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1. Introduction

Let X be a “nice” Markov process; say a right process for definiteness. Let R be
a random time; that is R is a positive random variable. We say that R has the
Markov property if the pre-R field #; and the post-R field 4, are conditionally
independent given X .. See Sect. 2 for precise definitions of all unfamiliar terms
used in this introduction. By the very definition of a Markov process, constant
times have the Markov property, and the strong Markov property implies that
stopping times have the Markov property. It has been known for some time (see
[11] or [12]) that coterminal times have the Markov property. If R is either a
stopping time or a coterminal time much more is known: namely the post-R
process (X ,, t>0) defined on {R < o0} is itself a strong Markov process.

In this paper our main concern is to investigate the situation for co-optional
times, Section 2 collects the necessary definitions and preliminaries, and the
main results follow in Sect. 3. First of all it is easy to see that not all co-optional
times have the Markov property and we give a simple example at the end of
Sect. 3. We begin Sect. 3 by reformulating the Markov property in terms of the
dual optional projection of certain increasing processes associated with R. We
then give two sufficient conditions that a co-optional time L have the Markov
property. The first of these (Proposition 3.7) states that if L is disjoint from all
stopping times in the sense that for all y, P*[0<L=T<o0]=0 when T is a
stopping time, then L has the Markov property. Following Dynkin we say that
L is reconstructable if there exists a decreasing sequence (L,) of co-optional times
with L,|L and L,>L on {0<L<o}. Reconstructable co-optional times are
closely related to the co-predictable return times discussed by Azéma in [1].
Proposition 3.8 states that every reconstructable co-optional time has the Mar-
kov property. This result is very reminiscent of the fact that a process reversed
from a co-optional time has the moderate Markov property. Finally in Sect. 3
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we give a new proof in the spirit of the present paper that coterminal times have
the Markov property. ‘

In Sect.4 we apply the result on reconstructable co-optional times to the
space time process in order to prove that if L is co-optional, then the process ¥,
=(L,X,;), 0<t<1 defined on {L<co} is an inhomogeneous Markov process.
This generalizes one of the main results in [8].

In [6] a theory of “splitting times” was developed. This was based on the
fact that the end of a homogeneous optional set (i.e. a coterminal time) has the
Markov property. Clearly the results of that paper can be extended to co-
optional times having the Markov property.

It would be very interesting to characterize precisely which co-optional times
have the Markov property, or to investigate general properties of the class of all
times having the Markov property.

2. Preliminaries

Our basic datum is a Markov process X =(, &, %, X,,0,, P¥) with state space
(E, &) which satisfies the right hypotheses as stated in [5]. After a change, if
necessary, to the Ray topology these hypotheses amount to saying that X is a
right continuous strong Markov process with a Borel transition function on
(E,&) where E is a universally measurable subset of a compact metric space E
and & is the Borel g-algebra of the metric space E. In addition ¢ — X, has left
limits in E on (0, c0) almost surely, but we shall have no need for these left limits
in this paper and so this condition could be omitted from our hypotheses. We
do not single out a particular state to act as a cemetery, and so no questions of a
lifetime { arise.

In applying the general theory of processes to the system (Q, %, %, P¥) for all
u simultaneously, one needs to be precise about the meanings of familiar
sounding objects. A process Z=(Z,) is optional if for each initial measure 4 it is
P* indistinguishable from a process Z* that is optional over the filtration (Q, #*,
FF, P¥) in the usual sense of the general theory [3]. Measurable and predictable
processes are defined similarly. Two processes are indistinguishable if they are
P# indistinguishable for all p. A process Z is homogeneous if it is measurable and
Z, . {o)=Z[0,w) for all >0, s=0, and weQ. The restriction that ¢ be strictly
positive in this definition is crucial. An optional function f on E is a universally
measurable function such that the process f(X,) is optional. Every Borel function
and every a-excessive function is an optional function.

