. O

Lemma9. One of the two edges v,, v, and v, v, obtained in Step 8 is a Delaunay
edge.

Proof. We first show that O(v,, v,, v,,) cannot contain any vertex in Q, visible
from v, and v, . Since v, € O(v,, v,,_,, v, ) and v, € O(v,, v, , v,,,,) by assumption
and O(v,, v,,_,, v,q)u O(v,, v,, ,q“) contains O(v,, v, v, ), no vertex in Q, visible
from v, and v, is contained in O(v, v, v, ). Similarly, we can show that
O(v,, v, v, ) cannot contain any vertex in Q, visible from v, and v;. Next we
show if v,, v, is selected in Step 8 when the maxmin angle criterion is applied,
O(v,, v,, v,.) does not contain ain any vertex in @, visible from v,, and hence v,, v,
is a Delaunay edge. Since v,, v, is a Delaunay edge by Lemma 7, v, € B(v,, v,)
By assumption, O(v,, v, v,) contains v, . Thus, since O(v,, v, v,z)uB(v,, v,)
contains O(v,, v,, v, ), no vertex in QY vmble from v, can be contained in
O(v,, v, v, ). The other case when v,, v, is selected in Step 8 can be shown
similarly. [
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Now, let us analyze the running time of the algorithm. In the merge process,
assume that GDT(Q,) and GDT(Q,) are the two Delaunay triangulations and
have one edge in common. The vertices in Q; visible from v, can be found in
O(m) time when m is the number of vertices in Q,[7], [19]. All edges in GDT(Q;)
or GDT(Q,) are checked at most once. And, those deleted edges are not considered
again. Therefore, since the total number of edges in GDT(Q;) and GDT(Q,) is
O(N) and the number of edges added is also O(N), the time for the merge
process is O(N). The polygon cutting theorem [4] guarantees that the depth of
the simple polygon decomposition tree is O(log N). Based on the divide-and-
~onquer technique, we can construct the Delaunay triangulation of a simple
polygon with N points in O(N log N) time.

Theorem 3. Given a simple polygon P with N vertices, the generalized Delaunay
triangulation GDT(P) can be completed in O(N log N) time.

Proof. The above algorithm computes the Delaunay triangulation of the interior
of the polygon P. The exterior of the polygon can be triangulated in a similar
manner as follows. We first compute the convex hull of the simple polygon in
O(N) time [11], [18], [24]. Each new hull edge v, v; and a portion of the
boundary of P will define a new simple polygon. These new simple polygons can
then be triangulated in a total of O(N log N) time. The theorem follows. [J

5. Conclusion

We have given characterizations of the generalized Delaunay triangulation of a
planar straight-line graph G=(V, E) and presented a general algorithm for
computing the generalized Delaunay triangulation which runs in O(| V}?) time.
If the graph G is a simple polygon with N vertices, an O(N log N) algorithm
based on the polygon cutting theorem of Chazelle [4] is given, providing yet
another triangulation algorithm for simple polygons. The latter algorithm can be
applied to the case where the underlying graph is connected.

Recall that the Delaunay triangulation of a set of points in the plane is normally
considered as the dual graph of the Voronoi diagram of the set of points [28].
Efficient algorithms for constructing the Voronoi diagram can then be used to
obtain the Delaunay triangulation. However, the connection between the notion
of generalized Delaunay triangulation for a straight-line planar graph and the
notion of generalized Voronoi diagram for line segments [13], [20], [29] is not
clear. The crux in computing the generalized Delaunay triangulation for discon-
nected planar graph is that of converting the graph to a connected one by
introducing “new” Delaunay edges thereby the above algorithm can be applied.
With that in mind one needs to consider the Voronoi polygon associated with
the end vertices of the graph in the Voronoi diagram to see if any Delaunay edge
incident with the end vertices can be found. Since the generalized Voronoi
algorithm for n line segments can be constructed in O(n log n) time [13], [29],
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it may render an O(| V| log | V|) algorithm for computing the generalized Delaunay
triangulation of an arbitrary planar straight-line graph G = (V, E). We intend to
carry on the investigation in the future.
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