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Summary. In this paper the central distributional results of classical ex- 
treme value theory are obtained, under appropriate dependence restrictions, 
for maxima of continuous parameter stochastic processes. In particular we 
prove the basic result (here called Gnedenko's Theorem) concerning the 
existence of just three types of non-degenerate limiting distributions in such 
cases, and give necessary and sufficient conditions for each to apply. The 
development relies, in part, on the corresponding known theory for sta- 
tionary sequences. 

The general theory given does not require finiteness of the number of 
upcrossings of any level x. However when the number per unit time is a.s. 
finite and has a finite mean #(x), it is found that the classical criteria for 
domains of attraction apply when /~(x) is used in lieu of the tail of the 
marginal distribution function. The theory is specialized to this case and 
applied to give the general known results for stationary normal processes 
for which/~(x) may or may not be finite). 

A general Poisson convergence theorem is given for high level upcross- 
ings, together with its implications for the asymptotic distributions of r th 
largest local maxima. 

1. Introduction 

In this paper we shall be concerned primarily with asymptotic distributional 
properties of the maximum 

m(Y)=sup  {r 0-<t< T} 

of a continuous parameter stationary process {r t >0}. (We write also M(I) 
to denote the supremum in an interval or set I.) A great deal is known about 
such properties in the important special case when the process is normal (cf. 
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[2, 16]). Our purpose here is to delineate the types of limiting behavior which 
are possible when the process is not necessarily normal, obtaining, in particu- 
lar, versions of the central results of classical extreme value theory which apply 
in this context. 

The classical theory is concerned with properties of the maximum M n 
=ma x  {d. 1,42 . . . . .  ~n} of n i.i.d, random variables as n becomes large. Central to 
the theory is the result which asserts that if M,  has a non-degenerate limiting 
distribution (under linear normalizations), i.e. if P{a, (Mn-b , )<x } ~G(x) for 
sequences {an>0}, {bn}, then G must be one of only three general types: 

Type I G(x) = exp ( - e  -x) - oo < x  < oo 

T y p e I I  G(x)=exp( -x  ~) x > 0  ~ > 0  

T y p e I I I  G ( x ) = e x p - ( - x )  ~ x < 0  

(linear transformations of the variable x being permitted). This result, which 
arose from work of Fr6chet [5] and Fisher and Tippett [4], was later given a 
complete form by Gnedenko [6] and is here referred to as "Gnedenko's  
Theorem." 

Gnedenko also obtained necessary and sufficient conditions for the do- 
mains of attraction for each of the three limiting types. These and other 
versions obtained subsequently (cf. [7]) concern the rate of decay of the tail 
1-F(x) of the distribution F of each 4, as x increases. 

A further result - trivially proved in the classical case - is that for any 
sequence {un}, ~>0, P{Mn<u, }~e  -~ if and only if l-F(un)~'c/n. This is 
sometimes useful in calculation of the constants a,, b, in Gnedenko's Theorem 
(when u n = x/a, + bn). 

In more recent years there has been considerable interest in extending these 
and other results of the classical theory to apply to stationary sequences which 
exhibit a "decay of dependence" which is not too slow. In particular the early 
work of Watson [17] concerning convergence of P{Mn<u,} applied under m- 
dependence, Loynes [14] proved Gnedenko's Theorem under strong mixing 
assumptions, and Berman [1] obtained detailed results for normal sequences 
under a mild condition involving correlation decay. More recently we have 
obtained a theory (cf. I-9]) involving weak "distributional mixing" conditions, 
which unifies these results and provides a rather satisfying extension of the 
classical distributional theory to include stationary sequences. 

It is not too surprising that such an extension is possible for stationary 
sequences, at least under suitable dependence restrictions. What may seem 
surprising at first sight is that a corresponding theory is possible for con- 
tinuous parameter stationary processes. However this becomes intuitively clear 
by recognizing that the maximum up to time n, say, is just the maximum of n 
random variables - the "submaxima" in the fixed intervals ( i - 1 ,  i), 1<_iNn. 
Our procedure will be, in fact, to use the existing theory for stationary 
sequences by means of (a slightly modified version of) this precise approach. 
The sequence results which will be needed are stated in Sect. 2. 

In Sect. 3 we will obtain Gnedenko's Theorem for continuous parameter 
stationary processes, showing under appropriate conditions that if 
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P{aT(M(T)--bT)<__x) ~ G ( x )  as T ~ o o  

'for some constants a T > 0, br, then G must be one of the extreme value forms. 
In Sect. 4 we obtain a related result - again extending a classical theorem - 

to give necessary and sufficient conditions for the convergence of 
P {M(T) < UT} for sequences not necessarily of the form u T = x / a  T + b T implicit 
in Gnedenko's  Theorem. 

As a corollary of this result we obtain necessary and sufficient criteria for 
the domains of attraction occurring in Gnedenko's  Theorem. In the classical 
i.i.d, sequence case, the criteria for domains of attraction involve the rate of 
decay of the marginal distribution 1 - F ( x )  as x increases. For the present case 
the very same criteria apply, provided 1 - F ( x )  is replaced by another function 
O(x). For  processes whose mean number  g(x) of upcrossings of any level x is 
finite, the function 0(x) is precisely/~(x), a readily calculated quantity. 

The general theory will not require that the mean number  of upcrossings of 
a level per unit time be finite, and in fact will include the class of stationary 
Gaussian processes with covariances of the form r(z)= 1 - C Izl~+ o(1~1 ~) as z ~ 0 
for 0<c~<2. In Sect. 5 we consider such processes, as well as (possibly non- 
Gaussian) cases for which the mean number  of upcrossings per unit time is 
finite. Finally in Sect. 6 we note the general Poisson limit for the point 
processes of upcrossings of increasingly high levels and its implications regard- 
ing limit theorems for the distribution of the r TM largest local maximum of ~(t) 
in 0 < t < T .  

2. Two Results for Stationary Sequences 

As noted, our development of extremal theory for stationary processes will rely 
in part  on the existing sequence theory. Specifically we shall require the 
following definitions and results (which may be found e.g. in [10]). 

