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Introduction

Let E be a separable Banach space and H< E a measurable subgroup. Then
either u(H)=0 or 1 for each Gaussian probability measure p on E, for example
see C.R. Baker [2] and N.C. Jain [14]. Recently T. Byczkowski [4] proves a
zero-one law for Gauss measures (in the sense of Bernstein) on Abelian
topological groups. Using a different technique E.Siebert [26] remarks that
each Gauss semigroup on a connected Lie group arises from a semigroup of
absolutely continuous measures. This result implies a zero-one law.

It is the purpose of this paper to establish zero-one laws and purity laws
for continuous convolution semigroups on arbitrary locally compact groups G.
In Sect. 2 we start to examine the decomposition of a continuous convolution
semigroup (i,),», induced by the Riesz decomposition M(G)=B@® B+ with
respect to a prime L-subalgebra B of the Banach space of bounded Radon
measures M(G) on G, [9], 2.10. A prime L-subalgebra is a band such that B is
a subalgebra of (M(G), ) and Bt is an ideal. Theorem 1 describes the decom-
position in terms of the generating functional of the semigroup. Applying these
results on normal semigroups we prove a zero-one law for u,(xH) provided H
is a normal measurable subgroup such that the Lévy measure vanishes on H°.
This result includes a new zero-one law for Gauss semigroups on locally
compact groups. The zero-one law contained in Corollary 7 seems to be new
even for the euclideam space R”.

By a different technique we prove zero-one laws for generalized Poisson-
measures on Abelian topological groups and for infinitely divisible probability
measures on locally convex vector spaces E. We show that a measurable
subgroup H<E has the p-measure 0 or 1 if the Lévy measure F of u is
unbounded (or F vanishes) on the complement of H. These results can be
applied to obtain a direct proof of some known results for Gauss measures and
stable measures. The proofs are based on the purity law for generalized
convolution products presented in [17].

0044-3719/82,/0060/0119/$04.00



120 A. Janssen
1. Preliminaries

Let G always denote a topological Hausdorff group and %.(e) the neigh-
bourhood filter of the natural element eeG. We write C,(G), C,(G) [2(G)] for
the Banach space of bounded real-valued functions (with respect to the sup-
norm) on G, the subspace of left uniformly continuous functions [the Bruhat
space of infinitely differentiable functions on G provided G is locally compact,
[12], 44.2]. Let |u|=u* +u~ denote the total variation of a bounded Borel
measure u on G. Then the space of tight, signed, bounded Borel measures
M(G)={u: |ul(B)=sup {|u|(K): K<B compact} for each Borel set B} forms a
real Banach algebra with respect to the norm of total variation ||-|| and the
convolution

Let M (G) [M,(G)] be the subset of all positive [probability] measures of
M(G). On the other hand (M(G), ||-|) is an order complete Banach lattice (see
[23]). A subset B M(G) is said to be solid if veB whenever peB and |v|=|y|
holds for ve M(G). The norm closed solid vector subspaces of M(G) are just the
bands lying in M(G), [23], 1110.2. We write plv(u<v) if y and v are mutually
singular in M(G) (1 is absolutely continuous with respect to v). Put u~v iff
u<vand v<p.

Let Bt={veM(G): v.Lu for all ueB} denote the orthogonal band of a band
B. Then the relation M(G)=B®B* follows. Following the notation of [9],
p. 128 we call a band B&M(G) a prime L-subalgebra if (i) B is a subalgebra
(closed under %) and (ii) B* is an ideal (this means p=*veB* whenever u or
veBY)).

For each measure v on G define the adjoint measure ¥(4)=v(4~!). Put
F*x)=f(x"1) if f is a function on G. Let f(v) be the image measure of v with

respect to a measurable function f on G and let & be the Dirac measure for
o]

xeG. Finally e(v)=exp(—|v|) Y, v"/n! defines the Poisson measure of

n=20

veM, (G), V=g, vi=v and v"*1=vsv" if v({e})=0. A subset (i), o) Of
probability measures of M(G) is called a continuous convolution semigroup if
U * p,=p ., holds for all s,te(0, o) and lim yu,=e¢, with respect to the weak
topology ¢(M(G), C,(G)). =0

Let now G be locally compact. Then every continuous convolution semi-
d* u(f)

dt =0
for fe2(G)'. The functional A has the canonical representation A(f)=v,(f)
+¥,(N)+ [ [f=f(e)—I'(f)]dn (Lévy-HinCin formula [12], p.308), G*=G

G*

—{e}. ¥, is a primitive form, ¥, a quadratic form on Z(G), I" is a fixed Lévy
mapping and 7, called Lévy measure, is a (possibly unbounded) positive real
Radon-measure on G* determined by

[ fdn=limt=*| fdp,
G+ to &

group is uniquely determined by the generating functional A(f)=

! Sometimes we shall consider 4 on the functions feC,(G) which are locally in 2(G) ([10]) or

on a dense subspace of C,(G)
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for all continuous real-valued functions f with compact support on G*, de-
noted by #(G*). Let us always consider the regular extension of # on the
Borel o-field of G*. There is a one-to-one correspondence between continuous
semigroups, the positive cone of generating functionals and the canonical
representation given by (Y, ¥,, n). For more information see [12]. Every
bounded Radon-measure v with v=0=v({e}) determines a continuous con-
volution semigroup (e(tv)),., (with generator A=v—|v| ¢,), called the Poisson
semigroup of v. For every continuous convolution semigroup the following
statements are equivalent ([12], 6.1.5):

(1) ()= 1s a Poisson semigroup,

(i) A4 is bounded on 2(G) with respect to the sup-norm,

(iii) # is bounded and A=n— 7] ¢,.

If (iii) is satisfied, A is called a Poisson generator.

A convolution semigroup is said to be normal (symmetric) if u, = fi, =, * g,
(p,=fi)) for each t>0. If (u,),., is normal then v, =y, = i, defines a symmetric
continuous convolution semigroup on G with generating functional fimA(f)
+ A(f*)) and Lévy-measure 5 +7 (compare for example with [10], p. 20).

Finally let w; denote the left Haar measure on G and B the complement
of a set B. We define 1, to be the indicator function of a set B.