A raw additive functional (RAF) is an increasing right continuous measurable
process A=(A,),», with A,=0 and satisfying A4,, ,=A4,+ A, 0, identically. An
additive functional (AF) is a RAF that is adapted to (%,). Note that this
definition corresponds to what is often called a perfect AF or RAF since we
permit no exceptional set in the shift identity. In view of the perfection results of
Walsh [14] and Meyer [9] this causes no essential loss in generality and we
have decided to suppress the adjective “perfect”. The same remark applies to the
definition of co-optional times in the next paragraph.

A random time R is an & measurable random variable with values in R”
=[0,0]. A co-optional time L is the end of a homogeneous set; that is, L
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=sup {t: (t,w)eH} where HcR* xQ is homogeneous. (A set is homogeneous
provided its indicator function is a homogeneous process.) It is easy to see that a
random time L is a co-optional time if and only if Lo8,=(L—t)" identically
where ™ =sup(r,0) for reR*. A coterminal time is the end of an optional
homogeneous set. This differs from the definition of coterminal time given in
[117] which required killing operators. However, an exact coterminal time L as
defined in [11] is the end of an optional homogeneous set. Although this is a
very simple fact we shall prove it for completeness at the end of this section in
Proposition 2.3. The definition of a coterminal time as the end of an optional
homogeneous set seems to be more convenient and has the advantage of
emphasizing the crucial difference between co-optional and coterminal times.

With any random time R one associates a o-field #; by saying that an &
measurable random variable F is %, measurable provided that for each u there
exists an optional process Z* =(Z¥) relative to the filtration (Q, ##, %, P*) such
that F=2Z% on {R < oo}. Clearly R is % measurable and it is easy to see that so
is f(Xg) 1z . o, for any universally measurable f on E. We shall call Z; the o-field
of events before R. Recall that #* is the o-field of universally measurable sets
over (@, #°). Observe that if Fe#*, then Fo 0y 1, €. We define the o-field
of events after R, %, as follows: an & measurable F is %, measurable provided
there exists GeZ* with F=Go 0y on {R<oo}. If FeF*, then Folp 15 _ ,€%,.
In particular, if fe&™, then f(Xg) 1z . ,€%x.

We turn now to showing that an exact coterminal time as defined in [11] is
the end of an optional homogeneous set. Let L be a coterminal time as defined
in [11]. We do not assume that L is exact. Then according to Definition 4.1 and
Proposition 4.1 of [11], L is a random time with the following properties:

(2.1) (i) Le6,=(L—s)*; ie. L is co-optional
(i) Lek,=L on {L<s}
(iii) Lok <s
(iv) Lok <L
(v} t— Lok, 18 increasing on [0, o).

In (2.1) the k, are killing operators and the statements involving s hold for every
seR* =[0, c0). We refer the reader to [11] for the properties of the killing
operators. Define

(22) L=supLok,=limLok,.
t>0 ttoo
Then <L and L is called the exact regularization of L. One says that L is exact

if L=L. It is easy to see that the process (Le k,) is predictable and so if we define

L,=inf Lok =lim Lok,,

s>t st
then L, is a right continuous (£, adapted process and hence optional.

(2.3) Proposition. Ler H={(t,w): L,=t}. Then H is a homogeneous optional set
and M =sup{t:te H} =L, the exact regularization of L.
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Proof. Clearly H is optional. If t 20, then
(24) L,oO;=limLok, o0 =limLof ok,

ullt ullt
=lim(Lek,, —s)" =(L,,,—9)".
ullt

Thus if t>0, t=L,0 0 if and only if t+s=L, , and so H is homogeneous. If
L{w)=a< oo and s>a then L{k,w)=a by (2.1-ii) and so L, (w)=a for every t=a.
Hence M(w)=a. Thus M =L on {L < o0}. In view of (2.1-iii) and (2.2) in order to
complete the proof it suffices to show that Mok, —M as t1oo. Let H(k)
={s: L ok,=s} so that M ok,=sup H(k,). Since

L,ok,=lim Lok,ok,=1lim Lok
ulls ulls

uUnt?

we see that Lok, <t and if s<t, then Lok,=L_ while if s2¢t, L.ok,=Lok,.
Combining these observations with Lok, <L =<t for all t we see that

(2.5) H(k)={s:Lok,=s}c{s<t: L,=s}

and

(2.6) [0,)mH(k)={s<t: Ljok,=s}={s<t: L,=s}.