Let {3,} be a stationary sequence and write F~ .... i,,(xl . . .x , )  for the joint 
distribution function of ~il.., ~i,. For brevity write also F~ .... ~,(u) to denote 
F/1 ...i, (u, u. . .  u)=P{~i ,  < u.. .  ~i, <u}. If {u,} is a sequence of real constants, we 
say that the sequence {3,} satisfies the (dependence) condition D(u,) if for each 
n, l <il  < i z . . .  <ip <j l  ... <jp,<n,  j l - ip>=l  , 

IFil...ipj~...j,,(u,)- Fil...ip (u,) Fjl...jp,(u,)l <--~,,t (2.1) 
where 

c ~ 0  for some sequence l ,=o(n),  as n--. oo. (2.2) 

Note that c~,. 1 can (and will) be taken to be decreasing in 1 for each n by 
simply replacing it by the smallest value it can take to make (2.1) hold (i.e. the 
maximum value of the left-hand side of (2.1) over all allowable sets of integers 
i 1 ... ip, Jl ""Jp" Note also that (2.2) may then be shown equivalent to the 
condition (cf. [12] for proof) 

%,~,~] ~ 0 as n ~ oo for each 2 > 0 (2.3) 
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The condition D(u,) indicates a degree of "approximate independence" of 
members of the sequence separated by increasing distances. However this 
condition, which we refer to as "distributional mixing," is clearly potentially 
far less restrictive than, for example, "strong mixing". In the case of normal 
sequences, it is in fact satisfied when the covariance sequence {r,} tends to zero 
even just fast enough so that r n log n ~ 0. 

The following result is basic to the sequence theory and will be required in 
later sections. 

Lemma 2.1. Let {i,} be a stationary sequence satisfying D{un} for a given 
sequence {un} of constants and write M, = max (I1,42.. .  in). Then for any integer 
k> 1 (writing [ ] to denote integer part), 

P{M,<un}--pk{M~n/kj <Un}-*O as n---,oo. 

This lemma indicates a degree of independence between the submaxima 
when the first n integers are divided into k groups. We shall also need the 
sequence form of Gnedenko's Theorem, which is given (e.g. in [10]) as follows: 

Theorem 2.2. Let {in} be a stationary sequence such that M , = m a x ( i l ,  42 "" in) 
satisfies P {an(Mn-b,)  <-_x}-~G(x ) as n-~ oo .for some non-degenerate d f  G and 
constants {an>0}, {bn}. Suppose that D(un) holds for all u n of the form x/an+bn, 
- o o  < x < oo. Then G is one of the three extreme value distributional types. 

The other classical result quoted - concerning convergence of P { M  n<u"} 
for arbitrary sequences {un} - is also important and holds under appropriate 
conditions for stationary sequences {in}. This will not be discussed here since 
the corresponding continuous parameter result will be independently derived. 

3. Gnedenko's Theorem for Stationary Processes 

As indicated above, it will be convenient to relate the maximum M(T)  of the 
continuous parameter stationary process i(t) to the maximum of n terms of a 
sequence of "submaxima." Specifically if h > 0  we write 

( i=sup  {i(t): ( i -  1)h<_t<_ih} (3.1) 

so that for n = 1, 2, 3,. . . ,  

M(nh) = max (~1, ~2 . . . .  , ~,). (3.2) 

The following preliminary form of Gnedenko's Theorem (involving con- 
ditions on the ~-sequence) is immediate. 

Theorem 3.1. Suppose that for some families of constants {a r >0}, {br} we have 

P { a r ( M ( r ) - b r ) < x }  ~ G ( x )  as T ~  oo (3.3) 

for some non-degenerate G, and that the {(i} sequence defined by (3.1) satisfies 
D(u,) whenever Un=X/anh + bnh for some fixed h > 0  and all real x. Then G is one 
of the three extreme value types. 
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Proof. Since (3.3) holds in particular as T ~  oc through values nh and the ~n- 
sequence is clearly stationary, the result follows by replacing ~n by ~, in 
Theorem 2.2 and using (3.2). [] 

Corollary 3.2. The result holds in particular if the D(u,) conditions are replaced 
by the assumption that {~(t)} is strongly mixing. For then the sequence {~,} is 
strongly mixing and hence satisfies D(u,). [] 

We now introduce the continous analog of the condition D(u~), stated in 
terms of the finite dimensional distribution functions F~ .... t, of ~(t) (again 
writing Ftl...t.(u) for F~...t~(u... u).) 

The condition Dc(ur) will be said to hold for the process ~(t) and the family of 
constants {ur: T>0},  with respect to a family {qr~0},  if for any points 
s l < s 2 . . . < s , < t l . . . < t  p, belonging to (kqr: 0=<kqrNT ) and satisfying t 1 
- sp >= z, we have 

[Fs, ...sp tl...t~, (UT) -- F~I ..... (ur) Ft~ ...t~' (ur)] < c~r,~ (3.4) 

where er, v~-~ 0 for some family Yr = o(T) or, equivalently, where 

~r,~r~O as T ~ o o  (3.5) 

for each 2>0.  By replacing er,~ by the maximum of the left-hand side of (3.4) 
over all permitted choices of s~ and tj, we may (and do) take er,~ decreasing in 
z for fixed T. 

The D(u,) condition for {~n} required in Theorem 3.1 will now be related to 
Dc(Ur) by approximating crossings and extremes of the continuous parameter 
process, by corresponding quantities for a sampled version. To achieve the 
approximation we require two conditions involving the maximum of ~(t) in 
fixed and in very small time intervals. These conditions are given here in a 
form which applies very generally - readily verifiable sufficient conditions for 
important cases are given in Sect. 5. 

Specifically we suppose that there is a function O(u) such that, for some 
ho>0, 0 < h < h o ,  

P{M(h)>u} < 1, (3.6) lim,~sup htp(u) = 

and that for each a>0 ,  there is a family of constants q=q~(u)--*O as u---,oo 
such that for any fixed h >0, 

lim supP{M(h)>u, ~(jq)<=u, O<jq<=h}/~(u)~O as a-*0. (3.7) 
u ~ o o  

A condition which is sometimes more readily verified, and which, together 
with (3.6), implies (3.7) (see Lemma 3.3), is 

P {~(0) <u, ~(q)<u, M(q) >u} 
lim sup +0 as a ~ 0 .  (3.8) 

Note that Eq. (3.6) specifies an asymptotic upper bound for the tail distri- 
bution of the maximum in a fixed interval, whereas (3.8) limits the probability 
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that the maximum in a short interval exceeds u, but the process itself is less 
than u at both endpoints. The following result now enables us to approximate 
the maximum in an interval of length h by the maximum at discrete points in 
that interval. 