2. Zero-one Laws for Continuous Convolution Semigroups
on Locally Compact Groups

In this section G denotes a locally compact group. Let & (t4) be the con-
tinuous convolution semigroup determined by a generating functional A. The
structure of the convolution semigroup generated by the sum of two generating
functionals A4, and A4, is given by the equation &, (t(4,+4,)
=&, (tA))* & (tA,) if the measures &,(tA,) and &,(t4,) commute for all ¢>0.
In general &, (t(A,+A4,)) is determined by a Lie-Trotter product formula, see
£10].

If A,=c(v—e,) (>0, |v|=1) is a Poisson generator we can compute
& (t(A;+ A,)) with the help of the perturbation series

(D) E (A +A)=exp(—ct) 3 w,(t, Ay, Ay), ug(t, Ay, Ay)=8,(tA4,),

>
‘ kz0

Ut Ag, Az)zcjgx(rAl)*v*uk(t—r, Ay, Ay)dr,
0

which yields a norm convergent series in M(G), see [10], p. 61. The formula (1)
is the key of the next theorem.

Theorem 1. Let BcM(G) be a prime L-subalgebra and (w),., a continuous
convolution semigroup with a generating functional A. One of the following
statements is fulfilled.

(1) pu,eB for some t >0 (and hence for all t>0),
(ii) p,eB* for some t>0 (and hence for all t>0),
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(iii) There exists a generating functional A, and a Poisson generator A, so
that A=A, +A,. For all t>0 y, is given by the perturbation series (I) and

a) &,(tA,)eB,
b) z u,(t, A,, A,)e B* holds.

Proof Let pu,=u!+pu? be defined by the band prOJectlon w1th Ul eB and
ureBt. The equality ut+s+,ut+s py % g+l el ol oxp? 4 pZ « p? shows gl
=p} =y, for all ¢, s>0 since B is a prime L-subalgebra. If |u!| =1 (=0) holds
for some >0 the statement (i) ((ii)) follows 1mmed1ately Let us now assume
O<|u!l<1 for some t>0. We conclude Ml =1ull |ut] for all £,s>0. A
standard argument shows |u!|=exp(—at) for all t>0 and some o>0. This
fact yields p?i—0 and /e, for t—0 with respect to the ¢(M(G), C,(G))-
topology. Plainly, (exp(to)ul),., is & second continuous convolution semi-
group. Let A, be the generating functional

A (f)—d—(exp(at)uf(f))ltso for fe9(G).

The relation y,= !+ p? implies:

fim “0) _ d+ WA()l_o  exists for feP(G).
t—0
Hence
+ dr .
A(f)=d—(exp(—ta)(exp(toc)ut Moo+ 12N

dr ©
=4,(f)—af(e)+ Mz P o

a* . . )
We show: =@(G)aﬂ—»Az(f):d— u2(f)—af(e) is a Poisson generator. It suffices
to prove ([12], 4.4.18): t

1) A4, is almost positive, ie.: A,(f)=0 for all feD(G) with f =f(e)=0. The
assertion holds since p*(f)=0.

2) A, is normed, ie.: there is an open neighbourhood U of e satisfying
sup{A,(f): feH(U)} =0 if we denote H(U)={fe2(G): 1,£f<1}. Let U be
any open neighbourhood of e. The inequality 1—atr=<exp(—at) implies

2 - —at d*
o<t if)g exlz( ) <4 for all ¢>0 and feH(U). Plainly (oS
and A,(f)=0 holds. Let U(U,) be an open neighbourhood of e such that
sup {A(f): feH(U)} =0 (sup{4,(f): feH(U,)}=0) is fulfilled. If we put U,
=UnU, it is easy to compute 0=<sup {4,(f): feH(U,)} if we observe A=4,
+4,.

3) A, is bounded. Let [[+|| be the sup-norm on 2(G) and # (G*). We show
that 4, is bounded. Using the inequality of part 2) we conclude

w) Hy (!fl) (1—exp(—at) [ f]
t

t

af (@) =all fll +———

Salfl+ =2a| 1
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and |4,(H=2a| f| for all feZ(G). The generating functional 4, has the form
A,(f)= [ (f—f(e))dn, and |in,||<co. Let n(y,) be the Lévy measure of the
G*

canonical representation of 4(4,). We conclude

1,(f)=lim ﬁ(“—?’mzhm@ for all fedt (G*¥),
t—0 t—0
r=nitns and ny(n=timPsayp)

This relation implies |7, <« We are now able to apply the perturbation
theory and formula (I):

pe=exp(—tln, ) (exp o) u + 3 uy(t, 4;, 4,)).
k=1

The definition of y' implies exp(—t(||l7,]—o)p <u! and we conclude:
n,|=o Hence |n,=c The band projection shows u>=exp(—to)
. Z ult, A, Ay). O

K21
Corollary 2. If in the situation of Theorem 1(ili} the Lévy measure n, of A,

" commutes with each measure & _(tA,) for t>0 the relations n,eB* and p,
=&, (tA,) = e(ty,) are valid.

Proof. We have only to observe that under these assumptions &,(t4,) and
e(tn,) commute and the perturbation series reduces to the ordinary con-
volution product of the two factors. Furthermore, Theorem 1 implies
i =exp(—tln,)&,(tA}) and exp(—tlln,I)(E(t4,) *tn,) <yl Since B is a
prime L-subalgebra we conclude n,eB*. [

A continuous convolution semigroup (4,),. , in M(G)—{¢,: xeG} is called a
Gauss semigroup if }1}2% ¢,(G—U)=0 holds for every open neighbourhood U
of e. Our Theorem 1 implies a purity law for Gauss semigroups.

Corollary 3. Let Bc M(G) be a prime L-subalgebra and (p,),., a Gauss semi-

group. One of the following statements is true.
(1) p,eB for some t>0 (and hence for all t>0),
(i) u,eB* for some t>0 (and hence for all t>0).

We have only to remark that the Lévy measure of the canonical repre-
sentation of a Gauss semigroup vanishes. []

Lemma 4. Let X be a topological group and let H=X be a measurable
subgroup. For each peM (X) the following assertions are valid:

a) ux fi(H)=1 iff there exists a coset Hx satisfying p(Hx)=1 and u(Hy)=0
for each coset Hy= H x.

b) uxp(H)=0 iff w(Hy)=0 for all yeX.

