Skip to main content
Log in

Effects of heart rate on hemodynamic severity of coronary artery stenosis in the dog

  • Original Contributions
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

In 14 open-chest mongrel dogs, the effects of heart rate on hemodynamic severity of proximal coronary artery stenosis were studied. Stenosis was produced by a circumferential wire snare on left cirucmflex coronary artery. An intermediate stenosis was defined by reduction of peak reactive hyperemia response to 200% of control flow, a critical stenosis by prevention of any reactive hyperemia flow to a 15-s occlusion. Heart rate was increased stepwise from control to 160 and 200 beats/min by left atrial pacing. In intermediate stenosis, increased pacing rate reduced peripheral coronary pressure distal to the stenosis from 77±3 to 73±4 to 65±3 mm Hg (p<0.05) and increased stenosis resistance from 0.30±0.05 to 0.34±0.05 to 0.35±0.05 resistance units (p<0.05). In critical stenosis, increased heart rate changed peripheral coronary pressure from 45±5 to 49±5 to 48±5 mm Hg (p<0.01) and reduced stenotic resistance from 1.24±0.19 to 1.08±0.18 to 1.15±0.19 resistance units (p<0.005). A significant correlation between changes in stenotic resistance and peripheral coronary pressure was obtained (r=−0.71, p<0.001). In maximally dilated coronary arteries, a circumferential stenosis decreased circumflex artery flow to 50%. Increased pacing rate up to nearly 200 beats/min raised peripheral coronary pressure distal to the stenosis from 51±4 to 56±4 mm Hg (p<0.005) and changed stenotic resistance from 0.41±0.13 to 0.30±0.06 to 0.33±0.10 resistance units (p<0.05).

It is assumed that the changes in peripheral coronary pressure alter the luminal area of the stenosis and hence calculated stenotic resistance. Other possible mechanisms like turbulent streaming, vasomotion or platelet aggregation appear to be of minor importance in the present experimental conditions.

Zusammenfassung

An 14 narkotisierten Hunden wurde der Einfluß der Herzfrequenz auf den hämodynamischen Schweregrad einer proximalen Koronarstenose untersucht. Die linke Arteria coronaria circumflexa wurde mit einer Drahtschlinge stenosiert. Eine mittelgradige Stenose wurde durch die Reduktion der reaktiven Hyperämie auf 200% der Kontrolldurchblutung, eine kritische Stenose durch das Ausbleiben jeglicher reaktiver Hyperämie definiert. Die Herzfrequenz wurde durch atriale Elektrostimulation schrittweise vom Ausgangswert auf 160 und 200/min erhöht. Bei einer mittelgradigen Stenose nahm mit zunehmender Herzfrequenz der periphere koronare Druck distal der Stenose von 77±3 auf 73±4 auf 65±3 mm Hg (p<0,05) ab und der Widerstand der Stenose von 0,30±0,05 auf 0,34±0,05 auf 0,35±0,05 Widerstandseinheiten (p<0,05) zu. Bei einer kritischen Stenose nahm mit zunehmender Herzfrequenz der periphere koronare Druck von 45±5 auf 49±5 auf 48±5 mm Hg (p<0,01) zu und der Widerstand der Stenose von 1,24±0,19 auf 1,08±0,18 auf 1,15±0,19 Widerstandseinheiten (p<0,005) ab.

Eine signifikante Korrelation bestand zwischen den Änderungen des Stenosewiderstandes und denen des peripheren koronaren Druckes (r=−0,71, p<0,001). In maximal dilatierten Koronararterien reduzierte die Stenose die Durchblutung der Arteria circumflexa auf 50%. Mit zunehmender Herzfrequenz bis zu 200/min stieg der periphere koronare Druck distal der Stenose von 51±4 auf 56±4 mm Hg (p<0,005), der Stenosewiderstand nahm von 0,41±0,13 auf 0,30±0,06 auf 0,33±0,10 Widerstandseinheiten (p<0,05) ab. Es wird angenommen, daß Änderungen des peripheren koronaren Drucks den inneren Gefäßquerschnitt der Stenose und dadurch den errechneten Stenosewiderstand verändern. Andere mögliche Mechanismen wie turbulente Strömung, Vasomotion oder Plättchenaggregation scheinen unter diesen experimentellen Bedingungen von geringerer Bedeutung zu sein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bache, R. J., F. R. Cobb: Effect of maximal coronary vasodilation on transmural myocardial perfusion during tachycardia in the awake dog. Circulat. Res.41, 648–653 (1977).