Lemma 3.3. (i) I f  (3.6) holds, then P{M(q)>u}=o(~(u))  as u-~oo for any q 
= q(u) --* O. Also P {{(0) > u} = o(O(u)). 

(ii) (3.6) and (3.8) imply (3.7). I f  (3.6) and (3.7) hold, and I is an interval of 
length h, then there are constants 2 0 such that 

O<limsup[P{{(jq)<=u, jq~I}-P{M(I)<u}]/tp(u)<=2o--*O as a~O, (3.9) 
U ~ O 0  

where q=q,(u) is as in (3.7), the convergence being uniform in all intervals of this 
fixed length h. 

Proof If (3.6) holds and q ~ 0  as u--* oo, then for any fixed h>0,  q is eventually 
smaller than h and P{M(q)>u} <=P{M(h)>u}, so that 

lim sup P {M (q) > u}/0 (u) < lira sup P {M (h) > u}/'O (u) < h 

by (3.6), from which it follows that P{M(q)>u}/O(u)--*O, as stated. The re- 
maining statement of (i) also follows since P {{(0) > u} < P {M(q) > u}. 

To prove (ii), note that there are at most [h/q] intervals [( j -1)q,  jq] in 
[0, h], with perhaps a smaller interval remaining so that 

P{M(h)>u, ~(jq)<u, O<jq<=h} 

h 
< - P { { ( 0 ) < u ,  {(q)<u, M(q)>u} +P{M(q)>u},  

q 

so that (3.7) easily follows from (3.6) and (3.8) (using (i)). 
Finally, let (3.6) and (3.7) hold. It is readily shown, using stationarity and 

the fact that the number of points jq in I and in [0, h] differ by at most 2, that 
the (non-negative) difference in probabilities in (3.9) does not exceed 

2,.u=P{M(h)>u , ~(jq)<=h, O<jq<=h} +2P{~(0)>u}, 

from which (3.9) follows by (3.7), (3.6), and (i) on writing 

2 a = lim sup 2~.,/0(u). [] 
u 

It is now relatively straightforward to relate D(u,) for the sequence {~,} to 
the condition Dc(UT) for the process ~(t), as the following lemma shows. For 
later use, a slightly more general result will be proved than needed here. In 
this, for h>0,  {T,} will denote any sequence of time points such that 
T, e [nh, (n + 1) h] and v, = UTn. 

Lemma 3.4. Suppose that (3.6) holds with some function ~(u) and let {q,(u)} be a 
family of constants for each a > 0  with qa(u)>0, q,(u)~O as u--* oo, and such that 
(3.7) holds. I f  Dc(UT) is satisfied with respect to the family qT=%(UT) for each 
a>0 ,  and TO(UT) is bounded, then the sequence {~,} defined by (3.1) satisfies 
D(v,), where v ,=ur,  is as above. 
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Proof For  a given n, let i l < i 2 . . . < i p < j l . . . < j p , < n ,  j l - i v > l .  Write I~= 
[ ( i ~ - l ) h ,  i~h], J = [ ( j - 1 ) h , j ~ h ] .  For  brevity let q denote  one of the families 
{%(')} and 

P P 

Aq= ~ {~(jq)<=v,,jq~Ir}, A =  ~ {(i <=v,} 
r = l  r = l  

p" p '  

Bq= ~ {~(jq)<=v,,jq~J~}, B-~ ~ {~j <v,}. 
s = l  s = l  

It follows in an obvious way from L e m m a  3.3 that 

0__< lim sup {P (Aq ~ Bq) - P (A c~ B)} __< lira sup (p + p') ~ (v.) 2 a 
n ~  t l ~ o o  

< lim sup n ~ (v,) 2 a _-< K 2a 

for some constant  K (since n h ~ T , ,  and T,O(v,) is bounded),  and where 2 , , ~ 0  
as a ~ 0. Similarly 

lira sup ]P(Aq)-  P(A)[ <K2o ,  lim sup ]P(Bq) -P (B) [  < K 2c,. 

Now 

[P (A ~ B) - P(A ) P(B)I <= IP (A ~ B) - P(Aq c~ B q) I + IP(Aq c~ B q) -  P (Aq) P(B ~)I 

+ P(Aq)]n(S q) - P(B)I + P(B) IP(Aq)-- P(A)I 

= R,, ~ + In (Aq c~ S~) - P (A)  n (Sq)] (3.10) 

where lira sup R,, a < 3 K20. 

Since the largest jq  in any I r is at most  iph, and the smallest in any J~ is at 
least ( / 1 - 1 )  h, their difference is at least ( l - 1 ) h .  Also the largest jq  in Jr, does 
not  exceed jp, h<=nh <= T, so that  from (3.4) and (3.10) 

_ , ~ ( ~ )  ( 3 . 1 1 )  IP(A c~B)-P(A)P(B)I <-R, ~ .  r,,(~-~)h 

(in which the dependence of ar,~ on a is explicitly indicated), Write  now u,,z 
- inf {R, ,+~,(") ~ Since the left-hand side of (3.11) does not depend on a - -  , ~ T n , ( l ~ l ) h J "  

a > O  

we have IP(A ~ B) - P(A) P(B)] __< ~* l, 

which is precisely the desired conclusion of the lemma, provided we can show 
* - for any 2 > 0  (cf. (2.3)). But for any a > 0  that  lira %, z, - 0 

n ~ o ~  
* ~ ~(a) 

when n is sufficiently large (since c~!z decreases in l), and hence by (3.5) 

lira sup ~*,tz,~ < 3 K 2~, 
n ~ 3  

and since a is arbi t rary and 2~--*0 as a ~ 0 ,  it follows that ~ , , t~ , !~0 as 
desired. [ ]  

The general cont inuous version of Gnedenko ' s  Theorem is now readily 
restated in terms of condit ions on ~(t) itself. 