Proof. a) The equation 1=p=f(H)={u(Hy)du(y) shows that there exists a
point xeX with u(Hx)=1.
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b) We remark that pxj(H)=[u(Hz)du(z)zu(Hy)*> implies the asser-
tion. [

Let 7 be a topological group topology on G finer than the original to-
pology. We denote the new topological group by G, and it is called a refine-
ment of G. It is well-known that the set of all bounded and tight Borel-
measures on G,

M(G)={u: [ul(B)=sup {|ul(K), B> K -compact}
for all Borel sets B G}

is a prime L-subalgebra of M(G). We remark that a measure =0 belongs to
M(G )" if and only if 4 vanishes on all T-compact sets. For example, J.F. Méla
[22] studies G, for Abelian groups. Further examples of prime L-subalgebras on
Abelian groups appear in [9], 5.1. Let G, be a refinement of G and 5 be the
Lévy measure of the semigroup (4,),.,. There exists an uniquely determined
decomposition of # in two Lévy measures #,, #, satisfying #,+#,=7n with
Naj6_v€M(G,) and 171,](;_UM(GZ)l for every open set Ue%(e)®. Let us now
examine the Poisson generator A, and the Lévy measure 5, of 4, with respect
to the decomposition described in Theorem 1 for B=M(G.).

Corollary 5. a) p,.e M(G)* for all >0 if n,(G*)= 0.

b) If u,¢M(G)* for some t>0 then

(1) n,=1,,

(i) n,=n, provided (), is a normal semigroup.

¢) If (1), is normal and n=n, then either peM(G) for all t>0 or
1, €M(G)* for all t>0.

Proof. The first assertion follows from [16], Satz 4.

b)(i) The assertion n,<#, is equivalent to n,2#n—n,. If this inequality is
false there exists a Lévy measure Oy, <n—1n,, 1;=#, with 7,eM(G)". We
put Ay=#n,—|ns] e, and write A, =(A4, —Aj3)+A;. The perturbation formula
(D) yields: exp(—t|nsl) u,(t, A, — A5, A;) S E(tA,). But this is impossible since
u,(t, A, — A;, A;) belongs to M(G,)*, compare with [16], Satz 4. (i) At first we
consider a symmetric semigroup (4,),»,. Let us suppose v=n,—#,>0. There
exists an increasing sequence of t-compact symmetric sets K,=G satisfying
v(G—K,)<1/n and &,(4,)(G—K,)<1/n. We consider the subgroup H = U]N(Kn)”

and put v,=&(t4,). It is easy to see that v, is a symmetric semigroup. At first
we prove that each v, is concentrated on H for te[0,1]. 1=v,(H)
={v,,(Hx)v,_,,(dx). Hence there is a point xeG with v,,(Hx)=1. Lemma 4
implies v,(H)=1. Finally, we consider the perturbation series (I) which shows
u,(1,4,,4,) (H)=|v|>0. But this is a contradiction since u,(1, 4y, 4,) is
contained in M(G)* and H is a o-compact subgroup of G,. Let (i), be a
normal semigroup and A the generator of the adjoint semigroup (i), so. Then
v,=u, % i, admits the generator 4+A. Following the notation of the proof

2 Letv i (f|v) denote the restriction of a measure v (function f) on the set V'
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of Theorem 1 we conclude |p'l=|/l]l=exp(—tln,|) which shows [v}]
=exp(—2t|n,]]). Hence the norm of the Lévy measure belonging to the
Poisson generator (4+A), is equal to 2|n,|. The semigroup v, admits the
Lévy measure #+7. This yields (n+7),=n,+(y,)". Since v, is symmetric we
conclude

Ivili=exp(—tltn+,l) and [ln,+(1,) " =2l

But now [,/ =lln,Il and (i) proves m,=7,. [

Our Corollary 5 shows that ,=0 if y,e M(G,) for some t>0. But for non-
normal semigroups the converse assertion is false (compare with example 1).

Let H<=G be a normal subgroup. Then there exists an uniquely determined
refinement G, of G such that H is a closed and open subgroup of G, and the
restriction of both topologies on H coincides (apply [11], 4.5). We remark that
G, is locally compact if HcG is closed. If H is measurable then the prime L-
subalgebra M(G,) has the form

M(G)={peM(G): ||u| =§ lul(xH)}
and

M(G ) ={ueM(G): |u|(xH)=0 for all xeG}.

The proof is obvious. We have only to remark that each 7-compact set is
contained in the union of a finite number of cosets of H. The topological
group G_ is called the refinement induced by H. Corollary 5b)(ii) completely
determines the structure of a normal convolution semigroup if the behaviour of
&.(tA)) is known. Therefore we consider the case n=1,.

Theorem 6. Let H be a measurable normal subgroup of G and let G, be the
refinement of G induced by H. Let (1,),», be a symmetric continuous convolution
semigroup on G with generating functional A and Lévy measure n. If Nw-€M(G))
for every open set UeU g(e) then the following assertion are valid:

a) If n(H)=o0 then p,e M(G)* for all t>0.
b) If u,¢M(G)"* for some t>0 then
(i) ()0 is @ a(M(G), C,(G,))-continuous convolution semigroup and

(ii) exp(—tn(H) =, (H)=1—1n(H) exp (—1n(H?)).

