Comparative Potency of Gibberellins in Inducing Parthenocarpic Fruit Growth in *Malus sylvestris* Mill. Induction of parthenocarpy in the apple with auxins has met with limited success 1,2. The gibberellins, however, are now established as potent fruit-setting agents 3. Fruit enlargement and continued development to maturity has been achieved in a number of apple cultivars with gibberellin $A_3^{4,5}$. Fruit size at maturity, depending on variety, may equal that of seeded fruits and specificity among cultivars and giberellins is apparent 6,7. The comparative effectiveness of gibberellins A_{1-10} , A_{13} and A_{14} in promoting parthenocarpic fruit growth in the apple, in the absence of pollination, is the subject of this report 8. Ten to fifteen flower clusters were selected for uniformity on fruiting wood of comparable vigor and potential leaf area on apple (Malus sylvestris Mill. cv. Wealthy) trees. Each cluster was thinned to a single lateral flower and the flower was emasculated in the early balloon stage. Gibberellins (GA) A_1 through A_{10} , A_{13} and A_{14} , in lanolin paste at $5 \times 10^{-3} M$, were applied to the cut style and adjacent receptable tissue. Flowers similarly treated with lanolin alone and another group hand-pollinated at anthesis served as control comparisons. Each treatment was assigned to a single branch and replicated 4 times on different trees. Fruit enlargement and number of persisting fruits were recorded at weekly intervals. Analysis of variance and comparison among treatment means were performed on fruit diameter data. Fruit swelling was apparent with all gibberellins within 2 weeks (Table). All non-pollinated controls failed to enlarge and abscissed between 2 and 3 weeks after treatment. Pronounced differences between the gibberellins were apparent 4 weeks after treatment. GA₄ and GA₇ were most active; fruit growth was equal to the pollinated control. GA₅, GA₆ and GA₈ were least active and fruit size approximated 50% of the pollinated control. GA₁, GA₂, GA₃, GA₉, GA₁₀, GA₁₃ and GA₁₄ were intermediate (Table). At maturity, size of all persisting parthenocarpic Comparative activity of gibberellins in inducing parthenocarpic growth of apple fruits | Gibbere | erellin Fruit diameter weeks after treatment | | | Fruits persisting | |---|--|------|------|-------------------| | | 2 | 4 | 13 | at maturity | | | % of pollinated control | | | % of flowers | | | | | | treated | | A ₁ A ₂ A ₃ A ₄ A ₅ A ₆ A ₇ A ₈ A ₁₀ | 93bcd | 77b | 92a | 5 | | A | 90cde | 70b | 90ab | 15 | | A ₃ | 87de | 64bc | 96a | 5 | | A ₄ | 101ab | 96a | 99a | 82 | | A ₅ | 65f | 45cd | 82b | 4 | | A ₈ | 62f | 38d | - | 0 | | A7 | 103a | 94a | 93a | 23 | | A.8 | 56f | 44cd | | 0 | | A.0 | 97abc | 78b | _ | 0 | | A10 | 81e | 58bc | 98a | 3 | | A19 | 64f | 69b | 93a | 33 | | A14 | 62f | 64bc | 83b | 34 | $^{^{*}}$ Means followed by different letters are significantly different at P=0.05. fruits was similar to that of seeded fruits, with the exception of those induced with GA_5 and GA_{14} . Sustaining fruit growth to maturity is equally important to initiation of fruit development. The greatest number (82%) of fruits persisted with GA_4 . 15–35% of fruits persisted with GA_2 , GA_7 , GA_{18} and GA_{14} , and 3–5% when treated with GA_1 , GA_3 GA_5 and GA_{10} . All fruits induced with GA_6 , GA_8 and GA_9 abscissed within 5 or 6 weeks after treatment. It is pertinent that in those treatments where a low percentage of the fruits matured, a greater leaf to fruit ratio developed as the number of persisting fruits decreased. Thus, final fruit size may not be the best index of relative gibberellin activity. We considered fruit size after 4 weeks and the number of fruits persisting to maturity as more acceptable indices. Similar studies on an unnamed apple seedling, prone to frost-induced parthenocarpy, using GA_1 through GA_{10} (except GA_6) revealed that GA_4 , GA_7 and GA_9 were most active. GA_3 , GA_5 and GA_8 were least active and GA_1 , GA_2 and GA_{10} intermediate. Only fruits induced by GA_4 , GA_7 , GA_2 , GA_1 and GA_9 (decreasing order of activity) persisted to maturity. Mature GA-induced parthenocarpic fruits had a smaller width to length ratio than the seeded control, except for GA_5 , where it was larger. Our data provide additional evidence for specificity among the gibberellins in promotion of parthenocarpy. The more active gibberellins, from the standpoint of molecular structure, do not have an OH group at position 7. The marked activity of GA₄ and GA₇ is of particular interest for they have been detected in immature apple seeds. Although the role of gibberellins in fruit growth has not been established, the dependence of fruit enlargement on the presence and development of seeds may be related to endogenous seed gibberellins ¹⁰. Zusammenfassung. Die biologische Wirksamkeit der Gibberelline A_1 bis A_{10} , A_{13} und A_{14} wurde bei der Einsetzung von Parthenokarpie in Malus sylvestris Mill. festgestellt. Die Gibberelline A_4 und A_7 waren sehr wirksam, A_1 , A_2 , A_3 , A_9 , A_{10} , A_{13} und A_{14} waren von mittelmässiger Wirksamkeit, während A_5 , A_6 und A_8 waren unwirksam. Die mehr wirksamen Gibberelline besitzen, vom molekularen Standpunkt betrachtet, in der Stellung 7 keine OH-Gruppe. M. J. Bukovac and S. Nakagawa¹¹ Michigan State University Department of Horticulture, East Lansing (Michigan 48823, USA), 12th April 1967. - ¹ D. J. OSBORNE and R. L. WAIN, J. hort. Sci. 26, 317 (1951). - ² G. J. Gorter and T. Visser, J. hort. Sci. 33, 217 (1958). - ³ J. C. Crane, A. Rev. Pl. Physiol. 15, 303 (1964). - ⁴ L. C. Luckwill, Grower 52, 451 (1959). - ⁵ R. M. Davison, Nature 188, 681 (1960). - ⁶ M. J. Bukovac, Bot. Gaz. 124, 191 (1963). - ⁷ A. Varga, Proc. K. ned. Akad. Wet. C. 69, 641 (1966). - 8 Published with the approval of the Director of the Michigan Agricultural Experiment Station as Journal Article No. 4035. - ⁹ F. G. Dennis and J. P. Nitsch, Nature 211, 781 (1966). - We thank Dr. R. H. Galt, Imperial Chemicals Industry, Ltd.; Dr. B. E. Cross, Univ. of Leeds; Dr. J. MacMillan, Univ. of Bristol; Dr. S. Tamura, Univ. of Tokyo for gifts of gibberellins. - ¹¹ On leave from Osaka Prefecture University, Osaka, Japan.