T h e o r e m  3.5. With the above notation for the stationary process ~(t) satisfying 
(3.6) for some function 0, suppose that, for some families of constants {aT>0}, 
{by}, 
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P { ar(M ( T ) -  br) < x} ~ G(x) 

for a non-degenerate G. Suppose that TO(ur) is bounded and D~(ur) holds for u r 
=x/a r + b r for each real x, with respect to families of constants {q,(u)} satisfying 
(3.7). Then G is one-of the three extreme value distributional types. 

Proof This follows at once from Theorem 3.1 and Lemma 3.4 by choosing T, 
=nh. [] 

As noted the conditions of this theorem are of a general kind, and more 
specific sufficient conditions will be given in the applications in Sect. 5. 

4. Convergence of P{M(T)  < ur} 

Gnedenko's Theorem involved consideration of P { a r { M ( T ) - b r } < x } ,  which 
may be rewritten as P{M(T)<=Ur} with u r = a r l x + b r .  We turn now to the 
question of convergence of P{M(T)<ur}  as T ~ o o  for families u r which are 
not necessarily linear functions of a parameter x. (This is analogous to the 
convergence of P(M,<=u,) for sequences, of course.) These results are of in- 
terest in their own right, but also since they make it possible to simply modify 
the classical criteria for domains of attraction to the three limiting distri- 
butions, to apply in this continuous parameter context. 

Our main purpose is to demonstrate the equivalence of the relations 
P {M(h) > ur} ~ z/T and P {M(T) __< ur} ~ e -~ under appropriate conditions. The 
following condition will be referred to as D'c(ur) and is analogous to a con- 
dition D'(un) defined e.g. in [10] for sequences. 

D;(ur): The condition D;(ur) will be said to hold for the process {~(t)} and the 
family of constants {UT; T>0} ,  with respect to the constants qr~O,  if 
l imsup(r/q)  ~, e{~(O)>ur, ~( jq)>ur}~O as e~O for some h>0.  

T ~ o o  h < j q < ~ T  

One further condition which will play a central role is the following 
stronger version of (3.6): 

P{M(h)>u}~hO(u)  as u ~ o o  for 0<h=<h o a n d s o m e  h0>0. (4.1) 

The following lemma will be useful in obtaining the desired equivalence. 

Lemma 4.1. Suppose that (4.1) holds for some function ~, and let {ur} be a family 
of levels such that D;(ur) holds with respect to families {%(u)} satisfying (3.7), 
for each a > 0 ,  with h in D'~(ur) not exceeding ho/2 in (4.1). Then Tip(ur) is 
bounded, and writing n'= In~k], for n and k integers, 

O<=limsup[n'P{M(h)>vn}-P{M(n'h)>v,}]=o(k-x),  as k~oo ,  (4.2) 
n~oo  

with v, = Urn , for any sequence { Tn} with T, ~ [nh, (n + 1) h). 

Proof We shall use the extra assumption 

lim inf T~p (ur) > 0, (4.3) 
T ~ o o  
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in proving TO(ur) bounded and (4.2). It is then easily checked (e.g. by replac- 
ing TO(ur) by max(l,  TO(ur) ) in the proof) that the result holds also without 
the extra assumption. 

Now, write I i=[(j-1)h,jh], j = l , 2 , . . ,  and Mq(I)=max{~(jq;jq~I}, for 
any interval I. We shall first show that (assuming (4.3) holds) 

1 
O < l i m s u p ~ [ n ' P { M ( h ) > v . } - P { M ( n ' h ) > G } ] = o ( k  -1) (4.4) 

- . ~  l.tYtv.) 

as k ~  oe. The expression in (4.4) is clearly non-negative, and by stationarity 
and the fact that M > Mq, does not exceed 

1 n' 
lira s u p - -  Z [P{M(Ij)>v.}-P{Mq(Ij)>v.}] 

115 ] +lim s u p - -  P{Mq(Ij)>v,}-P{Mq(n'h)>v,} . 
.~o~ T.4,(v.)  j= l  

By Lemma 3.3 (ii), the first of the upper limits does not exceed 2.1ira sup n'/T. 
n ~ o o  

=2J(hk), where 2a--+0 as a ~ 0 .  The expression in the second upper limit may 
be written as 

1 n' 
< • P{Mq(Ij)>G,Mq(Ij+I)>V,,} 
=Tn~(V. )  j=I  

+ Tn~l(vn~j= 1 

Now the application of (4.1) to M(I), M(Ij+ 1), and M(Ij u Ii+ 1) leads simply 
to the relation P{M(I)>G,  M(Ij+l)>V.}=o(~(v.) ). Since M>Mq, the first 
term of (4.5) is (n'/T.)o(1). The second term is clearly dominated by 

n'h 
P{r162 

qT.tp(v.) h<-;q<-_.'h 

By D'c(ur) and (4.3), it is seen that the upper limit (over n) of this last term is 
o(k-1) for each a >0, and (4.4) follows by gathering these facts. 

Further, by (4.4) and (4.1) 

1 1 
lim i n f - -  P {m (n' h) > v.} lim.~inf T.~(v.) > .~o~ T.~(v.) 

1 
> lira i n f - -  n'P {M(h) > v.} 
= . ~  L ~ ' ( ~ . )  

1 
- lim.~sup ~ In' P {M (h) > v.} - P {M (n' h) > v. }] 

k o , 
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and hence liminf(T,~(v,)) - I  >0. Thus T,~(UT. ) is bounded for any sequence 
n ~ o o  

{T,} satisfying nh < T, <(n + 1)h, which readily implies that TO(UT) is bounded. 
Finally, (4.2) then follows at once from (4.4). [] 

Corollary 4.2. Under the conditions of the lemma, if 

2,,k = In'hO(v,)--P {M(n'h) > v,}l, 
then 

limsup2,,k=O(k -1) as k~oo.  
n ~ o o  

Proof Noting that frO(v,) is bounded, this follows at once from the lemma by 
(4.1). [] 

Our main result now follows readily. 

