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Abstract. In a remarkable paper [4] Griinbaum and Shephard stated that there is 
no polyhedron of genus g > 0, such that its symmetry group acts transitively on its 
faces. If this condition is slightly weakened, one obtains" some interesting polyhedra 
with face-transitivity (resp. vertex-transitivity). 

In recent years several attempts have been/made to find polyhedral analogues 
for the Platonic solids in the Euclidean 3-space E 3 (cf. [1, 4, 5, 7-14]). By a 
polyhedron P we mean the union of a finite number of plane polygons in E 3 
which form a 2-manifold without boundary and without self-intersections, where, 
as usual, a plane polygon is a plane set bounded by finitely many line segments. 
If  the plane polygons are disjoint except for their edges, they are called the faces 
of  P. We require adjacent faces to be non-coplanar. The vertices and edges of  P 
are the vertices and edges of  the faces of P. The genus of  the underlying 2-manifold 
is the genus of  P. A flag of  P is a triplet consisting of  one vertex, one edge 
incident with this vertex, and one face containing this edge. If, for given p -  3, 
q >- 3 all faces of P are p-gons and all vertices q-valent, we say that P is equivelar, 
i.e., has equal flags (cf. [7], [8] for convex faces). Equivelarity is a weak local 
analogue to the global property of flag-transitivity. In the following we always 
require that the polyhedra are equivelar. We denote an equivelar polyhedron of 
genus g by {p, q; g} (cf. [7], [8]). For given p, q, g, nonisomorphic polyhedra 
{p, q; g} do exist. 

One way to find close analogues to the Platonic solids is to consider polyhedra 
whose automorphism group is flag-transitive (cf. [9]-[11]). Another possibility 
which we consider here is to require only face- or vertex-transitivity under the 
symmetry group or another appropriate group of  automorphisms. 

Brehm's flat torus (cf. [1, p. 5], and [2, p. 438]) seems to be the first vertex- 
transitive polyhedron of  genus g > 0 that was discovered; a model was shown at 
the 1978 Oberwolfach conference on convex bodies. 

By a similar process Griinbaum and Shephard [4] found three highly symmetric 
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equivelar polyhedra of genus 3, 5, and 11 (and two nonequivelar polyhedra of 
genus 7 and 19) where the symmetry group acts transitively on their vertices. 
(The construction is given in the case of g = 5, and it is not hard to see how the 
construction works for g = 7, 11, 19. For g = 3 one needs some additional condi- 
tions to avoid self-intersections. A construction for g = 3, which seems to be 
easier than that in [4], is given in [11].) 

In [4] Griinbaum and Shephard also stated that no polyhedra with analogous 
face-transitivity exist, thus underlining the exceptional property of their poly- 
hedra. In [13] (compare also [12]) the author has considered weaker transitivity 
properties, allowing automorphism groups which contain the symmetry group as 
a subgroup of index 2. This way one also obtains face-transitive polyhedra. In 
this paper (which might be considered as part II of [13]), we show that a stronger 
condition than that given in [13] (and therefore closer to that of Griinbaum and 
Shephard) yields face-transitive polyhedra. 

Definition. An equivelar polyhedron with the rotation group of a Platonic solid 
is called a platonohedron if an automorphism group isomorphic to its full 
symmetry group acts transitively on its vertices or faces. 

Remark 1. Every platonohedron is a Platonic manifold in the sense of [13]. 
These notions (and the notion "semi-Platonic" in [12]) only serve as simple 
keywords for the definitions. They underline the relations to the Platonic solids 
(realization in E 3, equivelarity, transitivities); no further philosophy is intended. 

Remark 2. If  one distorts the Platonic solids in a suitable way, one obtains 
platonohedra of genus 0. This is trivial in the tetrahedral, octahedral, and cubic 
case. For the icosahedron and the dodecahedron this process is described in [ 13]. 
Clearly, the more interesting platonohedra are those of positive genus: 

Theorem. 
(a) There are at least five vertex-transitive and two face-transitive platonohedra 

with positive genus. 
(b) There are at most finitely many combinatorial types of platonohedra. 

