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Introduction 

Let E be a separable Banach space and H c E  a measurable subgroup. Then 
either # ( H ) = 0  or 1 for each Gaussian probability measure # on E, for example 
see C.R. Baker [23 and N.C. Jain [143. Recently T. Byczkowski [4] proves a 
zero-one law for Gauss measures (in the sense of Bernstein) on Abelian 
topological groups. Using a different technique E. Siebert [26] remarks that 
each Gauss semigroup on a connected Lie group arises from a semigroup of 
absolutely continuous measures. This result implies a zero-one law. 

It is the purpose of this paper to establish zero-one laws and purity laws 
for continuous convolution semigroups on arbitrary locally compact  groups G. 
In Sect. 2 we start to examine the decomposition of a continuous convolution 
semigroup (#t)t>=o induced by the Riesz decomposition M(G)=B@B • with 
respect to a prime L-subalgebra B of the Banach space of bounded Radon 
measures M(G) on G, [9], 2.10. A prime L-subalgebra is a band such that B is 
a subalgebra of (M(G), ,) and B= is an ideal. Theorem 1 describes the decom- 
position in terms of the generating functional of the semigroup. Applying these 
results on normal semigroups we prove a zero-one law for #t(xH) provided H 
is a normal measurable subgroup such that the L6vy measure vanishes on H c. 
This result includes a new zero-one law for Gauss semigroups on locally 
compact  groups. The zero-one law contained in Corollary 7 seems to be new 
even for the euclideam space IR n. 

By a different technique we prove zero-one laws for generalized Poisson- 
measures on Abelian topological groups and for infinitely divisible probabili ty 
measures on locally convex vector spaces E. We show that a measurable 
subgroup H c E  has the #-measure 0 or 1 if the L6vy measure F of # is 
unbounded (or F vanishes) on the complement of H. These results can be 
applied to obtain a direct proof  of some known results for Gauss measures and 
stable measures. The proofs are based on the purity law for generalized 
convolution products presented in [17]. 
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1. Preliminaries 

Let G always denote a topological Hausdorff group and qlG(e) the neigh- 
bourhood filter of the natural element e~G. We write Cb(G), Cu(G ) [N(G)] for 
the Banach space of bounded real-valued functions (with respect to the sup- 
norm) on G, the subspace of left uniformly continuous functions [the Bruhat 
space of infinitely differentiable functions on G provided G is locally compact, 
[12], 4.4.2]. Let I~1=# + + ~ -  denote the total variation of a bounded Borel 
measure # on G. Then the space of tight, signed, bounded Borel measures 
M(G)={#:  I#[(B)=sup{l#[(K): K c B  compact} for each Borel set B} forms a 
real Banach algebra with respect to the norm of total variation ]f'H and the 
convolution ,. 

Let M+(G) [MI(G)] be the subset of all positive [probability] measures of 
M(G). On the other hand (M(G), H'!3 is an order complete Banach lattice (see 
[23]). A subset BcM(G) is said to be solid if v~B whenever #EB and Ivl<l~l 
holds for v~M(G). The norm closed solid vector subspaces of M(G) are just the 
bands lying in M(G), [23], II 10.2. We write #lv(p~v) if # and v are mutually 
singular in M(G) (# is absolutely continuous with respect to v). Put /z~v iff 
# ~ v  and v~# .  

Let B• v_l_t~ for all #~B} denote the orthogonal band of a band 
B. Then the relation M(G)=B@B • follows. Following the notation of [9], 
p. 128 we call a band BcM(G) a prime L-subalgebra if (i) B is a subalgebra 
(closed unde r . )  and (ii) B • is an ideal (this means # ,  vsB • whenever /~ or 
v~B• 

For each measure v on G define the adjoint measure ~(A)=v(A-I). Put 

f*(x)=f(x -1) i f f  is a function on G. Let f(v)  be the image measure of v with 
respect to a measurable function f on G and let e x be the Dirac measure for 

xEG. Finally e(v)=exp(-][vl[)~v"/n! defines the Poisson measure of 
n = 0  

v~m+(G), v~ vl=v and v"+l=v*v" if v({e})=0. A subset (#t)t~(0,~) of 
probability measures of M(G) is called a continuous convolution semigroup if 
#s .# t=#~+t  holds for all s, te(0, oQ) and l im# t=e  e with respect to the weak 
topology a(m(G), Cb(G)). t~o 

Let now G be locally compact. Then every continuous convolution semi- 

d+ #t(f)  ,= o group is uniquely determined by the generating functional A ( f ) -  d~ 

for fe~(G) ~. The functional A has the canonical representation A( f )=~( f )  
+ ~ 2 ( f ) + 5  [f- f (e)-F(f)]drl  (L6vy-Hin~in formula [12], p. 308), G*=G 

G* 
-{e}.  0 ,  is a primitive form, ~2 a quadratic form on 9(G), F is a fixed L6vy 
mapping and t/, called L6vy measure, is a (possibly unbounded) positive real 
Radon-measure on G* determined by 

5 fdq=limt-* 5fdpt 
G* t$O G 

1 Somet imes  we shal l  cons ider  A on  the funct ions  f eCb(G ) which are  local ly  in ~ ( G )  ([10]) or 
on  a dense  subspace  of Q(G) 
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for all continuous real-valued functions f with compact support on G*, de- 
noted by 2((G*). Let us always consider the regular extension of t/ on the 
Borel a-field of G*. There is a one-to-one correspondence between continuous 
semigroups, the positive cone of generating functionals and the canonical 
representation given by (0~, #/2, ~/). For  more information see [12]. Every 
bounded Radon-measure v with v>=O=v({e}) determines a continuous con- 
volution semigroup (e(tv)),~ o (with generator A = v- ] l  vii ee), called the Poisson 
semigroup of v. For  every continuous convolution semigroup the following 
statements are equivalent ([ 12], 6.1.5): 

(i) (#t)~>=o is a Poisson semigroup, 
(ii) A is bounded on N(G) with respect to the sup-norm, 

(iii) t/ is bounded and A = r / -  I] ~ [Iee. 
If (iii) is satisfied, A is called a Poisson generator. 
A convolution semigroup is said to be normal (symmetric) if #t */~t-=/~, * #, 

(&=/~t) for each t>0 .  If (#t)t>:o is normal then vt=#t,[t t defines a symmetric 
continuous convolution semigroup on G with generating functional f~--,A(f) 
+ A(f*)) and L6vy-measure t/+ 0 (compare for example with [10], p. 20). 

Finally let co G denote the left Haar measure on G and B c the complement 
of a set B. We define 1B to be the indicator function of a set B. 

2. Zero-one Laws for Continuous Convolution Semigroups 
on Locally Compact Groups 

In this section G denotes a locally compact group. Let Cx(tA) be the con- 
tinuous convolution semigroup determined by a generating functional A. The 
structure of the convolution semigroup generated by the sum of two generating 
functionals A1 and A2 is given by the equation E~(t(AI+A2)) 
=gx(tA1)*•x(tA2) if the measures gx(tA1) and g~(tA2) commute for all t>0.  
In general 8~(t(A~ +A2) ) is determined by a Lie-Trotter product formula, see 
[10]. 