From (2.5) we obtain M ok, =M, and from (2.6) we observe that
Mok, zsup{[0,t)nH(k,)} =sup{s<t: L,=s}

and the last term increases to M as t1co0. This proves that Mok, — M as tTco.

3. The Markov Property and Co~Optional Times

In this section we shall develop two sufficient conditions for a co-optional time
to have the Markov property. We begin with the following general definition.

(3.1) Definition. A random time R has the Markov property if for every Feb ¥ *
(i.e. F is bounded and &* measurable) there exists feb&™* such that for every
bounded optional process Z and every initial measure p one has

(32) EM[ZaFoly; 0<R<o0]=Ef[Zgf(Xg); 0<R<o0].

The set {0 <R <00} is in F but not in ¥ in general. Since f(Xg) 1z _ 18
in both ¥, and %, (3.2) implies that under every P* the traces of % and %, on
{0 <R < 0} are conditionally independent given X ;.

If R is a stopping time, then the strong Markov property states that R has
the Markov property in a slightly stronger form, with {0 <R < cc} replaced by
{R < o0} in (3.2). Although less familiar it is also known that a coterminal time L
also has this stronger form of the Markov property. See [11] or [12]. This last
fact will be given a new proof later in this section. See Proposition 3.13.

The following result is an immediate consequence of (3.1) and standard
results on the construction of kernels. See [4], for example.
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(3.3) Proposition. Let R be a random time having the Markov property. Then
there exists a sub Markov kernel K(x, dw) from (E, £*) to (Q, F*) such that for each
initial measure p, Feb #*, and bounded optional process Z one has

E*[Z Fofg; 0<R<o0]=E‘[Z K(Xg, F); 0<R<o0].

We begin by giving a very simple reformulation of the Definition (3.1). To
this end fix a random time R. If F =0 is in b % * define

(3.4) BI=Fo0, Locrzy-

Thus B =(Bf) is an increasing right continuous process that is constant except
for a single jump of magnitude Fof, at t=R when 0 <R < o0. If R=0 or R= o0,
then B =0 for all . When F=1 we write simply B for B*. It is known [13] (see
also [10]) that there exists a right continuous adapted increasing process AF
such that for each p, A¥ is a version of the dual optional projection of BF
relative to P Again we write A4 for A" the dual optional projection of B=B"
Finally if C=(C,) is an increasing process and f =0 is in b &* we write f=C for
the increasing process t— f f(X,)dC,. With these concepts we may refor-
mulate (3.1) as follows. (0.1

(3.5 Lemma. Let R be a random time. Then R has the Markov property if and
only if for each FeF* with 0 F <1 there exists an fe&* with 0< <1 such that
AP =fxA where A¥ and A are defined above. Of course, this equality means that
A¥ and f+ A are indistinguishable.

Proof. Fix FeZ* with 0<F <1 and an optional process Z with 0<Z £1. Also
fix an initial measure p. Then from the very definitions

(3.6) E*[ZgFofy; O<R<o]=E*|Z,dBf=E*[Z dA].

Suppose firstly that A¥ =fx A. Using the measures on E defined by
vi(h)=E*[Zh(XR); 0<R < 0]
v,(h)=E*{Z, h(X,)dA,

and the universal measurability of f, there exists a Borel function g on E such
that v,(g)=v,(f) and v,(g)=v,(f). Therefore

E*[Z,dAF=E*[Z,f(X,)dA,=E* | Z,g(X ) d4,
=FE"[Zzg(Xg); 0<R<o0]=F[Z,f(XRr); 0O<R<00].

Combining this with (3.6) shows that R has the Markov property. Conversely if
R has the Markov property, then just reversing the above argument shows that
AF=fx A where f corresponds to F in (3.1).

We turn now to co-optional times L. If L is co-optional, then using the facts
that on {L <t}, Lo 6,=0 while on {L>t}, Lo, =L~tand 0,°0,=0, , , =80, it
is easily checked that the increasing process Bf =F o0, 1,,_; -, defined in (3.4) is
a RAF. It is known [2] or [13] that in this case one may choose 4%, the dual
optional projection of BY, to be an AF.