Proof: b) If p, ¢ M(G)" for t,>0 then ()5, is a symmetric semigroup on G..
Since each p, is concentrated on a countable number of cosets of H the
canonical projection ¢: G —G/H into the discrete group G/H is y,-measurable.
Hence the family of measures (¢(4,),., forms a symmetric semigroup of
discrete measures on G/H. Applying [12], 6.3.17 we see that there exists a
finite subgroup H, < G/H and a H,-Poisson semigroup such that

p(u)=exp(—t|v)[wy, + Y, (g, * v+ oy ) t*/k!]
k21

where wy, denotes the normed Haar measure on H; and v is a positive
discrete and finite measure on HY.
1. In a first step we show |H,|=k=1.
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Let us choose H,={x,...,x,}, M,=¢~*({x}) with M,=H. Then
1 1 .
ut(Mi)g% exp(—t]v]) and e ar, —? g, for t—0 with respect to the
o(M(G), C,(G)) topology (apply the Portemanteau theorem). We remark that

-0 as h-0.

k
Hp— .leuh]Mi

Regarding p,, ,=u, * u, we receive
k
Hoynim, = Z Hopm * By -2ty
i=1

I3

where r, , is a suitable measure with I7. 4l =0 as h—0. Hence

1 1
(*) :ut+h|M1_’E _Zlﬂthi=E Helo-1ay) as h—0.
Let us show that this relation implies k=1. Therefore, we choose an increasing
sequence of symmetric compact sets K,cH with pu,(H—K,)—0. Then Z
= [ J (K,)" defines a subgroup of H. For all te(0, 1) we compute:

nelN
1
max #t(xZ)zju,(xZ)ul_t(dx):ul(Z)éﬁ exp(— vl
and

1 2
W22 T (1202 (i exp (= D)

if we take the symmetry of g, into account. Now t+—u,(Z)>c holds for all

. 171 2 . .
te[0, 17 if we put c=§ <% exp(—l]vH)). But t—p,((K,)") is upper semicon-
tinuous for each nelN. The category theorem of Baire implies that there exists
a mnatural number n and an open subset U of [0,1] satisfying
Uc{te[0, 1]: p,(K,)")=c}. Applying (x) we compute for each

. 1
teUn[0,1):c éhr? SUP fhy WK = 1 (KL)).

Repeating these arguments we receive ck™< u,((K,)") which shows k=1.

2. ()i 0, Ho=¢,) 1s a continuous convolution semigroup on G,. It suffices
to prove that g, is continuous in r=0. Let V<G, be an open set containing e.
Then there exists an open set U <G with VnH=Un H. The inequality

lim inf g, (V' H) 2 lim inf p,(U) —lim g, (H%) =1
-0 t—0 t—0
proves the statement.
3. In a third step we prove y,(H)=1 provided u,eM(G,) and y(H)=0. At

first we assume that H<G is closed. Then (), o 18 continuous on the locally
compact group G, and the whole representation theory can be applied. Let #’
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be the Lévy measure of the semigroup on G¥. Then #'(H%)=0 because for any
compact set K< G,—H there is a function feC,(G) satisfying f5 =0, fjg=1,
0<f<1. This fact shows: #'(f)=#n(f)=0.

The semigroup admits the generating functional

A (N)=v(N+[GU+SM—=f(e)dn

on Z(G,) where f* is defined by f*(x)=/(x""), compare with [10]. Let U,=G,
be the family of symmetric, open, relative compact set containing e (directed
by <). Putting A,(/)=y5(/)+J(f—f(e)dny, we see that &.(t4,)(H)=1
holds which follows from formula (I) and [12], 6.2.3. Following the arguments
of W. Hazod [10], p. 58 we conclude

1<limsup &,(cA,) ()< p,(H).

If H is not closed then H is a closed normal subgroup of G. We can now
assume that G=H and H is a dense subset of G>.

Let us assume that u,(H)<1 for some ¢. Then the semigroup ¢(u,) admits a
Lévy measure v+0 on G/H. Hence

(1) Jim @_—Z—nvn and lim

t—=0 t—0

B D)

for each xeG/H, x+H. For each open symmetric set U,cG with ecU, we
introduce the semigroup (4f),», on G with the generating functional A, (f)
=AN)-[(f-f () dn - Then for every real-valued bounded measurable
function f on G satisfying f=£1,. formula (I) yields:

1 (N)=exp (UL (f) +u, (t, A=A, A)(f) +o()].

Regarding aH=H‘a for aeG and Hx=H° for xe H we compute:

u(t, A—A,, Aa)(H°)=§I g § g (x= 1y~ HO) dpg(y) dr diyye (x)

=n(U;) ui (H)t.
This shows:
=0 t =0 t

if one limit exists (and f=/1y) since u;(H?)—>0 for t—>0. Let us consider an
open set Ve%;(e). Then we choose a set U, with U,V and a continuous real-
valued function f satistying f,5, =0, fj.=1 and 0=f=<1. Hence

0<lim w0 ) utif)
[

t—=0 t t—

=’1|Ua(f)=0-

3 Let 7 denote the closure of a set V
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Together with (2) we conclude:

3) lim 40 H)

-0 t

=(.

We are now ready to study the strongly continuous contraction semigroup of
convolution operators (T, ), on C,(G,) defined by T, f(x)= {1 (xy)dp,(y). We
apply the theory of semigroups of operators [13] which shows that (7).,
admits an infinitesimal generator (N, .#") with a norm dense domain

N <=C,(G). We consider a function f= ) f, fy=f1, where f,, is an
MeG/H
uniformly continuous function on M <G. Since H is dense there exists an

uniquely determined function f,,€ C,(G) satisfying fo; 1,,=f3s-

A set {f,:ael} < C,(G) is said to be equi uniformly continuous (e.u.c.) if (i)
the set is uniformly bounded (|f,|=K) and (i) for each £>0 there exists a set
Ve (e) satisfying | f,(x)—f,(y)|<e for all el and all x, y with x~'yeV.

(4) Let {g);: MeG/H} = C,(G) be e.n.c. Then
f= Z gum L€ C(G)).

MeG/H

(5) Iff= Y fi with feC,(G,) and f,,=f1, then

MeG/H
{fu: MeG/H} is eu.c
(6) If {f:ael}<=C,(G) is euc. then
{T, f:ael}=C,(G) iseuc

(7 I {f:ael}=C,(G) iseunc. then

IT,, f,—fll—=0 for t—0 uniformly with respect to ael.
Let us sketch the proof of (5). For each ¢>0 we choose a symmetric set V< H,
Ve, (e) with |f(x)—f (y)|<§ for all x, y satisfying x~*yeV. Choose a sym-

metric set Ue(e) with U nH<V. Let x, yeG satisfying x~' yeU. For each
coset MeG/H there are h,, h,eM such that hy'xeU, hy'yeU and |fy(h,)

T, |tk —fu()| 7. This fact implies hh,eU’NH which implies
hi'h,eV. Consequently
| a0 =Fae D) £ Fua (%) — B+ 1 far(h ) = faa(B)]
+farlh) = fu )l <e.