If A2=c(v-ee) (c>0, I[vil=l) is a Poisson generator we can compute 
g~(t(A~ +A2) ) with the help of the perturbation series 

(I) gx(t(A1 + A 2 ) ) = e x p ( - c t )  ~ Uk(t, A1, A2) , Uo(t , A1, A2)=gx(tAO, 
k>_O 

t 

uk+ l(t, A1, A2)=c S gx(rA1) * v * uk(t--r , A1, A2) dr, 
0 

which yields a norm convergent series in M(G), see [10], p. 61. The formula (I) 
is the key of the next theorem. 

Theorem 1. Let BcM(G)  be a prime L-subalgebra and (#t)t>o a continuous 
convolution semigroup with a generating functional A. One of the following 
statements is fulfilled. 

(i) #t6B for some t > 0  (and hence for all t>0),  
(ii) #t~B• for some t > 0  (and hence for all t>0),  
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(iii) There exists a generating functional A 1 and a Poisson generator A 2 so 

that A =A 1 + A 2. For all t >=O #t is given by the perturbation series (I) and 

a) g~(tA1)~B , 
b) ~ uk(t, A1, Az)~B • holds. 

k>=l 

Proof Let #t=#t~+#~ be defined by the band projection with # ~ B  and 
# ~ B  • The equality t§ #~+s=#~ *P~+#t2*#~ + 1 2 s h o w s  

=#1 ,#2 for all t, s > 0  since B is a prime L-subalgebra. If II~lll = 1  (=0)  holds 
for some t > 0  the statement (i) ((ii)) follows immediately. Let us now assume 
0<  II~ll <1 for some t>0.  We conclude II~]+sll = Ilmlll [1~111 for all t, s>0.  A 
standard argument shows [[/~ll[--exp(-c~t) for all t > 0  and some e>0 .  This 
fact yields #2~--~0 and ~lk'--~/; e for t--+0 with respect to the a(M(G), C~(G))- 
topology. Plainly, (exp(tc0#~)t> o is a second continuous convolution semi- 
group. Let A~ be the generating functional 

d + 
A l ( f ) =  ~ -  (exp(c~t)#~(f))]~= o for feN(G).  

The relation #t = #1 + #2 implies: 

lim # 2 ( f ) - d +  /~2(f)lt= 0 exists for f ~ ( G ) .  
~ o  t dt 

Hence 
d + d + 

A (f)  = ~ / ( e x p  ( - t ~) (exp (t c 0/~t ~ (f)))It= o + ~ -  #2 (f)[t= o 

d + 2 
= A 1 ( f )  - c~f(e) + ~ #t (f)[,= o. 

We show: ~(G)~f~--~A2(f)= pt2(f)-c~f(e) is a Poisson generator. It suffices 
to prove ([12], 4.4.18): 

1) A 2 is almost positive, i.e.: A2(f)>O for all f ~ ( G )  with f> f (e )=O.  The 
assertion holds since p~(f) > 0. 

2) A 2 is normed, i.e.: there is an open neighbourhood U of e satisfying 
sup{A2( f ) : f~H(U)}=O if we denote H(U)={ fe~ (G) :  1 v < f < l  }. Let U be 
any open neighbourhood of e. The inequality 1 - ~ t < e x p ( - c ~ t )  implies 

d + 
O < # ~ ( f ) - < l - e x p ( - ~ t ) - < ~ -  t - t _ for all t>O and f~H(U). Plainly d t  #~(f) l t=~ 

and A2(f)<O holds. Let U(UI) be an open neighbourhood of e such that 
sup{A( f ) : f~H(U)}=O (sup{Al( f ) : feH(UO}=O) is fulfilled. If we put U 2 
= U ~ U  1 it is easy to compute O<sup{A2(f): f~H(U2) } if we observe A = A  1 
+A 2. 

3) A 2 is bounded. Let []" H be the sup-norm on ~(G) and ~Y~(G*). We show 
that A 2 is bounded. Using the inequality of part 2) we conclude 

2( 2 I (1 -exp(--~t))I l f l [  
Pt f ) - ~ f ( e )  _-<c~[]fr I +#t  (f[)_<~Hff[ + - -=2~[ [ f l [  < 

t t - -  t 
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and [A2(f) ] < 2 e  [[fl for all f e~ (G) .  The generating functional A 2 has the form 
A 2 ( f ) =  j ( f - f ( e ) )d t l2  and l[~21l<oo. Let ~/(t/1 ) be the L6vy measure of the 

G* 
canonical representation of A(A~). We conclude 

exp (c~ t) #I (f)  #1 (f)  
~h( f )= l im - l i m - -  for all f ~ S ( G * ) ,  

t~o t ~ 0  t 

r/=r/~+r/2 and r /2(f)=lim#2(f)=<~llf l] .  
t ~0  t 

This relation implies ]1/~211~_~- We are now able to apply the perturbation 
theory and formula (I): 

# t=exp(  - t  Ilt/2ll)(exp(tT)#~ + ~ uk(t, A1, 12))- 
k > l  

The definition of #1 implies exp(-t(llt/2l[-c0)#t~<#~ and we conclude: 
Ilr/21l>c~. Hence I)/21[=c~. The band projection shows # 2 = e x p ( - t a )  
�9 ~ uAt, AI, A2). [] 
k > l  

Corollary 2. I f  in the situation of Theorem l(iii) the L~vy measure t12 of A 2 
commutes with each measure d~ t > 0  the relations tlaEB • and #t 
=g~(t A1) * e(tt/2) are valid. 

Proof. We have only to observe that under these assumptions gx(tA1) and 
e(tr/2 ) commute and the perturbation series reduces to the ordinary con- 
volution product of the two factors. Furthermore, Theorem 1 implies 
#1=exp(-tlltl2ll)gx(tA1) and exp(-tllq2ll)(g~(tA1)*ttl2)<# 2. Since B is a 
prime L-subalgebra we conclude ~2~B I. [] 

A continuous convolution semigroup (#t)t>o in M(G)-{ex:  x~G} is called a 

Gauss semigroup if lira -1 #t (G_ U) = 0  holds for every open neighbourhood U 
t ~0  t 

of e. Our Theorem 1 implies a purity law for Gauss semigroups. 

Corollary 3. Let B c M ( G )  be a prime L-subalgebra and (#)t>o a Gauss semi- 
group. One of the following statements is true. 

(i) #t~B for some t > 0  (and hence for all t>0),  
(ii) #t~B• for some t > 0  (and hence for all t>0). 

We have only to remark that the L6vy measure of the canonical repre- 
sentation of a Gauss semigroup vanishes. [] 

Lemma 4. Let X be a topological group and let H ~ X  be a measurable 
subgroup. For each #~M 1 (X) the following assertions are valid: 

a) #*/2(H)= 1 iff there exists a coset Hx  satisfying #(Hx)= 1 and #(Hy)=0 
for each coset H y 4= H x. 

b) # * f i ( H ) = 0  iff #(H y)=O for all yeX.  