Theorem 4.3. Suppose that (4.1) holds for some function O, and let {UT} be a 
family of constants such that for each a>0 ,  Dc(ur) and D;(ur) hold with respect 
to the family {q,(u)} of constants satisfying (3.7), with h in D;(ur) not exceeding 
ho/2 in (4.1). Then 

if and only if 
Ttk(Ur) o ~ > 0 (4.6) 

P {M(T) < UT} o e-~. (4.7) 

Proof If (4.1), (3.7), and D'c(ur) hold as stated, then TO(ur) is bounded accord- 
ing to Lemma 4.1 and by Lemma 3.4 the sequence of "submaxima" {(,} 
defined by (3.1) satisfies D(v,), with V,=UT, , for any sequence {T~} with 
T, ~ [nh, (n+ 1)h). Hence from Lemma 2.1, writing n'= [n/k], 

P{M(nh)<v,} -pk{M(n 'h)<v ,}oO as n o o e .  

Clearly it is enough to prove that 

if and only if 

(4.8) 

P {M (T,) < v,} --+ e -~, (4.10) 

for any sequence {T,} with T, EEnh,(n+l)h). Further, T~(UT) bounded implies 
that ~(UT)~O as T o  oo so that 

0 <= P {M(nh) < v,,} - P {M (T,) <= v,} 

<=P {M (h) > v,} ~h~9(v,)--,O, 

and thus (4.10) holds if and only if 

P{M(nh)<v,} o e - L  (4.11) 

Hence it is sufficient to prove that (4.9) and (4.11) are equivalent under the 
hypothesis of the theorem. 

T.~(v.)oz>O (4.9) 
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Suppose now that (4.9) holds so that in particular 

n ' h ~ ( v . ) ~ z / k  as n ~  oe. (4.12) 

With the notation of Corollary 4.2 we have 

1 - n ' h ~ ( v . ) - 2 . , k < = P { M ( n ' h ) < = v . } < = l - n ' h ~ ( v . ) + 2 . ,  k (4.13) 

so that, letting n ~ o% 

1 - z/k - o ( k -  1) < lira inf P {M (n' h) < v.} 
n ~ o o  

< lira sup P {m (n' h) < v.} 
n ~ o o  

< l - ~ / k + o ( k - 1 ) .  

By taking k-th powers throughout and using (4.8) we obtain 

(1 - z /k - o (k - 1))k < lim inf P { M (n h) _<_ v, } 
n ~ o o  

< lim sup P {M(nh)  < v,} 
n ~ o o  

_<_(1 - z / k  +o(k-1) )  k, 

and letting k tend to infinity proves (4.11). 
Hence (4.9) implies (4.11) under the stated conditions. We shall now show 

that conversely (4,11) implies (4.9). The first part of the above proof still applies 
so that (4.8) and the conclusion of Corollary 4.2, and hence (4.13), hold. A 
rearrangement of (4.13) gives 

1 -P{M(n'h)<=v,,}  --2,,k<=n'hO(v.) 

< l - P { M ( n ' h ) < v . } +  2.k. 

But it follows from (4.8) and (4.11) that P { M ( n ' h ) < v . }  ~ e  -~/k and hence, using 
Corollary 4.2, that 

1 - e -  z/k - -  O ( k  - l )  ~ lim inf n' h ~ (v,) 
n ~ o o  

__<lim sup n'hO(v,) 
n--*  oo  

<= 1 --e-z/k +o(k-1) .  

Multiplying through by k and letting k - - - ~  shows that T,O(v,,)~nhO(v,)---~z, 
and concludes the proof that (4.11)implies (4.9). []  

Theorem 4.3 may be related to the corresponding results for i.i.d, sequences 
in the following way. 

Theorem 4.4. Let  {UT} be a family of  constants such that the conditions of  
Theorem 4.3 hold, let 0 < p < l ,  and let h be chosen as in (4.1). Suppose that 
I~(UT)"~I(Uh[T/h] ) as r -~oe  (which will be the case if, e.g., Ur=Unh for nh<-_T 
< ( n +  l )h) .  Then 
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P { M ( T ) < U T }  ~ p  as T ~ o o  (4.14) 

i f  and only if  there is a sequence {(n} of  i.i.d, random variables with common d f  
F satisfying 1 - F ( u ) ~ h O ( u )  as u-- ,oo and such that /~n=max( (1 , (2 , . . . , (n )  
satisfies 

P {2~, <u,h} ~ p .  (4.15) 

Proo f  If there is an i.i.d, sequence {(,} with common d.f. F such that (4.15) 
holds then (as noted in the introduction) we have 1--F(U,h)~z /n ,  where p 
= e - L  Since 1-F(u) . , .hO(u)  we have tp(U,h)~Z/nh , from which it follows easily 
(using the stated assumption about ~) that O(UT)~Z/T. Hence Theorem 4.3 
gives P { M ( T ) < U T }  ~ e  -~ so that (4.14) holds. 

Conversely if (4.14) holds it follows from Theorem 4.3 that T O ( u r ) ~ z  and 
hence nhtp(U,h ) ~ z .  Let {(,} be i.i.d, random variables with the same d.f. F, say, 
as M(h),  so that by (4.1) 

1 - V (U,h) ~ h O (U,h) ~ z/n, 

from which it follows that )~r ,=max((1 ; (  2 . . . .  , ( , )  satisfies P{ATI<u , }  ~ e  -~ 
= p, as required. []  

These results show how the function ~ may be used in the classical criteria 
for domains of attraction to determine the asymptotic distribution of M(T) .  
We write ~(G) for the domain of attraction to the (extreme value) d.f. G, i.e. 
the set of all d.f.'s F such that F n ( x / a , + b , ) - - . G ( x ) f o r  some sequences {an>0}, 
{b,}. 

Theorem 4.5. Suppose that the conditions of  Theorem 4.4 hold for  all families u T 
= x/a  T + bT, -- oo < x < oo, when {a T > 0}, {bT} are given constants and 

P { a T ( M ( T  ) -  bT) < x} ~ G(x). (4.16) 
Then 

tp(u)~l  - F ( u )  as u ~ o o  for  some F ~ ( G ) .  (4.17) 

Conversely i f  (4.1) holds and O(u) satisfies (4.17) there are families o f  constants 
{aT>0}, {br} such that (4.16) holds, provided that the conditions of  Theorem 4.4 
are satisfied for  each u T = x/a  T + br,  -- oo < x < oo. 