The proofs of the other statements are easy.
In the next step we prove for feC,(G,) the statement

:ut( Z fM) _
® lim —EE—— 5 y(p(M) (o)

t—0 M+H
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where M runs over all cosets MeG/H—{H}. Assume |f|<K. We can choose
an open set Ue#g(e) satisfying |f,(x)—fi,(Wi<e for all M and x,y with
x~'yeU. Then

ut Y fu)— Z v(@(M)) fi(e)

M+H M+H

?(Ht( > S —mdy Y L+
M+H M*H

=

M=H ‘

1y Y (fu—Fule)1p))

i !
5 ALy o) 0

M+H
UnH* UnHe U°nH¢
( tm )+8u,( [m )+Kut( tﬂ )JrKZ

M+H

1 _
+ 7 .ut(M;HfM(e)(lM Iy—1Ly)|+

g

o(La)
bl —V(¢(M))‘-
We regard the last term.

)

400 o= 315 17O o)

M+H M=+H n=1 ¢
© M ©  gn— 1
=3y )y — (<p( t" 1< Z [v|*—0  for t—0.
M=+*H n=2
UnH®
Statement (3) and (1) imply (8) since ﬂ‘t(:—) is bounded. For every function
1) - 1
f contained in the domain A" of N lim E‘—(]:Ht)—f(e) exists since lim M
t-0 1—0
exists. For each fe /" with f= ) f;, we compute by applying (8):
McG/H
lim :u’t(fH) —fe) —lim :u‘t(fH) _fH(e) —lim :ut(fH IHC)
-0 -0 t t—0 t

=A(f)— VI f (o).

Hence f, lies in the domain of the generating functional 4. Together with (8)
we get: For all fe#” the following assertion is valid

w( Y f-fu® ]
©)  lm Mo =A(F)+ 3 V@M (@~ ] (o)

t—0 t M*H

Let L, be the operator on C,(G,) defined by the left translation with respect to
x€G, L f(y)=f(xy). Clearly N(L f)(e)=Nf(x) for fe.#. By definition let
B, ,: />R be the operators B (f)=A(fy) and B,(f)= Y v(e(M))fyle).

Putting C, f(x)=B,(L,f) for i=1,2 and fe.#" we conclude: M

(10) Nf=C,f+C,f—|v|lf foreach fed
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The equality (10) is a result of statement (9). We remark

(11) L fu=L,fu

Let us now examine the operator C,. We introduce

R( Y fud)= 3 T, fulx)1y(x) for f= 3 f,€C,(G),
MeG/H MeG/H MeG/H

Ju=f1,. Then

a) (R),», is a strongly continuous contraction semigroup of positive oper-
ators on C,(G,) satisfying R, f(x)=R, (L, f)(e).

b) (R,),s o admits the generator C, introduced above. Let us give the proof.
From (6) we get R,(f)eC,(G,) and (7) implies that R, is strongly continuous for
t—0. The relation (11) implies R (L, f)(e)=T, (L, fyr)(e) if xe M which proves

RfM)= Y T,(IL.fu)©1y(x)=R(L,f)(e),

MeG/H
R,R,f(x)=R( Z/H T, (L fur) () 1, (x))
= Y T, T, (LSu)(0) 1)
MeG/H
zG T, (Lo fi) (@) 1y (x)=R,, . f (x).

b) Let D be the infinitesimal generator of (R,),,. Then Df(x)=D(L, f)(e)
holds for each f contained in the domain of D and

i L O, T~/

t—0 t—0

=A(fH)

which shows D=C;,.

For feC,(G) the definition of R, yields R, f=T, f and R, 1,(x)=14(x). Let
t>0 be fixed. Then R(f)=R, f(e) defines a positive linear functional on C,(G,)
satisfying R(1)=1 and R(15)=1. Since C, is a bounded positive operator and
R, is positive we receive

(12) jfd,utgexp(—tHvH)R(f) for each positive feC,(G,).

(Regard (10) and apply the perturbation series for operator semigroups, see for
example [107, p. 11).

Let us choose compact sets K, < H, K, H® with u,(H—K,)<e¢ and u,(H*
—K,)<e. There exists a function feC,(G) with compact support and 0= f <1,
Sk, =0, fig,=1. Thus

[fdu,=R(f)=R(f1y)+R(f1y) and O=R(f1gz)=<R(l,)=0
imply R(f1,)={fdy,. Therefore (12) shows

e> | flgdpzexp(—tlv]) | fdp zexp (=t |v])(p(H)—2).
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Hence u,(H®)=0 proves v=0.
a) Suppose p,EM(G)* for some t>0. The first part of the proof shows that

1, (H)
t

@(t,), > is a Poisson semigroup on G/H and lim =|v|. For each open

t—0
symmetric set U,e%g(e) we introduce the generating functional
B(f)=§(f—f(e)dn s,y and 4,=A—B,. Formula (1) implies:

exp (tn(U; 0 H)) p, (H) 2 u, (¢, A,, B)H")
—[[{6.(t—1)AYy~ "z~  H) & (rA)(dz) dr Mve nre(dy)
0
= [t&,(tA) ™ H) Nyye nge(d D) Z0(U; nH) 16, (tA,)(H).

Observe that H is normal and note that & (tA4,) is a symmetric semigroup in
M(G)) with lim & (tA,)(H)=1 (regard (1)). Thus
t-> 0

lm ( ) =|v| implies |viZnH~T)).

For each compact set K< H® we can choose a set U, with KcUS. The
regularity of # proves n(H®) < oo.

b) (ii) Consider the decomposition 5= Nipt+Mge of the Lévy measure. If
uEM(G,)* for some £>0 then part 3 yields

& (LA —(nge—n(H) &) (H) =
Hence p,(H)Zexp(—tn(H®)). The arguments used in the proof of part a) show

w1, (HY) Z exp (—tn(H) tyn(H). [

Corollary 7. Let (u,),», be any normal continuous convolution semigroup in
M ,(G). For each normal measurable subgroup H the following assertions are
valid:

a) If n(H)= oo then p,(xH)=0 for all xeG and each t>0.

b) If 4(H)=0 then

(i) either p(xH)=0 for all xeG and each t>0 or

(i) for each t>0 there exists a point x(t)eG satisfying

x(®)x(s)=x(t+s)modH and u,(x()H)=1.