Proof a) The equation l = # , F t ( H ) = S # ( H y ) d # ( y  ) shows that there exists a 
point x E X  with # ( H x ) =  1. 



124 A. Janssen 

b) We remark that #.~(H)=~#(Hz)d#(z)>#(Hy)  2 implies the asser- 
tion. [] 

Let ~ be a topological group topology on G finer than the original to- 
pology. We denote the new topological group by G~ and it is called a refine- 
ment of G. It is well-known that the set of all bounded and tight Borel- 
measures on G, 

M(G~) = {#: [#l (B) =sup  {1#1 (K), B ~ K~-compact} 

for all Borel sets B ~ G~} 

is a prime L-subalgebra of M(G). We remark that a measure # > 0  belongs to 
M(G~) • if and only if # vanishes on all ~-compact sets. For  example, J.F. M61a 
[22] studies G~ for Abelian groups. Further examples of prime L-subalgebras on 
Abelian groups appear in [9], 5.1. Let G~ be a refinement of G and t/ be the 
L6vy measure of the semigroup (#3t>0- There exists an uniquely determined 
decomposition of t/ in two L6vy measures t/a, t/b satisfying t / ,+q b = t  / with 
tlalG_vEM(G~) and tlbl~_vM(G~)• for every open set U~~ 2. Let us now 
examine the Poisson generator A 2 and the L6vy measure t/2 of A 2 with respect 
to the decomposition described in Theorem 1 for B = M(G~). 

Corollary 5. a) #t~M(G~) • for all t > 0 / f  qb(G*)= oe. 
b) I f  #tr • for some t > 0  then 

(i) ~/b<~t2, 
(ii) t/b=r/2 provided (#t)t>=o is a normal semigroup. 
c) I f  (#t)t>~o is normal and tl=tla then either #t~M(G~) for all t > 0  or 

#t~M(G~) • forall t > O. 

Proof. The first assertion follows from [16], Satz 4. 

b)(i) The assertion tlb=<t/2 is equivalent to ~a_>q-t/2. If this inequality is 
false there exists a L6vy measure 0=#t/3<r/-t /2,  r/3<t/b with r/3~M(G~) • We 
put A3=t/3-11t/3l] ee and write A I = ( A 1 - A 3 ) + A  3. The perturbation formula 
(I) yields: e x p ( - t  I[t/3[]) Ul(t, A 1 - A  3, A3)<gx(tAO. But this is impossible since 
u~(t, A ~ - A  3, A3) belongs to M(G~) • compare with [16], Satz 4. (ii) At first we 
consider a symmetric semigroup (#t)t~O" Let us suppose v=t/z-- t lb>0.  There 
exists an increasing sequence of r-compact symmetric sets K, c G  satisfying 
v (G-K , )<  1In and g~(AO(G-K,)< 1In. We consider the subgroup H =  U (K,)" 

nc]q 

and put vt=~x(tA1). It is easy to see that v t is a symmetric semigroup. At first 
we prove that each v t is concentrated on H for t~[0,1] ,  l = v z ( H )  
=~ vt/2(Hx ) Vl_t/2(dx ). Hence there is a point x~G with vt/z(Hx)=l. Lemma 4 
implies v~(H)= 1. Finally, we consider the perturbation series (I) which shows 
uz(1, A1, A2) (H)> l[v[[ >0. But this is a contradiction since ut(1, A1, A2) is 
contained in M(G~) • and H is a a-compact subgroup of G~. Let (#t)t>=o be a 
normal semigroup and ~ the generator of the adjoint semigroup (/~)~__> 0- Then 
Vt-~-#t*~t admits the generator A+A.  Following the notation of the proof 

2 Let V lv (flY) denote the restriction of a measure v (function f) on the set V 
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of Theorem 1 we conclude H#~ll=l[/'/tlH=exp(-tHt/2[t) which shows [[viii 
=exp(-2t l l t /2[I  ). Hence the norm of the L6vy measure belonging to the 
Poisson generator (A+/])2 is equal to 2II~2N. The semigroup v t admits the 
L6vy measure t/+0. This yields (t/+0)b=t/b+(t/b) ~. Since v~ is symmetric we 
conclude 

[tv~ll=exp(--tll(t/+0)bll) and IIt/b+(t/b)~ll=2ll~/211. 

But now IJ~/b[I = lit/all and (i) proves Y/b=~2 . []  

Our Corollary 5 shows that t/b=0 if #teM(G~) for some t>0.  But for non- 
normal semigroups the converse assertion is false (compare with example 1). 

Let H c G  be a normal subgroup. Then there exists an uniquely determined 
refinement G~ of G such that H is a closed and open subgroup of G~ and the 
restriction of both topologies on H coincides (apply [11], 4.5). We remark that 
G~ is locally compact if H c G is closed. If H is measurable then the prime L- 
subalgebra M(G~) has the form 

and 

M(G~) = {#~M(G): II#ll = ~ I#l(xH)} 
x t t  

M(G~)• [#](xH)=0 for all x~G}. 

The proof is obvious. We have only to remark that each v-compact set is 
contained in the union of a finite number of cosets of H. The topological 
group G~ is called the refinement induced by H. Corollary 5b)(ii) completely 
determines the structure of a normal convolution semigroup if the behaviour of 
gx(tA1) is known. Therefore we consider the case t/=t/, .  

Theorem 6. Let H be a measurable normal subgroup of G and let G~ be the 
refinement of G induced by H. Let (#t)t>o be a symmetric continuous convolution 
semigroup on G with generating functional A and LOvy measure tl. I f  tllVC EM(G~) 
for every open set Us~llG(e) then the following assertion are valid: 

a) I f  t/(HC)= oo then #t6M(G~)• for all t>0 .  
b) I f  #tCM(G,)• for some t > 0  then 
(i) (#,)t_>o is a a(M(G,), Cb(G,))-continuous convolution semigroup and 

(ii) exp ( - t~l(HO) <=#~(H) <= 1 - ttl(H ~) exp ( - ttl(H~)). 

Proof b) If #tor • for t o>0  then (#t)t__>o is a symmetric semigroup on G~. 
Since each #t is concentrated on a countable number of cosets of H the 
canonical projection q):G ~ G / H  into the discrete group G/H is #t-measurable. 
Hence the family of m e a s u r e s  (q~(#t))t>o forms a symmetric semigroup of 
discrete measures on G/H. Applying [12], 6.3.17 we see that there exists a 
finite subgroup H 1 c G/H and a H1-Poisson semigroup such that 

cp(#t )-- exp ( - t[I v 13 Fcom + ~ (o~m * v * com)k tk/k !3 
k=>i 

where co m denotes the normed Haar  measure on H 1 and v is a positive 
discrete and finite measure on HI.  

1. In a first step we show [ H l [ = k = l .  
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Let us choose HI={x1,...,Xg}, Mi=q)-l({xi}) with MI=H. Then 
1 

#t(Mi)>kexp(-tHvl[) and # t f M ~ k e  e for t ~ 0  with respect to the 

a(M(G), Cb(G)) topology (apply the Portemanteau theorem). We remark that 

k #hlMi --+0 #h--j2=1 as h~O.  