Proo f  If (4.16) holds together with the conditions stated, Theorem 4.4 shows 
that 

P {a,h(117i . -- b,h ) <= x} ~ G(x) 

where )~n is the maximum of n i.i.d, random variables with a common d.f. F o, 
say, and where hO(u)~  1 - F o ( u  ) as u ~oo ,  and F o ~ ( G ) .  We may choose a d.f. 

1 - F ( u ) = ~ ( 1 - F o ( u ) )  when u is large and the classical domain of 
4 

F such that 

attraction criteria show that F~(G). But O(u)~l-F(u)as desired, showing 
(4.17). 

Conversely if (4.17) holds and h > 0  we may choose F o ~ N ( G  ) such that 
h~(u)..~ 1 - F o ( u )  and hence define an i.i.d, sequence {(,} with common d.f. F o, 
M, =ma x  ((1, (2 . . . . .  (,), such that 

P {a', (2~,I, - b',) < x} ~ G (x) 
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for some constants a',>0, b',. Define ar=a' n, br=b' . for n h < T < ( n + l ) h ,  n 
=0, 1, 2 .... Then (4.15) holds with p=G(x). If the conditions of Theorem 4.4 
hold for each Ur=X/ar+b r then (4.14) holds, which yields (4.16). [] 

5. Particular Classes of Processes 

In this section we first show how the conditions required for the previous 
theory may be simplified when the mean number #(u) of upcrossings of each 
level u by ~(t) per unit time is finite, and then briefly indicate applications to 
stationary normal processes (whether or not #(u)< oo). Throughout  N,(I) (N,(t)) 
will denote the number of upcrossings of the level u in the interval I (or in 
(0, t) respectively). 

First we write for q > 0 

Iq(U) ---P {4(0) < u < 4(q)}/q. (5.1) 

Clearly Iq(u)<=P{N,(q)>=l}/q<gN,(q)/q=#. Further, it is readily shown (by a 
standard dissection of the unit interval into subintervals of length q) that 

#(u) = lim Iq(u), (5.2) 
q ~ O  

which, for now, we assume finite for each u. It is apparent from (5.2) that #(u) 
may, at least in principle, be readily calculated from the bivariate distributions 
of the process. It may also happen (as for many normal processes) that 
Iq(u)~#(u) as u ~ o o  when q depends on u ,q=q(u)~0 .  For greater flexibility 
we shall use the following variant of such a property. Specifically we shall 
assume, when needed, that for each a > 0  there is a family {qa(u)~0 as u ~ }  
such that (with %=%(u), #=#(u))  

lim inf I qa (u)/# > v a (5.3) 
u ~ o o  

where v~--, 1 as a ~ 0. As indicated below, for many normal processes we may 
take q,(u)=a/u and more generally as aP {4(0)>u}/#(u). 

We shall assume as needed that 

P{~(O)>u}=o#(u) as u ~ o v ,  (5.4) 

which holds under general conditions. For  example, 5.4 is readily verified if for 
some q=q(u)--,O as u ~ o o ,  

P{4(0) >u, 4(q) >u} 
lim sup ,~oo P{4(0) >u} <1 (5.5) 

since (5.5) implies that lim infqlq (u)/P{4(O)>u} >0, from which it follows that 
u--* oo 

P { 4 (0) > u}/Iq (u) ~ O, and hence (5.4) holds since Iq (u) < #(u). 
We may now recast the conditions (3.6) and (3.8) in terms of the func- 

tion #(u). 
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Lemma 5.1. (i) Suppose #(u)< oo for each u and that (5.4) (or the sufficient 
condition (5.5)) holds. Then (3.6) holds with O(u)=#(u). 

(ii) I f  (5.3) holds (for some family {q~(u)}) then (3.8) holds with ~(u)=#(u). 

Proof Since clearly 

P{M(h) >u} <=P{N,(h)> 1} +P{~(0)>u}  < #h +P{~(0)>u},  

(3.6) follows at once from (5.4), which proves (i). 
Now if (5.3) holds, then with q=%(u), #=#(u),  

P{~(0) < u, ~(q) < u, M(q) > u} = P  {4(0) < u, M(q) >u} -P{~(0)  < u < ~(q)} 

__< P {N.(q)  __> 1} - qIq(u) 

<#q--#qva(1 + o(1)) 
so that 

lira sup P { ~ (0) < u, ~ (q) < u, M (q) > u}/(q #) <= 1 - va, 

which tends to zero as a ~ 0, giving (3.8). [] 

In view of this lemma, Gnedenko's  Theorem now applies to processes of 
this kind using the more readily verifiable conditions (5.3) and (5.4), as follows. 

Theorem 5.2. Theorem 3.5 holds for a stationary process ~(t) with O(u) 
= # ( u ) <  ov for each u f the conditions (3.6) and (3.7) are replaced by (5.4) and 
(5.3). [ ]  

Note that while (5.3) and (5.4) are especially convenient to give (3.6) and 
(3.8), the verification of (4.1) still requires obtaining 

l iminfP{M(h)>u}/hO(u)>l for 0 < h < h  o. 
u ~ o o  

For stationary normal processes with #=gNu(1)<o% there are a number of 
relatively simple derivations available. However, we turn here to a brief con- 
sideration of more general normal cases, where kt can be infinite. 

Specifically, assume now that ~(t) is a (zero mean) stationary normal 
process with covariance function 

r(z)=l-Cl~l~+o[v[ ~ as ~ ---, 0 (5.6) 

for some c~, 0 < ~ < 2 .  (The case c~=2 gives #<oo.)  There is a considerable 
literature dealing with extremal properties of such processes, and of slightly 
more general cases (which could be included here) in which the term Irl ~ is 
multiplied by a slowly varying function as z ~ 0  (cf. [-2, 16]). Of course a 
number of the arguments (which in some cases are rather intricate) used in 
these papers are required to verify our general conditions here. We will not 
attempt to reproduce these arguments but rather to simply indicate the basic 
considerations used and where they may be found. However it will be con- 
venient to summarize these results as a theorem even though formal proofs are 
not given. 
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Theorem $.4. Let ~(t) be a zero mean stationary normal process with covariance 
function r(t) satisfying (5.6). Then 

(i) (3.6), and in fact (4.1), hold with O(u)= C1/~H~u2/~O(u)/u. in which 4) is 
the standard normal density, C is as in (5.6), and H~ is a constant depending only 
on o~. 