If (1), o is Ssymmetric we can choose x{t)=e.

c) Sup[;ose that (u,),., is symmetric and 0<n(H°)< 0. Put a= Y n(xH).
Then: *H*=H

(i) either p,(H)=0 for each t>0 or

(i) exp(—1n(H) = p,(H) <exp(~—t(n(H)—a)) —ta exp(—tn(H°)).

Proof. Regard the symmetric semigroup v,=pu, = i, which has the Lévy measure
n+1#. Let G, be the refinement induced by H.

a) Corollary 5 implies v (H)=0 for t>0 if (n+#),(G*)=00. If (
+7),(G*)< oo then (n+#),(H)=co is satisfied. Hence v,(H)=0 by Corollary
5¢) and Theorem 6 for t >0. Thus Lemma 4 shows a).
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b) The semigroup (v,),., fulfils the assumptions of Theorem 6 since (y
+7)(H)=0. Thus either v,(H)=0 for all t>0 or v,(H)=1 for every t>0 is
valid. Lemma 4 proves the assertion. Part ¢) follows from Theorem 1, Corollary
5b)(ii) and Theorem 6b). [

Theorem 6 and Corollary 7 include new results for Gauss semigroups since
the Lévy measure # vanishes.

For a measure peM,(G) the set ar(u}={xeG: pu*e,~p} forms a measur-
able subgroup of G (see [15], Chap. IT). Let us call ar(y) the set of equivalent
(right) translates of u. It is well known that ar(u) is closed if u is absolutely
continuous. (Note that x+>u(4x~') is continuous for each measurable set A
provided u is absolutely continuous.) The next Theorem deals with symmetric
Gauss semigroups having normal sets ar(y,). For example ar(y,) is normal if
()50 1s a central semigroup which means u,=e, . * y, *¢, for each yeG (cf.
[12], 6.4).

Ch. Berg [3] gives an example of a symmetric Gauss semigroup on the
infinite-dimensional torus group with the following interesting property: There
exists a point t, such that p, is singular with respect to Haar measure up to
time t<t, and p, is absolutely continuous for t>t,. In [15] and [18] the
author shows that absolutely continuity of symmetric convolution semigroups
can be described in terms of the set of equivalent translates. Let’s remember
Berg’s example. Then p,(ar(u,))=1 (t>0) iff 4, is absolutely continuous.

Theorem 8. Let G be a second countable locally compact group and (p),», @
symmetric Gauss semigroup on G. Suppose that ar(u,) is normal for each t>0.
Then either assertion a) or b) are valid:

a) u,(ar(u,))=0 for all t>0,

b) (i) There exists a normal subgroup H of G and a locally compact refine-
ment H_ of the relative topology on H such that (i), is concentrated on H and
{U,), > o forms a continuous Gauss semigroup on H .

(ii) There exists -a t,e[0, o) satisfying u,(ar(u))=0 for each 0<t<t, and
ar(u)=H for t>t,. Hence p ((ar(u,))=1 for t>t,.

(i) g~ @y, for t>1,.

(iv) to=inf{t: u, <y }.

Proof. Corollary 7 shows: either y,(ar{p))=0 or p(ar(u,))=1 for fixed t. Sup-
pose t,=inf{t: g, ((ar(y))=1} <o and p(ar(y,))=1. Then a standard argument
used several times implies y (ar(y,))=1 for all sz 0 (see Lemma 4).

Putting H= |} ar(u) we remark that ar(u)<=ar(y,) holds for s<t. More-

to<s
over, ar(,us):ar&tt) for each s=t. Assume that there is a point xear(u)
—ar(u,). Then ug(ar(n,)x)=0 yields a contradiction since p (ar(y)xx~H=1 is
true. Hence H =ar(y,). Since t was arbitrary and ar(y) is increasing we receive
H=ar(uy) for all s>t,. For t>1, y, 5 is a quasi-invariant probability measure
on the analytic measurable group H if we observe that H< G is measurable.
Theorem 7.1 of Mackey [21] shows that there exists a locally compact to-
pological group topology ©(¢) on H such that the Borel structure is the same as
before and the null sets of the Haar wy_ and p, coincide. Since peM,(H )
((#s)s3 0> Ho=8,) becomes a continuous convolution semigroup on H_, (apply
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[12], 6.1.24 and note that ueM,(G) has no idempotent right factor, see
E. Siebert [25], Lemma 1 and Theorem 5). Finally let us show that H, is a
refinement on H and that z(¢) doesn’t depend on &

Let V be an open set of #;(e) and Ue%y(e) with U?cV. Then W
={xeH: py.z(UnH)x)>0} =V H. Hence Welly,  (e) since u(UnH)>0
because e belongs to the support of g, (with respect to G) The measure y, gy
is absolutely continuous on H_,, which shows that W <H,, is open (cf. [11],
§19, 20). If s>t, we start with the semigroup defined on Hrm and apply the
arguments used above a second time which proves that t(s) is finer than z(z).
At last we observe that (u,),., is a Gauss semigroup on H . Let KcH, —{e}
be a t-compact set. Then K <G* is compact. There exists a test function

fe2(G) with 0L f =1, f(e)=0 and fjx=1. Hence 11rr01jf o 1t # denotes
t—
d .
the Lévy measure of (i p),», then 7K =H (1= hm” f H_o implies

7' =0.