Regarding # t+h=#t*  #h we receive 
k 

#t+hlM1 = ~ fltlMi*#hlM~-l q-rt, h 
i=1  

where rt, h is a suitable measure with Ilrt, hll---~0 as h--*O. Hence 

(*) #tq-h[Ml~ #tlM~=~ #tlo- '(m) as h--*0. 
i = 1  

Let us show that this relation implies k =  1. Therefore, we choose an increasing 
sequence of symmetric compact  sets K, cH with #~(H-K,)--*O. Then Z 
= U (K,)" defines a subgroup of H. For  all t~(0, 1) we compute:  

n~fiN- 

1 
mxeaGx #t(xZ) ~ S #t(xz) #1 -t(dg) ---- # 1  ( Z )  ~ ~ exp ( - [I v ]1) 

and 

#t(Z)> ~ (#t/2(xZ))Z> (~ exp(-],v,[))2 

if we take the symmetry of #t into account. Now t~--~#t(Z)>c holds for all 

te[0,  1] if we put c =  2 exp(-l lv[[)  . But t~--~#t((K,)" ) is upper semicon- 

tinuous for each neN.  The category theorem of Baire implies that there exists 
a natural number  n and an open subset U of [0, 1] satisfying 
U c {t~[0, 1]:#t((K,)")>c }. Applying (.) we compute for each 

. 1 
t E U c~ [-0, 1)' c <-- lim sup #t + h ((K,))  _--< ~ #t ((K,)n). 

h ~ 0  

Repeating these arguments we receive ckm<#t((K,) ") which shows k =  1. 
2. ((#t)t>=0, #O=ae) is a continuous convolution semigroup on G~. It suffices 

to prove that #t is continuous in t=0 .  Let VcG~ be an open set containing e. 
Then there exists an open set UcG with Vc~H= UtaH. The inequality 

lim inf #t ( Vc~ H)  > lim inf #t (U)  - l i m  #t (Hc) = 1 
t~O t~O t~O 

proves the statement. 
3. In a third step we prove # t ( H ) = l  provided #tEM(G~) and t/(HC)=0. At 

first we assume that I tcG is closed. Then (#,)t__>o is continuous on the locally 
compact  group G: and the whole representation theory can be applied. Let t/' 
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be the L6vy measure  of  the semigroup on G*. Then  t / ' (H~)=0 because for any 
compac t  set K ~ G ~ - H  there is a function f~Cb(G) satisfying f i n = 0 ,  fi~r 
0_--<f=<l. This fact shows: t / ' ( f ) = t / ( f ) = 0 .  

The  semigroup admits  the generat ing functional  

A'( f )  = ~'2(f) + ~ (�89 + f*)  - f (e)) d~l' 

on ~(G~) where f *  is defined by f * ( x )= f ( x -1 ) ,  compare  with [10]. Let  U~= G~ 
be the family of  symmetric ,  open, relative compac t  set containing e (directed 
by ~) .  Put t ing A~( f )=~ '2( f )+~( f - f (e ) )d t l l va  we see that  g~(tA~)(H)=l 
holds which follows f rom formula  (I) and [12], 6.2.3. Fol lowing the a rguments  
of W. H a z o d  [10], p. 58 we conclude 

1 ~ l im sup g~ (tA~) (H) < #,(H). 
c~ 

I f  H is not  closed then /~ is a closed normal  subgroup  of G. We can now 
assume that  G = H and H is a dense subset  of  G 3. 

Let  us assume that  # t ( H ) <  1 for some t. Then  the semigroup (P(#t) admits  a 
L6vy measure  v 4= 0 on G/H. Hence  

(1) l im #~,~ - _ ( m  1 IIv[I and lim #~,,-~,x,,((o / l) v({x}) 
t~o t t~o t 

for each xeG/H,  x4:H. For  each open symmetr ic  set U~cG with eeU~ we 
introduce the semigroup (#~)t>=o on G with the generat ing functional  A~(f) 
= A ( f ) -  ~ ( f - f  (e)) dt/iv~. Then  for every real-valued bounded  measurab le  
function f on G satisfying f = f l H ~  formula  (I) yields: 

# t ( f )  = exp ( - t ~ (UC)) [#t ( f )  + u~ (t, A - A~, A~) (f)  + o (t)]. 

Regarding  aHC=HCa for asG and HCx=H c for xEH we compute :  

U l(t, A- -Aa ,  Aa)(HC)= ~ i S # t - r ( X - l y - l H  r 
HO 

c r c = rl(U') #t ( H ) t .  

This shows: 

(2) l im # t ( f ) = l i m  # t ( f )  
t~o t t~o t 

if one limit exists (and f = f l n c  ) since # t (HC)~0  for t--*0. Let  us consider an 
open set VEqZG(e ). Then  we choose a set U~ with U~= V and a cont inuous  real- 
valued funct ion f satisfying fi o~ = 0, fl vc = 1 and 0 < f  < 1. Hence  

0 < l i m  'ut(VC~HC)<lim # t ( f )  
t -o  t , -o  t = t / IvY(f)=0"  

a Let ~" denote the closure of a set V 
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Together with (2) we conclude: 

(3) lim #t(V~H~)=0. 
t ~ 0  t 

We are now ready to study the strongly continuous contraction semigroup of 
convolution operators (T,~)t~ o on Cu(G~) defined by T~f(x)=  Sf(xy)d#t(y ). We 
apply the theory of semigroups of operators 1-13] which shows that (T~t)~__> 0 
admits an infinitesimal generator (N,~Az) with a norm dense domain 
2/'cC,,(G~). We consider a function f =  ~ fg, fM=flM where fM is an 

MeG/H 

uniformly continuous function on M~G. Since H is dense there exists an 
uniquely determined function fMeCu(G) satisfying fM 1M=fM' 

A set {s eeI} c Cu(G ) is said to be equi uniformly continuous (e.u.c.) if (i) 
the set is uniformly bounded (]f~]__<K) and (ii) for each ~>0 there exists a set 
Ve~ satisfying If~(x)-f~(y)] <8 for all e e I  and all x, y with x-lyeV.  

(4) Let {gM: MeG~H} ~ Cu(G ) be e.u.c. Then 

f =  ~ gM1MeC,,(G~) . 
MeG/H 

(5) If f =  ~ fM with feeu(G~) and fM=f l  M then 
Me G/H 

{fM: MeG~H} is e.u.c. 

(6) If {f~: o~eI} c C,,(G) is e.u.c, then 

{T,~ f~: eel} c C,,(G) is e.u.c. 