    PubMed  Google Scholar 

  2. Baller, D., H. G. Wolpers, J. Zipfel, A. Hoeft, G. Hellige: Unfavorable effects of ventricular pacing on myocardial energetics. Basic Res. Cardiol.76, 115–123 (1981).

    PubMed  Google Scholar 

  3. Brown, B. G., E. Bolson, M. Frimer, H. T. Dodge: Angiographic distinction between variant angina and nonvasospastic chest pain. Circulation57, 58, Suppl. II, 122 (1978).

    PubMed  Google Scholar 

  4. Doerner, T. C., B. G. Brown, E. Bolson, M. Frimer, H. T. Dodge: Vasodilatory effects of nitroglycerin and nitroprusside in coronary arteries—a comparative analysis. Amer. J. Cardiol.43, 416 (1979).

    Google Scholar 

  5. Folts, J. D., E. B. Crowell, G. G. Rowe: Platelet aggregation in partially obstructed vessels and its elimination with aspirin. Circulation54, 365–370 (1976).

    PubMed  Google Scholar 

  6. Gould, K. L., K. Lipscomb, C. Calvert: Compensatory changes of the distal coronary vascular bed during progressive coronary constriction. Circulation51, 1085–1094 (1975).

    PubMed  Google Scholar 

  7. Gould, K. L.: Pressure-flow characteristics of coronary stenosis in unsedated dogs at rest and during coronary vasodilation. Circulat. Res.43, 242–253 (1978).

    PubMed  Google Scholar 

  8. Gould, K. L.: Dynamic coronary stenosis. Amer. J. Cardiol.45, 286–292 (1980).

    PubMed  Google Scholar 

  9. Kreuzer, W., W. G. Schenk: Effects of local vasodilation on blood flow through arterial stenosis. Eur. Surg. Res.5, 233–242 (1973).

    PubMed  Google Scholar 

  10. Logan, S. E.: On the fluid mechanics of human coronary artery stenosis. IEEE Trans. Biomed. Eng.22, 327–334 (1975).

    PubMed  Google Scholar 

  11. Mates, R. E., R. L. Gupta, A. C. Bell, F. J. Klocke: Fluid dynamics of coronary artery stenosis. Circulat. Res.42, 152–162 (1978).

    PubMed  Google Scholar 

  12. Neill, W. A., J. Oxendine, N. Phelps, R. P. Anderson: Subendocardial ischemia provoked by tachycardia in conscious dogs with coronary stenosis. Amer. J. Cardiol.35, 30–36 (1975).

    PubMed  Google Scholar 

  13. Raff, W. K., F. Kosche, W. Lochner: Extravascular coronary resistance and its relation to microcirculation. Amer. J. Cardiol.29, 598–603 (1972).

    PubMed  Google Scholar 

  14. Santamore, W. P., A. A. Bove, R. A. Carey, J. F. Spann: Dynamic coronary artery stenosis. Physiologist23, 4, 162 (1980).

    Google Scholar 

  15. Santamore, W. P., P. Walinsky: Altered coronary flow responses to vasoactive drugs in the presence of coronary arterial stenosis in the dog. Amer. J. Cardiol.45, 276–285 (1980).

    PubMed  Google Scholar 

  16. Schwartz, J. S., P. F. Carlyle, J. N. Cohn: Effect of dilation of the distal coronary bed on flow and resistance in severely stenotic coronary arteries in the dog. Amer. J. Cardiol.43, 219–224 (1979).

    PubMed  Google Scholar 

  17. Young, D. F., N. R. Cholvin, R. L. Kirkeeide, A. C. Roth: Hemodynamics of arterial stenoses at elevated flow rates. Circulat. Res.41, 99–107 (1977).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heusch, G., Yoshimoto, N. & Müller-Ruchholtz, E.R. Effects of heart rate on hemodynamic severity of coronary artery stenosis in the dog. Basic Res Cardiol 77, 562–573 (1982). https://doi.org/10.1007/BF01907947

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01907947

Key words

Navigation