Summary

Rabbits and chicken which easily get experimental arteriosclerosis, have very low values of serum mucoproteins. High values are found in rats, where they are significantly higher than in men.

Elaboration of Vitamin B₁₂ by Escherichia coli¹

Uncertainties regarding the role played by cyanocobalamin (B_{12}) and methionine in the metabolism of microorganisms induced us to study the elaboration of B_{12} active material by *Escherichia coli* which would satisfy the B_{12} -requirement of *Euglena gracilis*, *Ochromonas* malhamensis, and *Lactobacillus leichmannii*. For this purpose we used the mutant strain, *E. coli* 113-3, its parent strain (ATCC No. 9637) and a wild type *E. coli* isolated from normal human feces.

Since the mutant $E.\ coli$ 113-3 has a nutritional requirement alternatively satisfied by B_{12} or methionine 2, the experiments reported below were designed to permit inferences as to the role of methionine in biosynthesis of B_{12} -like metabolites.

Methods: E.coli. For the experiments reported here we used a wild type E. coli ATCC 9637, the parent of 113-3, which served as prototrophic control for the mutant E.coli 113-3. These organisms were grown for 3 days in Burkholder's medium³; the cells were collected by centrifugation, resuspended in distilled water, and lyophilized. Supernatants from each organism were concentrated 10-fold under reduced pressure. Their B₁₂ content was assayed.

 B_{12} assays: Methods for the determination of B_{12} using E. gracilis Z., O. malhamensis, and L. leichmannii as test organisms have been outlined 4. Samples of the supernatants and lyophilized organisms were autoclaved at pH 4.5 with metabisulfite to liberate and stabilize B_{12} . This hydrolysis is insufficient to break down deoxyribosides.

Results: The concordant low values by the Ochromonas and Euglena assays (Table), show little assayable B_{12} in the bodies and the supernatant of methionine-grown E. coli 113-3; the high initial values obtained with L. leichmannii for the culture fluids of methionine-grown E. coli 113-3 are almost certainly attributable to deoxyribosides. We assume that the O. malhamensis assay yields values closest to the true B_{12} -content 4 .

Very little B_{12} was found in both wild type $E.\ coli$ strains grown with neither methionine nor B_{12} . The stimulation by methionine of B_{12} -production (see supernatant values Table) in wild type $E.\ coli$ (from feces) supports Bray and Shemin's finding that most of the angular methyl groups of B_{12} can originate from methionine. Not all $E.\ coli$ strains show this effect, as demonstrated by the failure of methionine to stimulate B_{12} -production in $E.\ coli$ 9736 and its mutated strain.

When B_{12} -activity of cells, as assayed with either O. malhamensis or E. gracilis, is deducted from the L. leichmannii results, the difference may be attributed to the presence of deoxyribosides. Supplmentation for all three E. coli strains with B_{12} , but not with methionine, resulted in striking increases of deoxyribosides.

The low content of assayable B_{12} in supernatants from $E.\ coli\ 113-3$ cells grown on methionine, implies that B_{12} -by-passing factors for the assay organisms are absent here. Further analysis of the B_{12} -by-passing problem may

Vitamin B_{12} -content of Escherichia coli.

' B_{12} ' of the culture medium = cyanocobalamin; 'meth.' = methionine. B_{12} content is expressed as $\mu\mu g/ml$ for culture supernatants and $\mu\mu g/mg$ for dried cells

and μμg/mg for dried cells				
A. Dried Cells (μμg/mg)				
Metabolite		Assay System		
Organism	added/liter	L. leich- mannii	O. malha- mensis	E. gracilis
E. coli wild-type isolate E. coli 113-3 E. coli 9736	$\begin{array}{c} \text{no B_{12}, no meth.} \\ \text{meth. } 0.1 \text{ g} \\ B_{12} 0.1 \mu g \\ \text{meth. } 0.1 \text{ g} \\ B_{12} 0.1 \mu g \\ \text{no B_{12}, no meth.} \\ \text{meth. } 0.1 \text{ g} \\ B_{12} 0.1 \mu g \\ \end{array}$	16 7 600 39 850 27 30	0.6 10 50 3 130 3 3.7 75	0·65 10 26 3 306 6·6 4·0 70
B. Supernatants (μμg/ml)				
Organism	added/liter	L. leich- mannii	O. malha- mensis	E. gracilis
E. coli wild-type isolate E. coli 113-3 E. coli 9736	no B_{12} , no meth. meth. 0·1 g B_{12} 0·1 μ g meth. 0·1 g B_{12} 0·1 μ g no B_{12} , no meth. meth. 0·1 g B_{12} 0·1 μ g	104 298 1500 563 740 100 60	6 200 463 10 175 20 6 2	1 235 800 9 604 6 10

require the use of natural B₁₂-free materials, prepared biologically, perhaps by microorganisms. These compounds may be of restricted distribution and could embody 1-carbon fragments such as the methyl purines and methyl pyrimidines recently described by LITTLEFIELD and DUNN⁶. The lack of B₁₂ activity in yeast and higher plants originally signalled that B₁₂ has a restricted distribution compared with other B vitamins; the present results suggest that B₁₂ by-passing compounds are even more restricted in distribution.

H. BAKER, O. FRANK, I. PASHER, H. SOBOTKA, H. A. NATHAN, S. H. HUTNER, and S. AARONSON

Department of Chemistry, Mount Sinai Hospital, New York and Haskins Laboratories, New York, December 24, 1959.

Résumé

Les auteurs ont constaté l'absence de la vitamine $\rm B_{12}$ dans le corps 1° de E.~coli~113-3, 2° de son parent prototrophique et 3° dans la souche sauvage. Le titre de $\rm B_{12}$ dans le milieu de culture s'est trouvé fortement augmenté par la méthionine, dans le cas de la souche sauvage uniquement. En ajoutant de la cyanocobalamine on a obtenu dans les trois cas une augmentation de désoxyribosides.

- ¹ This work was supported by Grants A-1800 and A-1231 from the U. S. Public Health Service and Grants-in-Aid from the Loomis Foundation, the American Cancer Society, and the Nat. Ass. for Mentel Health.
- ² J. E. Ford and S. H. Hutner, Vitamins and Hormones, vol. 13 (Academic Press Inc., New York 1955), p. 101.
 - ³ P. R. Burkholder, Science 114, 459 (1951).
- ⁴ H. Baker, H. Sobotka, I. Pasher, and S. H. Hutner, Proc. Soc. exp. Biol. Mcd., N. Y. 91, 636 (1956).
 - ⁵ R. Bray and D. Shemin, Biochim. biophys. Acta 30, 647 (1958).
 - ⁶ J. W. LITTLEFIELD and D. B. DUNN, Biochem. J. 70, 642 (1958).