(7) If {f~: eel} c C,,(G) is e.u.c, then 

II r.~L-f~lJ----,0 for t ~ 0  uniformly with respect to e e l  

Let us sketch the proof of (5). For each e > 0  we choose a symmetric set VcH, 

Veor with I f(x)-f(y)l< e- for all x,y satisfying x-lyeV.  Choose a sym- 
2 

metric set UeqIG(e) with U3c~HcV. Let x, yeG satisfying x-~yeU. For each 
coset MeG/H there are h~, h2eM such that hFlxeU, h~lyeU and IfM(h0 

- ~ < _ g  --IM(X)I <~, IfM(h2)--fM(Y)l =4" This fact implies h[lh2eU3nH which implies 

h~ ~ h 2 e V. Consequently 

IfM(x) - fM (Y)I---I f ~  (x)--fM(h 0l + IfM(h~)--fM (h2)l 

+ IfM(h2) --fM(Y) I < ~" 

The proofs of the other statements are easy. 
In the next step we prove for f e  C,,(G,) the statement 

#,( Z fu) 
(8) lim M : # H  - -  E v(q)(M))fM(e) 

t~O t M * H  
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where M runs over all cosets MeG/H-{H}. Assume Ifl<K. We can choose 
an open set UeqlG(e ) satisfying IfM(x)--f~(y)[<e for all M and x,y with 
x-ty~U. Then 

• #t( E fM)-- E v(rP(M))fM(e) 
M:#H MC-H 

<= l (#t( ~, fM)__#t(lvM~, + 1 lg ' ) '  M*~ n f~)) # t ( l v ( g , u  ~ (fM--fM(e) 

+ l#t(M,nE fM(e)(1Mlv--IM)) + M,HE #t(fM(-e) V(~P(M))fM(e) 

-<-K#t(UCnHC)t t-e #t(ac~HC) t ~-KMc. HE Pt(~M)--V(q)(M)) " 

We regard the last term. 

~, &(1M) v(qg(M)) I ~o v(r 
M*H t = M ~ ,  n [hE1= it v"(q~(M))n! t"- 

v"(~o(M)) t,_ t < Ilvlln--'0 for t ~ 0 .  
M:t:H n=2 n=2 ~ 

Statement (3) and (1) imply (8) since Ilt(Uc~HC) is bounded. For every function 
t 

f contained in the domain Y of N lim P t ( f l n ) - f ( e )  exists since lim ttt(fluc) 
t~o  t t~o  t 

exists. For each f~J f f  with f =  ~ fM we compute by applying (8): 
MeG/H 

lira # t ( f~) - f (e )  - l i r a  #t(fn)-fn(e) lim #t(f~ 1H~ 
t~O t t~O t t~O t 

=/ ( fn ) - I l v l l f ( e ) .  

Hence fn lies in the domain of the generating functional A. Together with (8) 
we get: For all f~ J f f  the following assertion is valid 

Iz,( ~ fM)-fn(e) 
(9) lim M~G/~ --A(f~)+ ~ v(q~(M))fM(e)--]]v][fn(e ). 

t ~O  t M4~H 

Let L x be the operator on Cu(G~) defined by the left translation with respect to 
xEG, Lxf(y)=f(xy ). Clearly N(Lxf)(e)=Nf(x ) for f e ~ .  By definition let 
B1,2:S--*IR be the operators Bl(f)=A(fn) and B 2 ( f ) =  ~ v(q)(M))fM(e ). 

M ~-If 
Putting Cif(x)=Bi(Lxf ) for i=  1, 2 and f e J K  we conclude: 

(10) N f= Clf+ Ca f-]lvl[f for each f e S .  
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The equality (10) is a result of statement (9). We remark 

(11) L~fra = Lxf  M. 

Let us now examine the operator C~. We introduce 

Rt( ~ fra)(x)= ~ TujM(X) IM(x ) for f =  ~ fM~C,(G~), 
M~G/H MeG/H M~G/H 

fM=flra. Then 
a) (Rt)t>=o is a strongly continuous contraction semigroup of positive oper- 

ators on Cu(G~) satisfying RJ(x)=Rt(L~f)(e). 
b) (Rt)t>o admits the generator C~ introduced above. Let us give the proof. 

From (6) we get Rt(f)e C,,(G~) and (7) implies that Rt is strongly continuous for 

t --+ 0. The relation (11 ) implies R t (L~ f )  (e) = T,, (L~ fM) (e) if x E M which proves 

RJ(x)= ~ Tu~(L~fM)(e)lM(x)=Rt(L~f)(e), 
M~G/H 

RtRJ(x)=Rt( ~ Tu~(L~UM)(e) lu(x)) 
MEG/H 

= 2 T~t Tu~(L~fu)(e) Ira(x) 
M~G/H 

= ~ Tu,+~(L~fra)(e)lra(x)=Rt~sf(X)" 
MeG/H 

b) Let D be the infinitesimal generator of (R,),>=o. Then Df(x)=D(L~f)(e) 
holds for each f contained in the domain of D and 

lim Rtf(e) - f (e)  = lim T f..( ~,,~,e, - f (e)  _ A (f~i) 
t~O t t~O t 

which shows D = C 1.  

For f~C,(G) the definition of Rt yields RJ=Tut f and R t in(x)= ln(x). Let 
t > 0  be fixed. Then R(f)=RJ(e)  defines a positive linear functional on C,(G,) 
satisfying R(1)--1 and R( ln )=  1. Since C 2 is a bounded positive operator and 
R s is positive we receive 

(12) ~fd#t>exp(-tHvH)R(f ) for each positive f~C,(G~). 

(Regard (10) and apply the perturbation series for operator semigroups, see for 
example [10], p. 11). 

Let us choose compact sets K i t H ,  K 2 c H  c with # t ( H - K 1 ) < 8  and #t(H c 
- K 2 ) < e .  There exists a function feC,(G) with compact support and 0<f__< 1, 

flK, =0, flKz~- l. Thus 

~fd#t=R(f)=R(flH)+R(flHc ) and O<R(fluc)<R(1Hc)=O 

imply R(flH)=Sfd#t. Therefore (12) shows 

e> ~ f lnd#t>exp( - t  Hvll) ~ f d#r>exp(-t  llv][)(#~(HC)-e). 
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Hence #t(Hc)=o proves v=0. 
a) Suppose #teM(G~) • for some t>0.  The first part of the proof shows that 

~ ( H ~ )  = II vii. (P(#,)~>o is a Poisson semigroup on G/H and lira For each open 
= t ~ O  t 

symmetric set U~eVlla(e ) we introduce the generating functional 
B~( f )=~( f - f (e ) )dr l lv~HO and A ~ = A - B , .  Formula (I) implies: 

exp (t t/( U2 c~ He)) #, (H ~) > u~ (t, A~, B~) (H ~) 

=~ i ~ Ex((t-r)A~)(Y -1 z-1  ~ r H ) g~(rA~)(dz) d rll w ~H~(dy) 
0 

= ~ tC~(tA~)(Y -1 H ~) tllv~H~(dy)>--tl(U~c~H ~) tNx(tA~)(H ). 

Observe that H is normal and note that E~(tA~) is a symmetric semigroup in 
M(G~) with lim gx(tA~)(H)= 1 (regard (1)). Thus 

t ~ 0  

lim ~t(H~) -- ]]v]] implies ]lvll>tl(HCc~U~). 
t ~ 0  t 

For each compact set K c H  c we can choose a set U s with K cUd. The 
regularity of t/proves t/(H c) < oo. 

b) (ii) Consider the decomposition t/=t/iH+t/iHc of the L4vy measure. If 
#teM(G~) • for some t > 0  then part 3 yields 

Ex(t(A - (t/IHc -- t/(He) ee)))(H) = 1. 