206 R.K. Getoor and M.J. Sharpe

If 0SF <1, then AT+ A'~"F=4 because of the additivity of dual optional
projections. Therefore if 4 is continuous, then according to the absolute
continuity theorem for continuous additive functionals proved in [2] there exists
an optional f with 0<f<1 and A¥=fA. If T is a stopping time, then 14, is
optional where [T] is the graph of T. Therefore

E*[AAr; T<oo]=E*[1,4,(t)d4,

=E*[1.1y(t)dB,=P*[0<L=T<0].
Hence A is continuous if and only if P*[0<L=T<ow]=0 for every stopping

time T and every initial measure p. Combining these remarks with (3.4) we
obtain the following result.

(3.7) Proposition. Let L be a co-optional time. If the dual optional projection A of
Lio. 1<y 15 continuous, then L has the Markov property. Moreover, A is continuous
if and only if

PHO<L=T<w]=0
Jor every stopping time T and every initial measure p.

Recall that a co-optional time is reconstructable provided there exists a
decreasing sequence (L,) of co-optional times such that almost surely L,|L and
L,>Lon {0<L<oo}. We say that the sequence (L,) reconstructs L. Here is our
second result.

(3.8) Proposition. A reconstructable co-optional time has the Markov property.

Proof. Fix FeZ* with 0<F <1 and let B, BF, A, and AT be as above. I[f T is a
stopping time and Ae#;, then t—1,1,4,(¢) is an optional process, and so one
obtains

(3-9) AA; 1{0<T<m}=E“{AB; 1(0<T<oo}‘97r}-
Let (L,) be a sequence reconstructing L. Then
ABj Locremy=Fol Ll 11 wy=Fobrlocparcm
and
{0<L=T<ow}={TZL0<T<w}—{T<L 0<T<w}
={T<L,Vn0<T<oo}—{Ls80,>0,0<T <0}
={L,00,>0Vn,Lof;=0,0<T<0}.
Defining hf(x)=E*(F;L,>0V n, L=0), one may then write (3.9) in the form
(3.10) AAX=hF(X,) as. on {0<T<o0}.

We would like to conclude from (3.10) that the processes AAF and
t—>h"(X)1,, o are indistinguishable. This would follow from the section theo-
rem if we knew that hf was optional. However, all that is clear is that k¥ is
universally measurable.
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To get around this let A=h!. Then
h(x)= P(L, > 0¥ n)— P¥(L>0)
—lim P¥(L, > 0)— P*(L>0),

the limit existing since (L,) is a decreasing sequence. But if M is co-optional, the
function ¢(x)=P*(M >0} is excessive since

Pe(x)=P*(Mo0,>0)=P*(M>1t)Tc(x).

Consequently h is an optional function, and so it follows that 44, and
(X)) 1. o) are indistinguishable. Therefore

C=4,— Z h(X)
O<s=s
is a continuous additive functional. In particular (X ) >0 for at most countably
many values of s. Hence [h(X)dC =0, and so C is carried by the optional set D
={h=0}. Since {t: X,eD‘} is countable and optional it follows from VI-T33 of
[31, that given p there exists a sequence (T,) of stopping times with disjoint
graphs such that {t: X,eD} and [ J[T,] are P* indistinguishable. But h? <h and
so a.s. P*

(3-1 1) hF(Xz) =Z hF(XT,,) I[Tn](t)

for all ¢. Now h*(X ) is % measurable and so it follows from (3.11) that h” is,
in fact, optional, and we may conclude from (3.10) that 44" and t - h"(X)) 1, ,
are indistinguishable.

Finally let CF=AF— Y hF(X,) be the continuous part of A*. Since

0=s5s=1
0<F <1, AF is strongly dominated by A, and hence CF is strongly dominated by
C. Hence CF is carried by D, and by the absolute continuity theorem [2], there
exists an optional function ¢ such that C¥=¢ * C. If we now define

)
" h(x)

f(x) Lpe(x)+(x) 1p(x),

then Af=fx A. Therefore L has the Markov property by (3.5).