(ii) (3.7) holds with q~(u)=au -2/~. 
(iii) Dc(Ur) holds with respect to a family {q} if T0(ur) is bounded and 

T ~ ]r(kq)le_~./(l+l~(kq)l)__,O as r ~ o o  (5.7) 
q 2r<=kqNr 

for each 2>0.  This holds, in particular, if" TO(ur) is bounded (win t) defined as 
in (i)) and r(t) log t -+ 0 as t --+oo. 

(iv) / f  r(t) log t --+ 0 and TO(UT) -~ ~ > O, then D'~(UT) holds and 
p{M(T)<UT} --+e -~. 

(v) I f  r(t) log t ~ O, M(T)  has the limiting distribution given by 

P{ar(M(T)--bT)<X } ~ e  -~-~ 
where 

a T = (2 log T) ~, 

b r = ( 2 1 o g T ) ~ + ( 2 l o g T )  -~ - ~  l og logT  

+ log (2 ~ ~ - 1 ~ -+ C1/~H~)~. 
J 

Indications and Sources of Proof 

(i) A derivation of (4.1) (from which (3.6) follows) appears in several de- 
velopments of the normal theory (e.g. Theorem 2.1 of [16]). In the case 
a=2 ,  (3.6) is incidentally simply obtained from "Rice's formula" 
# --- [( - r"(0))~/2 ~] e-,2/2. 

(ii) This may be shown, for example, along the lines of Lemma 2.4 of [16], 
although a more direct derivation is obtainable from the normal theory given 
in [13]. 

(iii) The proof of this involves a standard calculation using "Slepian's 
Lemma" (cs Lemma 3.5 of [15]), from which it follows that for two sets of 
standard normal random variables ~ ... r ~1 ..-t/, with covariance matrices 
[2~j], [v~jJ, r,~jf ~ fvij[ 

P (~j<u) - P  (tlj<u) < g  ~ J2i j -v l j l (1-22)-r  -"2/r 
J J i<j 

In this application (using the notation of (3.4)), the ~i are identified with the 
r.v.'s ~(Sa)... ~(sv), ~(ta)... ~(tp,) and the r h with p+p' standard normal r.v.'s 
having the same correlations except that cov(~(si), ~(tj)) is replaced by zero for 
l <i<p,  l <=j<p'. 
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The fact that boundedness of TO(ur) together with r ( t ) logt  ~ 0  implies 
(5.7) follows by standard calculations (cf. [1] or Lemma 3.1 of [13]). 

(iv) If r(t) log t ~ 0 and TO(ur) ~ ~ > 0 then D;(ur) may be simply obtained 
by employing Slepian's Lemma with n--2. It then follows from Theorem 4.3 
that P {M(T)<ur}  --* e -~. 

(v) This follows at once from the (relatively) straightforward verification of 
the fact that T O ( u r ) ~  r = e  -x when u r =x/a r + br, using the above results. [] 

6. Poisson and Related Properties 

In this section we shall just briefly indicate the Poisson properties as- 
sociated with high level upcrossings. We confine the discussion to the case 
where the number N,(I) of upcrossings in a bounded interval I has a finite 
mean, writing again #=#(u)=gN,(1). Cases where this is not so are similarly 
dealt with in terms of so-called e-upcrossings (cf. [15]). 

Our objective is to show, under D C and D'c conditions, that the point 
process of upcrossings of a high level takes on a Poisson character - as is well- 
known in the case when the stationary process ~(t) is normal. Since the 
upcrossings of increasingly high levels will tend to become rare, a normali- 
zation is required. To that end we  consider a time period T and a level ur, 
both increasing in such a way that T#--* ~, (# =#(Ur)), and define a normalized 
point process of upcrossings by 

N*(I)=N,T(TI), (N*(t)=N.T(tT)) 

for each interval (or more general Borel set) I, so that, in particular, 

gN~(1)=# N.~(T)=#T-~'c. (6.1) 

This shows that the "intensity" (i.e. mean number of events per unit time) 
of the (normalized) upcrossing point process converges to z. Our task is to 
show that the upcrossing point process actually converges (weakly) to a Pois- 
son process with mean ~. 

The derivation of this result is based on the following two extensions of 
Theorem 4.3, which are proved by similar arguments to those used in obtaining 
Theorem 4.3. 

Theorem 6.1. Under the conditions of Theorem 4.3 with O(u)=#(u), /f 0 <1  and 
# T-~ z, then 

V{M(OT)<=ur} ~ e  -~ as T--*oo. [] (6.2) 

Theorem 6.2. I f  11,12 ... Ig are disjoint subintervals of [-0, 1] and I ~ = T I j  
={ t : t /Te l i }  , then under the conditions of Theorem 4.3 with ~(u)=#(u)  if 
#T ~ z ,  

P {i~_ 1 (M (I*) <=UT)}-j~I P { M (I*) <-_ur} ~O, (6.3) 

so that by Theorem 6.1 
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P {j~I (M (I*) <ur)} --' e-~z~ (6.4) 

where Oj is the length of I j, 1 <j ~ k. [] 

It  is now a relatively s t ra ightforward ma t t e r  to show that  the point  pro-  
cesses N~ converge (in the full sense of  weak convergence) to a Poisson process 
N with intensity -c. 

Theorem 6.3. Under the conditions of Theorem 4.3, with ~ =Ix, if TIx ~ z where 
Ix=Ix(UT), then the family N~r of (normalized) point processes of upcrossings of 
u T on the unit interval converges in distribution to a Poisson process N with 
intensity z on the unit interval as T--+ or. 

Proof By Theo rem 4.7 of  [8] it is sufficient to prove  that  
(i) #N~{(a,b]} ~ g N { ( a , b ] } = z ( b - a )  as r--+oo for all a, b, O<_a<_b<_l. 