Hence #t(H)> exp (-ttl(H~)). The arguments used in the proof of part a) show 

#t(HC)>exp(-ttl(HC)) ttl(HC). [] 

Corollary 7. Let (#,)t~o be any normal continuous convolution semigroup in 
MI(G ). For each normal measurable subgroup H the following assertions are 
valid: 

a) I f  t/(H~)= oo then #t(xH)=O for all x eG  and each t>0.  
b) I f  t/(HC)=0 then 
(i) either #t(xH)=O for all x eG  and each t > 0  or 

(ii) for each t > 0  there exists a point x(t)eG satisfying 

x(t) x(s) = x(t + s) rood H and #t(x(t) H) = 1. 

I f  (#,)~o is symmetric we can choose x( t )= e. 
c) Suppose that (#t)t>o is symmetric and 0<t/(HC)<og. Put a= ~, tl(xH ). 

T h e n :  x l t  e: H 

(i) either #t(H)=O for  each t > 0  or 
(ii) exp ( -  t t/(He)) =< #, (H) < exp ( -  t(t I (U ~) - a)) - t a exp ( - t t/(no)). 

Proof. Regard the symmetric semigroup vt=#t,/~t which has the L6vy measure 
t/+ @. Let G, be the refinement induced by H. 

a) Corollary 5 implies vt(H)=O for t > 0  if 0/+f/)b(G*)=oo. If (t/ 
+~)b(G*)<oo then (t/+@)~(H~):~ is satisfied. Hence v t (H) :0  by Corollary 
5c) and Theorem 6 for t>0.  Thus Lemma 4 shows a). 
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b) The semigroup (vt)t>=o fulfils the assumptions of Theorem6 since (t/ 
+0)(He)=0. Thus either vt(H)=O for all t > 0  or vt(H)=l for every t > 0  is 
valid. Lemma 4 proves the assertion. Part c) follows from Theorem 1, Corollary 
5b)(ii) and Theorem 6b). [] 

Theorem 6 and Corollary 7 include new results for Gauss semigroups since 
the L6vy measure t/vanishes. 

For a measure /~MI(G ) the set ar(p)={x~G: #*ex~p} forms a measur- 
able subgroup of G (see [15], Chap. II). Let us call ar(#) the set of equivalent 
(right) translates of #. It is well known that ar(#) is closed if/~ is absolutely 
continuous. (Note that x~--~#(Ax -1) is continuous for each measurable set A 
provided # is absolutely continuous.) The next Theorem deals with symmetric 
Gauss semigroups having normal sets ar(pt). For example ar(#t) is normal if 
(]Jt)t>=O is a central semigroup which m e a n s  ]2t=ey-1*#t*C,y for each yeG (cf. 
[12], 6.4). 

Ch. Berg [3] gives an example of a symmetric Gauss semigroup on the 
infinite-dimensional torus group with the following interesting property: There 
exists a point t o such that #t is singular with respect to Haar measure up to 
time t < t  o and #, is absolutely continuous for t > t  o. In [15] and [18] the 
author shows that absolutely continuity of symmetric convolution semigroups 
can be described in terms of the set of equivalent translates. Let's remember 
Berg's example. Then #t(ar(#t))= 1 (t >0) iff/~t is absolutely continuous. 

Theorem 8. Let G be a second countable locally compact group and (#t)t>=o a 
symmetric Gauss semigroup on G. Suppose that ar(l~t) is normal for each t>0.  
Then either assertion a) or b) are valid: 

a) #t(ar(#t))=O for all t>0 ,  
b) (i) There exists a normal subgroup H of G and a locally compact refine- 

ment H e of the relative topology on H such that (itt)t>=o is concentrated on H and 
(#t)t >= o forms a continuous Gauss semigroup on H e. 

(ii) There exists a tot[0,  oe) satisfying #,(ar(#t))=0 for each 0 < t < t  0 and 
a r(#t ) = H for t > t o. Hence #t((ar(#t)) = 1 for t > t o. 

(iii) #tru~CoH~for t > t  o. 
(iv) to=inf{t :  #t ~COH, }. 

Proof Corollary 7 shows: either #t(ar(#t))=O or #t(ar(#t))=l for fixed t. Sup- 
pose t o =inf{t :  pt((ar(#t))= 1} < oo and #t(ar(#t)) = 1. Then a standard argument 
used several times implies Ps(ar(pt))= 1 for all s__> 0 (see Lemma 4). 

Putting H =  0 ar(#s) we remark that ar(ps)car(pt) holds for s<=t. More- 
to  "~ S 

over, ar(ps)-~ar(pt) for each s>=t. Assume that there is a point x~ar(,u~) 
-ar(pt).  Then #s(ar(#t)x)=O yields a contradiction since #~(ar(pt)xx-1)= 1 is 
true. Hence H=ar(pt). Since t was arbitrary and ar(ps) is increasing we receive 
H=ar(#~) for all s > t  o. For t > t  o #tlH is a quasi-invariant probability measure 
on the analytic measurable group H if we observe that H c G is measurable. 
Theorem 7.1 of Mackey [21] shows that there exists a locally compact to- 
pological group topology z(t) on H such that the Borel structure is the same as 
before and the null sets of the Haar corn(" and #t coincide. Since p~MI(H~(t) ) 
((#~)~>_0, #o=e~) becomes a continuous convolution semigroup on H~t) (apply 
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[12], 6.1.24 and note that #seMi(G) has no idempotent right factor, see 
E. Siebert [25], Lemma 1 and Theorem 5). Finally let us show that H~(t) is a 
refinement on H and that z(t) doesn't depend on t. 

Let V be an open set of ~//G(e) and UeOllG(e ) with UzcV.  Then W 
= { x ~ H :  #tlvnH((U~H)x)>O}cVc~H. Hence W~OgI~to(e) since #t(U~H)>O 
because e belongs to the support of #t (with respect to G). The measure #, lW- 
is absolutely continuous on H~(t) which shows that WcH~( o is open (cf. [11], 
w 19, 20). If s > t o we start with the semigroup defined on H~t) and apply the 
arguments used above a second time which proves that r(s) is finer than r(t). 
At last we observe that (#t)t>=o is a Gauss semigroup on H r. Let K c H - { e }  
be a z-compact set. Then K mG* is compact. There exists a test function 

f ~ ( G )  with 0 < f < l ,  f ( e ) = 0  and f l~= l .  Hence lim ~fd#t =0. If t/' denotes 
- -  t ~ O  t 

the L6vy measure of (#tlu)t~o then ~'(K)=<~'(flH)=lim ~ f  1Hd#t:--O implies 
r/' =0. r~o t 

(iv) Recall that for each symmetric continuous convolution semigroup the 
support of #t forms a closed subgroup which doesn't depend on t >0  (cf. [25]). 
Suppose now #t~co~. Choose an arbitrary r>0 .  Then we shall prove ar(#t+~) 
=H.  Let A be a Borel subset of H. Consider O=#t+~(A)=~#t(Ax-1)d#,(x). 
Since x~--~#t(Ax -~) is continuous on H, we get # t (Ax-1 )=0  for x contained in 
the support (with respect to H~) which is equal to H. Hence # t+~(Ay- t )=0  for 
all y~H. [] 

