Erratum

REFLECTIONS ON QUANTUM LOGIC, B. Z. Moroz, International Journal of Theoretical Physics, 22, 329 (1983).

As has been pointed out to the author by Professor M. Gromov, the hypothesis on p .333 is not true when X is finite dimensional, with possible exceptions in low dimensions. For let X be an n-dimensional complex Hilbert space. A sufficient set of m operators defines an embedding of the ($n-1$)-dimensional complex projective space corresponding to X into a real Euclidean space of dimension m.n. Therefore the known theorems [see, e.g., Sanderson and Shwarzenberge (1963), Theorem 4, and Haefliger (1961), Theorem 2, (a)] about such imbeddings imply that $m \geqslant 4$ for sufficiently large n. For example, it follows that measuring the distributions of the eigenvalues of the three angular momentum operators on an ensemble of particles prepared in a fixed state is, in general, not sufficient to find the angular momentum dependence of the state vector [cf. the beginning of Section (2) on p. 331]. No topological obstruction for the hypothesis to hold true when X is infinite dimensional is known to us. To weaken this conjecture one may ask whether there exists $m \geqslant 4$ such that for any X a set of Hermitian operators A_{1}, \ldots, A_{m} is sufficient whenever A_{i} and A_{j} with $i \neq j$ have no common nontrivial invariant subspace. In the proof of the Proposition on p .333 it is assumed that $\alpha \beta \gamma \delta \neq 0$, therefore it holds up to a subset of X of measure zero: measuring A_{1}, A_{2}, A_{3} allows to reproduce only those \bar{x} for which $x_{1} \neq 0$.

We use this opportunity to correct a few misprints:
p. 330 , line 11: the equation should have number (1);
p. 335 , line 11 from the top and line 4 from the bottom:

$$
A_{t}=0, \quad x \notin \sigma_{1} \cup \sigma_{2}
$$

p. 336, line 10 from the bottom: sup (instead of "sub")
line 7 from the bottom: $b \neq 0$.

REFERENCES

Haefliger, A. (1961). Bulletin of the American Mathematical Society, 67, 109-112.
Sanderson, B. J., and Shwarzenberger, R. L. E. (1963). Proceedings of the Cambridge Philosophical Society, 59, 319-322.