(iv) Recall that for each symmetric continuous convolution semigroup the
support of u, forms a closed subgroup which doesn’t depend on >0 (cf. [25]).
Suppose now u, <wy. Choose an arbitrary r>0. Then we shall prove ar(y,,,)
=H. Let A be a Borel subset of H. Consider 0=g,, (4)= [ u,(Ax~ ") dp,(x).
Since x—u,(Ax~1) is continuous on H, we get u(Ax~')=0 for x contained in
the support (with respect to H,) which is equal to H. Hence g, (4y~")=0 for
all yeH. [

Example 1. Let G=RRQ{—1, 1} be the semidirect product of (R, +) and the
discrete group ({ —1, 1}, -) defined by (x, k) (v, n)=(nx+y, kn) for x, yeR, k, n=
+1. Put ¢: R—>G, ¢(t)=(t, 1). Then

d+
A(f)=Et— (f°¢)lt=o+°‘(3(o, ~1 %o, 1))(f)

defines a generating functional on 2(G) for o>0. The semigroup yu,=&,(tA4) is
important for the probabilistic approach to the solution of the telegraph
equation [19]. Let 7t be the discrete topology on G and consider M(G)
=M(G)®M(G)" which describes the decomposition of a measure in a dis-
crete and continuous part. It is easy to see that (u,),», is not normal and g,
=exp(—at)[eeo,,+1.] where r, denotes a continuous measure (apply formula
(I) and see [24], Theorem 3). Consequently

A (f)= (f D=0 and f,=agy, 1y F1,-

We regard the non-normal subgroup H={(0, 1), (0, —1)}. Hence #(H)=0 but
u,(H)=exp(—at) doesn’t satisfy the zero-one law.

Example 2 ([12], 5.5.8). Let (u,),», be symmetric semigroup of normal distri-
butions on R and let G=1II? be the product of the torus group. Consider the
Gauss semigroup (f(y)),», where f:R—G is defined by f(x)=(exp(ix),
exp(idx)) for irrational delR. Then assertion 8b) is valid for H=f(R) and ¢,
=0. But the topology H. is strict finer than the relative topology on H.
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Remarks. 1. Zero-one laws for Gauss measures (in the sense of Bernstein, see
[12]) on Abelian topological groups have been established by T.Byczkowski
[4].

2. For each symmetric Gauss semigroup on a connected Lie group there
exists a measurable subgroup H<G and a locally compact refinement H_ of
the subspace topology such that each p,(t>0) is absolutely continuous with
respect to wy . Note that H is not necessarily normal. This result is due to
E. Siebert [26], Theorem 3. He also deduces a zero-one law for Gauss semi-
groups (and not necessarily normal subgroups H) on connected Lie groups.

3. Zero-one laws for the set of equivalent translates for product measures
appear in [18].

3. Zero-one Laws for Measures on Abelian Topological Groups

Let (G, +) be an Abelain topological Hausdorff group and let (v;),, be an
upward directed family of measures in M _(G) with v;({e})=0. If (x,);; is a
family of points in G satisfying 11m e(v)*s =pueM,(G) (with respect to the

weak topology) then u is called a generahzed P01sson measure. The abstract
measure sup v,=F is said to be a Lévy-measure of u*.

iel
Theorem 9. Let H be a measurable subgroup of G with F(H®)=0 and xeG. Then
either pu(x+H)=0 or u(x+H)=1.

Let now E be a locally convex vector space and let ueM,(E) be infinitely
divisible (i.e.: for each natural number n there exists a probability measure
1M (EY with p=(u,)"). Then u has the form u=vyxv where y denotes a Gauss
measure (in the sense of [5]) and v is a generalized Poisson measure on G, (cf-
[5], Satz 1.9). The Lévy-measure F of v (which is uniquely determined) is said to
be the Lévy-measure of u.

Theorem 10. Let H<E be a measurable subgroup of a locally convex vector
space E. Suppose that u is an infinitely divisible probability measure on E such
that the Lévy measure F fulfils F(H®)= co. Then pu(H +x)=0 for each xeE.

Corollary 11. Let p be an infinitely divisible probability measure on a separable
Banach space E with Lévy-measure F. If F(H)=0 for a measurable subgroup
HcE and x€E then either u(x+H)=0 or u(x+H)=1.

The proof of Theorem 9 is based on the next Lemma which is a result of
the technique developed in [17]. The proof of [17], Theorem 6 carries over. By
definition we put v A" ={v=* u: pe A} if /" <M(G) and veM(G).

Lemma 12. Let G be a (not necessarily Abelian) topological group. Suppose that
UeEM [ (G) is a weak limit point of a net (1);.; in M (G) with upward directed
index set (I, <) satisfying p;=p;* p; ; for some y; ;€M (G) for all i<j (i, jel).
Let B M(G) be a band such that y,* B&B and u;* Bt <B* for each iel. Then
either ueB or ueB'.

4 Put sup p,(C)=F(C) for each Borel set C
iel
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We are now able to give the proof of Theorem 9. Let B be the band B
={veM(G): |v|(H)=0}. Then B*={veM(G): |v|(H)=0}. Choose w;=e(v,+7).
The continuity of the convolution implies lim p;=p* fi. The net (u,),.; fulfils

iel

the assumptions of the Lemma (Put p; ;=e(v;+¥;—(v;+7¥;)) and observe p,(H)
=1.) Hence either ux i(H)=0 or u=ji(H)=1 and Lemma 4 proves the asser-
tion. []

The proof of Theorem 10:

L. Let E denote the completion of E and i: E<»E the canonical injection. Tt
suffices to prove the assertion for generalized Poisson measures u with the
Lévy measure F. Note that i(y) is a generalized Poisson measure on E with
Lévy measure i(F). Moreover there is a o-compact subgroup H' — H such that
u(H—H)=0. If F(H)=o0o0 holds then i(F) (i(H'))=o follows. Hence it is
sufficient to prove the assertion for generalized Poisson measures x on com-
plete spaces E. Suppose that E is complete. Then

1. By [27], Satz 5(iv) there cxists an uniquely determined continuous
convolution semigroup (4,),», o0 E with p, =p.

2. Following the notation of E. Dettweiler [5], §1 we call a Poisson
measure e(p) a Poisson factor of u is there exists an infinitely divisible proba-
bility measure v such that p=v=e(p). If e(p) is a Poisson factor of y then p,
=v,xe(tp) for all t=0 provided (v),., denotes the continuous convolution
semigroup induced by v(=v,). The proof of Satz 1.9 [5] shows:

iel

F=sup{p: e(p) is a Poission factor of u}.