Example 1. Let G=IR(~){-1 ,  1} be the semidirect product of (IR, +)  and the 
discrete group ({ - 1, 1}, .) defined by (x, k) (y, n)=(nx+y, kn) for x, y~IR, k, n =  
+1. Put go: IR ~G,  go(t)=(t, 1). Then 

d + 
A ( f )  = d)- ( f  o go)It = 0 + c~ (e(o ' -a) - e(o, 1)) ( f )  

defines a generating functional on N(G) for e>0 .  The semigroup #t=gx(tA) is 
important for the probabilistic approach to the solution of the telegraph 
equation [19]. Let ~ be the discrete topology on G and consider M(G) 
=M(G~)OM(G~) • which describes the decomposition of a measure in a dis- 
crete and continuous part. It is easy to see that (#t)t>=o is not normal and #r 
=exp(-~zt)[e(o,t)+r,] where r t denotes a continuous measure (apply formula 
(I) and see [24], Theorem 3). Consequently 

d + 
A l ( f ) = ~ -  (fogo)lt=0 and t/z=ee(o ,_a)+t/b. 

We regard the non-normal subgroup H =  {(0, 1), (0, -1)}.  Hence t/(HC)=0 but 
#1 (H) = exp ( -  ~ t) doesn't satisfy the zero-one law. 

Example 2 ([12], 5.5.8). Let (#~)t=>o be symmetric semigroup of normal distri- 
butions on IR and let G=I72 be the product of the torus group. Consider the 
Gauss semigroup (f(#t))t>=o where f:IR--*G is defined by f(x)=(exp(ix), 
exp(idx)) for irrational d~IR. Then assertion 8b) is valid for H=f ( IR)  and t o 
= 0. But the topology H~ is strict finer than the relative topology on H. 
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Remarks. 1. Zero-one laws for Gauss measures (in the sense of Bernstein, see 
[12]) on Abelian topological groups have been established by T. Byczkowski 
E4]. 

2. For  each symmetric Gauss semigroup on a connected Lie group there 
exists a measurable subgroup H ~ G  and a locally compact refinement H~ of 
the subspace topology such that each #t( t>0) is absolutely continuous with 
respect to cor~ ~. Note that H is not necessarily normal. This result is due to 
E. Siebert [26], Theorem 3. He also deduces a zero-one law for Gauss semi- 
groups (and not necessarily normal subgroups/ / )  on connected Lie groups. 

3. Zero-one laws for the set of equivalent translates for product measures 
appear in [18]. 

3. Zero-one Laws for Measures on Abelian Topological Groups 

Let (G, +)  be an Abelain topological Hausdorff group and let (vi)i~ / be an 
upward directed family of measures in M+(G) with vi({e})=O. If (xi)i~ I is a 
family of points in G satisfying lim e ( v ~ ) . e x = # e M l ( G  ) (with respect to the 

iE1 

weak topology) then # is called a generalized Poisson measure. The abstract 
measure sup vz=F is said to be a L6vy-measure of #4. 

Theorem 9. Let H be a measurable subgroup of G with F(H c) = 0  and x6G. Then 
either #(x + H) = 0 or #(x + H) = 1. 

Let now E be a locally convex vector space and let # s M I ( E  ) be itfinitely 
divisible (i.e.: for each natural number n there exists a probability measure 
# , ~ M I ( E  ) with #=(#,)"). Then # has the form # = 7 "  v where 7 denotes a Gauss 
measure (in the sense of [5]) and v is a generalized Poisson measure on G, (cf 
[5], Satz 1.9). The Ldvy-measure F of v (which is uniquely determined) is said to 
be the Ldvy-measure of #. 

Theorem 10. Let H c E  be a measurable subgroup of a locally convex vector 
space E. Suppose that # is an infinitely divisible probability measure on E such 
that the Ldvy measure F fulfils F(HC)= oo. Then #(H + x)--O for each xeE.  

CoroLlary 11. Let # be an infinitely divisible probability measure on a separable 
Banach space E with Ldvy-measure F. I f  F(H~)=0 for a measurable subgroup 
H c E and x e E  then either #(x + H)=O or #(x + H)= l. 

The proof of Theorem 9 is based on the next Lemma which is a result of 
the technique developed in [17]. The proof of [-17], Theorem 6 carries over. By 
definition we put v * s V ' = { v . # :  #esV'} if ~#=M(G )  and veM(G). 

Lemma 12. Let G be a (not necessarily Abelian) topological group. Suppose that 
# e M I ( G  ) is a weak limit point of a net (#i)i~i in MI(G ) with upward directed 
index set (I, <=) satisfying #j=#i*#i ,  j for some #1,jeMI(G ) for all i<_j (i, jeI) .  
Let B c M ( G )  be a band such that # I * B ~ B  and #1*B•177  for each iEI. Then 
either #e B  or #eB  • 

4 Put sup#~(C)=F(C) for each Borel set C 
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We are now able to give the proof  of Theorem 9. Let B be the band B 
= {veM(G): [vl(HC)=0}. Then B • = {v~M(G): Ivl(H)=0}. Choose /zi=e(vi+~i). 
The continuity of the convolution implies l i m / ~ i = # ,  ~. The net (#i)~i fulfils 

ieI  

the assumptions of the Lemma (Put #~,j= e(vj+ ~j- (v i+~/ )  ) and observe /~(H) 
= 1.) Hence either ~ , / ~ ( H ) = 0  or # , / ~ ( H ) =  1 and Lemma 4 proves the asser- 
tion. [] 

The proof  of Theorem 10: 
I. Let /~  denote the completion of E and i: E~-~/~ the canonical injection. It 

suffices to prove the assertion for generalized Poisson measures # with the 
L6vy measure F. Note that i(#) is a generalized Poisson measure on /~ with 
L~vy measure i(F). Moreover  there is a a-compact  subgroup H'  c H  such that 
/ ~ ( H - H ' ) = 0 .  If F(H~)=oo holds then i(F) (i(H')C)=oo follows. Hence it is 
sufficient to prove the assertion for generalized Poisson measures # on com- 
plete spaces E. Suppose that E is complete. Then 

1. By [27], Satz 5(iv) there exists an uniquely determined continuous 
convolution semigroup (#~)~o on E with #~ =/~. 

2. Following the notation of E. Dettweiler [51, w we call a Poisson 
measure e(p) a Poisson factor of/~ is there exists an infinitely divisible proba- 
bility measure v such that #= v,  e(p). If e(p) is a Poisson factor of /z  then /~ 
=vt*e(tp) for all f > 0  provided (vt)t_>_0 denotes the continuous convolution 
semigroup induced by v(=vi) .  The proof  of Satz 1.9 [5] shows: 

F = sup {p: e(p) is a Poission factor of/~}. 

Furthermore we observe that e(plu~ ) is a Poisson factor of if e(p) has this 
property. 