(iX) P{N*(B)=O}-+P{N(B)=O} as T-+oo for all sets B of the form ~ ) B  i 
1 

where n is any integer and B i are disjoint intervals (% biJ c (0 ,  lJ. 
N o w  (i) follows trivially since 

g N* {(a, b]} = Ix T(b - a )  -+ r(b -a ) .  

To obta in  (iX) we note that  

O=<P{&(B)=O}-P{M(TB)<=u~} 
= P {N u (TB) = O, M (TB) > UT} 

<- ~ n{~(Tai)>UT} 
i = 1  

since if the m a x i m u m  in T B =  ~ (Ta~, Tb~J exceeds UT, but  there are no 
i~ l  

upcrossings of  u T in these intervals, then ~ must  exceed u at the initial point  of 
at least one such interval. But the last expression is just  nP{~(O)>UT} ~ 0  as 
T -+ o0. Hence  

P {N~(B) = O} - P {M(TB) <= UT} ~ O. 

But P{M(TB)<=uT}=P{i~--1 (M(TBi)~UT} -+e-'cE(bi-al) by T h e o r e m  6.2 so that  

(iX) follows since P {N(B) = 0} = e-~*(b'-"') [ ]  

Corol lary 6.4. I f  B i are disjoint (Borel) subsets of the unit interval and if the 
boundary of each B i has zero Lebesgue measure then 

tl 

P {N*(B,)=rl, 1 < i <=n} --, [ I  e-*m(B') [zm(Bi)]'~ 
~=1 ri! 

where m(Bi) denotes the Lebesgue measure of B i. 
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Proof This is an immediate consequence of the full weak convergence proved 
(cf. Lemma  4.4 of [8]). []  

The above results concern convergence of the point processes of upcross- 
ings of u r in the unit interval to a Poisson process in the unit interval. A slight 
modification (requiring D r and D' c to hold for all families Uor in place of u r for 
all 0>0)  enables a corresponding result to be shown for the upcrossings on the 
whole positive real line, but we do not pursue this here. Instead we show how 
Theorem 6.3 yields the asymptotic distribution of the r th largest local maxi- 
mum in (0, T). 

Suppose, then, that ~(t) has a continuous derivative a.s. and define N~(T) to 
be the number  of local maxima in the interval (0, T) for which the process 
value exceeds u, i.e. the number  of downcrossing points t of zero by 4' in (0, T) 
such that ~(t)>u. Clearly N' (T)>N, (T) -2  since at least one local maximum 
occurs between two upcrossings. It is also reasonable to expect that if the 
sample function behavior is not too irregular there will tend to be just one 
local maximum between most successive upcrossings of u when u is large, so 
that N/,(T) and Nu(T ) will tend to be approximately equal. The following result 
makes this precise. 

Theorem 6.5. With the above notation let {ur} be constants such that 
T#(=T#(ur))-~>O. Suppose that gNU(2) is finite for each u and that 
g N ' ( 1 ) ~ # ( u )  as u ~oe. Then, writting ur=u, C[N~,(T)-N,(T)[--+0. 

I f  also the conditions of Theorem 6.3 hold (so that P{N,(T)=r} ~e-~r~ / r ! )  
it follows that P {N~ (T) = r} ~ e-~ zffr !. 

Proof As noted above, N~(T)>N,(T)-I ,  and it is clear, moreover, that if 
N~,(T)=N,(T)-1, then ~(T)>u .  Hence 

g IN~ ( T ) -  N, (T)[ = g {N~(T)-  N,(T)} + 2P{N'(T) = N, (T) - 1} 

< TNN" (1) - # T + 2P { ~ (T) > u}, 

which tends to zero as T ~ o e  since P{~(T)>ur}=P{~(O)>ur}~O and 
TNN" ( 2 ) -  # T = # T[-(2 + o (2 ) ) -  1] --* 0, so that the first part  of the theorem 
follows. The second part  now follows immediately since the integer-valued r.v. 
N'(T) -N, (T)  tends to zero in probability, giving P{N/,(T)+N,(T)}--+0 and 
hence P{N~,(T)=r}-P{N,(T) =r} -*0  for each r. []  

Now write M~r)(T) for the r th largest local maximum in the interval (0, T). 
Since the events {M(~)(T)<u}, {N'(T)<r} are identical we obtain the following 
corollary: 

Corollary 6.6 Under the conditions of the theorem 

r - -1  

p{g(r)(T)<ur}--+e -~ ~ zS/s!. [] 
s = 0  

As a further corollary we obtain the limiting distribution of M~)(T) in 
terms of that for M(T). 
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Corollary 6.7. Suppose that P {ar(M (T ) -br )  < x } --* G(x) and that the conditions 
of Theorem 4.3 hold with ur=x/ar+b r for each real x (and ~b=#). Suppose 
also that gN'(1)~gNu(1) as u ~oo. Then 

r - - 1  

P {ar(M(r)(T)-br)< x} --* G(x) ~ I - - l o g  G(x)]S/s!, 
s = O  

where G ( x ) > 0  (and zero if G(x)=O). 

Proof. This follows from Corol lary 6.6 by writ ing G(x)=e -~ since Theorem 4.3 

implies that  T#  --+ z. [ ]  

Note  that  for a s ta t ionary normal process with finite second and  fourth 
spectral moments  22, )~4 it may be shown (Sect. 11.6 of [-3]) that  

gN~ (1) = #q)(u22/A ~) + (2n) -  1 (24/22)~ [-1 - rb {u(24/A)~}] 

where A = 2 4 - 2 2  and  @ is the s tandard  norma l  d.f., so that clearly N N ' ( 1 ) ~ #  

a s  u ---> ~ .  

The re la t ion (6.5) gives the asymptot ic  d is t r ibut ion of the r th largest local 
m a x i m u m  M<r)(T) as a corollary of the Poisson result, Theorem6.3.  This 
Poisson result may itself be generalized to apply to jo in t  convergence of 
upcrossings of several levels to a point  process in the plane composed of 
successive " th inn ings"  of a Poisson process. F r o m  a result of this k ind  it is 
possible to ob ta in  the jo in t  asymptot ic  d is t r ibut ion  of any n u m b e r  of the 
M(r)(T), and  also of their t ime locations. 

Acknowledgement. We are very grateful to Georg Lindgren for uncountably many helpful con- 
versations regarding this and related topics. 
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