Furthermore we observe that e(p ) is a Poisson factor of if e(p) has this
property.
3. Let Bc M(E) be the prime L-subalgebra

B={veM(E):|[v|(E)= ) |[v|(x+H)}

x+H

and let g, =u'+u? be the decomposition of g, induced by B with u'eB and
pfeB* . If pt +0 for some t>0 then |u!||=exp(—to) and exp(ta) u! becomes a
continuous convolution semigroup in M, (E). If (),», is a continuous sym-
metric semigroup and ¢:E—E/H denotes the canonical projection then
p(exp(to) ul) is a discrete symmetric {e}-Poisson semigroup on E/H. (Observe
that the proof of Theorem 6 part 1 carries over). This fact yields:

lim (exp (tor) pt, (H))=1
t—0

and
1 Hc t 1 Hc
i P ED) o exp ) p (HY
-0 t t—0 t
for some K>0. Hence
. H¢ L(He® 1— —t
hm——u’( )=limut( )—i—lim exp( oc)=K-|—oc
10 =0 t =0 t

since u (H)=IIu?.
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4. We are now able to show ueB* if F(H®)=o0. Suppose u!+0 for some
t>0. Then we choose a Poisson factor e(p) of u with p(H)=0. Let us consider
p=v,*e(tp) and p,* i, =v,* 7V, % e(t(p+ P)). We remark that p! 0 if (i, * i)' +0
holds. Applying part3 we see (v,*v,)'+0 and limv,*,(H)=1. Moreover we
note =0

t* B (HY) Z exp(—tllp+ gt | v, * 3,(H = x)d(p+ p)(x)
He

<exp(—tllp+pl)tv, = ¥(H)(p + P)(H)

which implies
= (HF
K, =lim LMT(J

t—0

Z(p+p)(H°).

But now part 2 shows F(H)<K,.

The proof of the Corollary: Let us at first regard the Gaussian part y. By
[1], Theorem 6.8 there exists a system of vectors (e;);. in E and a sequence of
independent standard normal distributed random variables (¢,),. such that X

=) ¢;e; converges a.s. in E and X has the distribution y. Hence y is an
i=1

infinite convolution product. Let y,(8,) be the distribution of » ¢,e
5} i=1
( > qbiei). Then y=y,* g, and either y,(H)=1 or y,(y+H)=0 holds for all

i=n+1

yeE. (We conclude y,*,(H)=0 or 1 since y,*7, is a Gaussian measure on a
finite dimensional subspace. Then Lemma4 and the symmetry prove the
assertion). Put B={peM(E): |p|(x+ H)=0}. Suppose y,(H)=1 for each natural
number n. Then y,*B<B, y,*B*<B* and Lemma 12 yields y(x+ H)=0 or 1.
If y,(H)=0 for some nelN then y(x+H)=y,*f,(x+H)=0 since y,(y+H)=0
for all yeE. Observe that p=e, *y+*v holds where v denotes a generalized
Poisson measure [1], p. 137. Since y and v fulfil the assertion the same result is
true for . [

Example 3. Let p be a stable measure on a locally convex vector space E (in
the sence of [6], D.2.1) such that u is no Gauss measure. Suppose that H< E is
a measurable subgroup. If xeE then either u(x+ H)=0 or 1.

This result is an application of Theorem 9 and 10. Let us assume that yu is
no Dirac measure. By regarding the system of finite dimensional marginal
distributions it is easy to see that u is a generalized Poisson measure, see [5],
S.1.9 and [6], L.22, S.2.3. Suppose that u has the Lévy measure F. We
remark that it suffices to give the proof for symmetric stable laws (Lemma 4).
In the following discussion let x4 be symmetric.

Let H, , denote the mapping x+—sx on E if s is a real number. It is well-
known that there exists an unique scalar > 1/2 such that the Lévy measure F
fulfils the equality tF=H, (F). This result can be deduced by regarding
Théorém 3 of A. Tortrat [29]. For separable Banach spaces compare with [1],
p. 156. It is also possible to prove this relation by regarding the system of finite
dimensional marginal distributions if we note that p is embeddable into a
continuous convolution semigroup (i), ,. (Observe that the statements I and
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1 of the proof of Theorem 10 imply that i(u) is embeddable. Since p is
symmetric it is easy to see that p is embeddable and u,=H,; o(x) holds). The
value a=p"" is called the order of u. Now choose t=2"*<1. Then 2H<H
implies 2H*>H® and 2 *F(H)=F(2~% #H)=F(QH)=F(H) shows F(H)
=0oroco. O

It should be noted that W.Krakowiak [20] proved this zero-one law
(under the additional assumption x=0) for stable measures on separable Ba-
nach spaces by applying a different technique.

Remarks. 1. For Gaussian probability measures Corollary 11 is well known,
compare for example with C.R. Baker [2], T. Byczkowski [4], N.C. Jain [14].
Only to arrive completeness and to give another application of Lemma 12 we
prove the assertion of Corollary 11 for y. The author is indebted to A. Tortrat
for the hint to consider Theorem 6.8 of [1] and further helpful comments.

2. Zero-one laws for stable measures appear in the papers of R.M. Dudley
and M. Kanter [7], X.M. Fernique [8] and W. Krakowiak [20].

3. The concept of generalized Poisson measures on Abelian topological
groups appeared in the paper of A. Tortrat [28].

4. Tf (1),» is a continuous convolution semigroup without Gaussian part
(which means ¥,=0) on an Abelian locally compact group then y, is a
generalized Poisson measure [10]. Hence Lemma 12 gives another approach to
some zero-one laws appearing in Sect. 2. But for non-Abelian groups this proof
doesn’t carry over.

5. If H is a non-measurable subgroup the zero-one laws carry over for
Gauss measures and stable measures if we consider the inner measure pu, (H
+x). Observe that there exists a o-compact subgroup H' < H such that p(H’
+x)=u, (H+x) holds (see for example the proof of Corollary 5).

6. Further results of A. Tortrat and the author will appear in the Proceed-
ings of the 6th conference on probability measures on groups, Oberwolfach
1981. We shall show how to extend Example 3 for semistable and self-decom-
posable measures on locally convex spaces. The papers yield further appli-
cations of Theorem 9 and 10.
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