3. Let B cM(E) be the prime L-subalgebra 

B={v~M(E): Ivl(E)= ~ Ivl(x+H)} 
x + H  

and let # t = # t l + #  2 be the decomposition of #t induced by B with # t~B and 
t~{~S ~. If / i t  ~ ~ 0  for some t > 0  then It/~)11 = exp (-tc~) and exp (t~)#t ~ becomes a 
continuous convolution semigroup in MI(E ). If (#t)~>=o is a continuous sym- 
metric semigroup and ~o:E~E/H denotes the canonical projection then 
~0(exp(ta) #~) is a discrete symmetric {e}-Poisson semigroup on E/H. (Observe 
that the proof  of Theorem 6 part  1 carries over). This fact yields' 

lim (exp (t ~) #t 1 (H)) = 1 
t ~ 0  

and 

lim #t~ (H~) : lim exp (te) gt ~ (H ~) _ K 
t~o t t~o t 

for some K > 0. Hence 

(/_/c, ' ~H c" 1 - exp ( - t c~) 
lim/~ttH ) = lim gi in-) + lim 
t-,0 t t~o t t~o t 

- K + c ~  

since/~}(H c) = ]l~2ll. 
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4. We are now able to show #eB  • if F ( H 9 =  ~ .  Suppose #1 4=0 for some 
r>0 .  Then we choose a Poisson factor e(p) of # with p (H)=0 .  Let us consider 
#t = vt * e(tp) and #t * ~t = vr * Ft * e(t(p + t3)). We remark that #) =~ 0 if (/~t */~t) I + 0 
holds. Applying part  3 we see (vt,vt) 1+0  and l im v t*F t (H)=l .  Moreover  we 
note t~ o 

#t */~(H9 => exp( - t[I p + fi It) t ~ v t �9 F~(H ~ - x) d(p + fi)(x) 
H e 

which implies 

=< e x p ( -  t[Ip + fi[[)tv t * Ft(H)(p + P)(HO 

K 1 = l i m  Pt */~t(HO >_(p +/5) (HO. 
t~0 t 

But now part 2 shows F(HO<=K,.  
The proof  of the Corollary: Let us at first regard the Gaussian part  7. By 

[1], Theorem 6.8 there exists a system of vectors (ei)i~ ~ in E and a sequence of 
independent standard normal distributed random variables (~bi)/~ ~ such that X 

= ~, ~e~ converges a.s. in E and X has the distribution 7. Hence 7 is an 
i=1 ~, 

infinite convolution product. Let 7n(fln) be the distribution of qS~ei 

~iei  . Then 7=7n*f l ,  and either 7,(/-/)=1 or 7 , ( y + H ) = 0  holds for all 
i=n+l / 

y e E .  (We conclude yn*~n(H)=0 or 1 since Yn*7, is a Gaussian measure on a 
finite dimensional subspace. Then Lemma 4 and the symmetry prove the 
assertion). Put B = {p sM(E):  [p[ (x + H) = 0}. Suppose 7,(H) = 1 for each natural 
number  n. Then 7 , * B c B ,  7 , * B Z c B  • and Lemma 12 yields 7 ( x + H ) = 0  or 1. 
If 7 , (H)=0  for some n ~ N  then 7 ( x + H ) = 7 , * f i , ( x + H ) = O  since 7 , ( y + H ) = 0  
for all y~E.  Observe that # = e ~ o * 7 . v  holds where v denotes a generalized 
Poisson measure [1], p. 137. Since 7 and v fulfil the assertion the same result is 
true for #. [] 

Example  3. Let # be a stable measure on a locally convex vector space E (in 
the sence of [6], D.2.1) such that # is no Gauss measure. Suppose that H c E  is 
a measurable subgroup. If  x e E  then either #(x + H ) = 0  or 1. 

This result is an application of Theorem 9 and 10. Let us assume that p is 
no Dirac measure. By regarding the system of finite dimensional marginal 
distributions it is easy to see that # is a generalized Poisson measure, see [5], 
S. 1.9 and [6], L. 2.2, S. 2.3. Suppose that # has the L6vy measure F. We 
remark that it suffices to give the proof  for symmetric stable laws (Lemma 4). 
In the following discussion let # be symmetric. 

Let Hs, o denote the mapping x~--~sx on E if s is a real number. It is well- 
known that there exists an unique scalar f i> 1/2 such that the L6vy measure F 
fulfils the equality t F = H t < o ( F ) .  This result can be deduced by regarding 
Th6or~m 3 of A. Tortrat  [29]. For  separable Banach spaces compare with [1], 
p. 156. It is also possible to prove this relation by regarding the system of finite 
dimensional marginal distributions if we note that # is embeddable into a 
continuous convolution semigroup (#t)t__>0. (Observe that the statements I and 
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1 of  the p roof  of  Theorem 10 imply that  i(#) is embeddable.  Since # is 
symmetr ic  it is easy to see that # is embeddable  and #t=Ht~o(#) holds). The 
value e = f l - 1  is called the order  of  #. N o w  choose t = 2 - ~ < l .  Then  2HcI-I  
implies 2HCDH r and 2-~F(HC)=F((2-~)-~HC)=F(2HC)>=F(H c) shows F(H ~) 
= 0 o r  ~ .  [ ]  

It should be noted that  W. Krakowiak  [20] proved this zero-one law 
(under the addit ional  assumpt ion x = 0 )  for stable measures on separable Ba- 
nach spaces by applying a different technique. 

Remarks. 1. For  Gaussian probabil i ty measures Corol lary  11 is well known,  
compare  for example with C.R. Baker [2], T. Byczkowski [4], N.C. Jain [14]. 
Only  to arrive completeness and to give another  applicat ion of  L e m m a  12 we 
prove the assertion of  Corol lary  11 for 7. The author  is indebted to A. Tor t ra t  
for the hint to consider Theorem 6.8 of  [1] and further helpful comments .  

2. Zero-one laws for stable measures appear  in the papers of R.M. Dudley 
and M. Kanter  [7], X.M. Fernique [8] and W. Krakowiak  [20]. 

3. The concept  of  generalized Poisson measures on Abelian topological  
groups appeared in the paper of  A. Tor t ra t  [28]. 

4. I f  (#t)t=>0 is a cont inuous convolut ion  semigroup without  Gaussian part  
(which means O z = 0 )  on an Abelian locally compact  group then #~ is a 
generalized Poisson measure [10]. Hence L e m m a  12 gives another  approach  to 
some zero-one laws appearing in Sect. 2. But for non-Abel ian  groups this p roof  
doesn ' t  carry over. 

5. If  H is a non-measurable  subgroup the zero-one laws carry over for 
Gauss  measures and stable measures if we consider the inner measure # , ( H  
+x) .  Observe that there exists a a -compac t  subgroup H ' c H  such that  # (H '  
+ x) = # ,  (H + x) holds (see for example the p roof  of  Corol lary  5). 

6. Fur ther  results of  A. Tor t ra t  and the author  will appear  in the Proceed- 
ings of  the 6th conference on probabil i ty measures on groups, Oberwolfach 
1981. We shall show how to extend Example 3 for semistabie and self-decom- 
posable measures on locally convex spaces. The papers yield further appli- 
cations of  Theorem 9 and 10. 
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