Proof (b) follows from simple combinatorial arguments, as given in [12], [13] 
for wider classes of polyhedra. The crucial point is (a), to show that there are 
four platonohedra (of genus 7) besides the {3, 8; g}, g = 3, 5, 11 of Griinbaum 
and Shephard, which clearly are platonohedra. First the {4, 5; 7} and {5, 4; 7} of  
[ 12, 13] are platonohedra, both having the complete octahedral symmetry group 
Sa x $4 and an isomorphic group acting transitively on the vertices of {4, 5; 7} 
(resp. on the faces of the "hexacis-octahedron" {5, 4; 7}) (cf. [13]). Further, in 
Figs. 1 and 2 we show two remarkable platonohedra of genus 7. 

The {3, 9; 7} is constructed from two icosahedra; the interior one distorted 
such that the tetrahedral rotation group is preserved. If  one deletes in an appropri- 
ate way eight faces of each icosahedron and joins the corresponding holes by 
triangular tubes, one obtains the {3, 9; 7}; see Fig. 1. 
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{3,9; 7) f=12(2,9,6) 
Fig. 1 

The distorted icosahedron as well as the following distorted dodecahedron 
traces back to Jessen (cf. [6], compare also Griinbaum and Shephard [5]). Starting 
from a regular dodecahedron and a distorted dodecahedron (again with the 
tetrahedral symmetry group preserved) the "dual" process of taking an appropri- 
ate intersection of both solids gives the "disdodecahedron" {9, 3; 7} of Fig. 2, 
which is in fact dual to the plyhedron of Fig. 1. A very similar process has been 
described in detail in [13]. 

By construction each of the 24 nonconvex 9-gons has a symmetry-axis and 
indeed the {9, 3; 7} and also the {3, 9; 7} are centrally symmetric with respect to 
their center. 

So it is easy to see that they have the symmetry group $2 x A4, where A4 is 
the tetrahedral rotation group. (We remark that $2 x A4, being a subgroup of the 
full octahedral and icosahedral symmetry group, is not isomorphic to the full 
tetrahedral symmetry group $4.) 

However, the symmetry group of {9, 3; 7} (resp. of {3, 9; 7}) is not transitive 
on faces or vertices. But there is a subgroup of the automorphism group isomorphic 
to $2 x A4 which acts transitively on the vertices of{3, 9; 7} (resp. faces of{9, 3; 7}). 
Here the factor A4 is provided by the rotation group of the polyhedron. 
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{9,3j7} f=12(6,9,2) 
Fig. 2 

The involution representing $2 is given by an "inside-outside-symmetry" 
interchanging the roles of the outer vertices (resp. faces) and the corresponding 
inner vertices (resp. faces). This inside-outside-symmetry ~0 is particularly evident 
for the polyhedron {3, 9; 7}. Here the triangular faces of the outer icosahedron 
form six pairs connected as the quadrangular faces of the cuboctahe~i~on. The 
same is true for the inner icosahedron, and the edges separating the faces in 
corresponding pairs of the inner and outer icosahedron are parallel. ~o just 
interchanges these edges, that is, maps the ends of each edge onto the correspond- 
ing ends of the parallel edge. 

Now, observing that the six triangular faces surrounding a "tunnel" fit together 
like the faces of an octahedron with one pair of antipodal faces removed and 
that the effect of ~o on these faces is the same as the effect of the central inversion 
on the octahedron shows ~0 is in fact an automorphism of the polyhedron. 

With analogous arguments we obtain the corresponding result for the {9, 3; 7}. 

Concluding, we mention: (a) the {3, 8; g} are "chirohedra", i.e., they exist in 
chiral pairs; the other four platonohedra do not; (b) one obtains other {3, 9; 7}, 
{9, 3; 7}, nonisomorphic to those described before, if one rotates the inner icosa- 
hedron (resp. dodecahedron) in a suitable way about ½~r (cf. [14, Fig. 10]). 
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