(3.12) Remark. Note that we actually proved that if L is reconstructable or
satisfies the condition in (3.7), then one may choose f to be an optional function
in (3.2).

As mentioned before the following fact is known but we shall sketch a proof
based on Lemma 3.5.

(3.13) Proposition. Let L be a coterminal time. Then for every Feb % * there
exists a bounded unmiversally measurable function f such that for each initial
measure Y and bounded optional process Z one has

EF[Z,Fob,; L<oo]=E*[Z, f(X,); L<0].
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Proof. Let L=sup{t: M,=1} where M is the indicator of a homogeneous
optional set that may be assumed closed without loss of generality.

Let R=inf{t>0: M,=1}. Since M is homogeneous and optional, R is a
terminal time. Therefore ¢(x)=E*(e~%) is 1-excessive and hence optional. For

—1
l=sn<oo, let A,F{Xi n7*§¢(x)<—:lji} and let A, ={x: ¢(x)=1}. Then E
n

=(J{4,; 1=n< w0} Fix FeF* with 0SF<1. Since M, =1 if L<co it follows
that M,dAF =dAF. Also

AF=1, «AF+ Y 1, «AF,
1Zn<w
and since each A, is optional, 1, » AF is the dual optional projection of 1, x B,
1 £n< oo where the notation is that introduced above.
If T is a stopping time, then for any p

(3.14) E*[1, (X;)AAL; 0<T<oo]=E*[1, (X)) Fo0,; L=T,0<T<oo].
A T T A T T

But almost surely on {X,eA,, 0<T<co} one has Rof,=0 and hence
Lo 6,>0; that is L>T. Hence the right side of (3.14) is zero and so 1,_* A" is
continuous.

For 1 =n< o, the process M7 =1, (X)) M, is the indicator of a homogeneous
optional set. Let R, =inf{t >0: M}=1} be its debut. Clearly R=R, and one has

EX(e”™) < E*(e )=0(x).

But on A4,, o<n/n+1<1. A familiar argument now shows that M7 1{t>0} is
indistinguishable from the indicator of the set of iterates R¥, k=1 of R, (R} =R,
and RET!=RE4R, 00k for k21). See, for example, the proof of (3.5) in [7].
Since M is the indicator of a closed set, M; =1 if L<co. Therefore

My dBf=M,1, (X )dB{ =1, (X,)dB],
and so 1, (X)) dAf =M} dA]. Hence 1, * A™ is carried by the discrete set (Rf).
Now for every u
L, (XR)A4R Lo ruc oy
=E*[Folp; Xp ed,,L=R,,0<R, <0|F ]
=EX®)NF; L=0)1, (Xg ) 10 o< o)
because on {0<R,< oo} one has L=R, and so on this set L=R,, if and only if
Lo 6, =0. Let hf (x)=E*(F; L=0). It now follows by iteration that the processes
1 (X J)AAF and 1, (X)hF(X)M, are indistinguishable. Note that if xeA,

hF (x)=0 since P"(L>O)_1 Therefore summing on n, 1<n<o, AAF and
hF(X,) M, are indistinguishable because 1,_* A" is continuous. Let h=h' and sct

hF
(3.15) fzf 1{h>0)+§0 1{h: 0}
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where ¢ is an optional function such that C¥=¢x* C, C* and C being the
continuous parts of A¥ and A. Then A" =fx 4, and so from (3.5) one obtains for
any bounded optional process Z and initial measure y

EF[Z,Fo0,; 0<L<oo]=E'[Z, f(X,); 0<L<oo].
But using the Markov property at zero and (3.15)
EM[Z, f(X)); L=0]=E"[Z, f(X,); L=0]
=E"[Zo [(X o) h(X )] =E*[Z, h" (X )]
=E*[Z,EXO(F; L=0)]=E‘[Z,F;L=0]
—E“[Z,Fo0,; L=0],
completing the proof of (3.13).

(3.16) Example. This is an example of a co-optional time which does not have
the Markov property. Note firstly that the minimum of two co-optional times is
co-optional, but the minimum of two coterminal times is not, in general,
coterminal. We shall exhibit two coterminal times whose minimum does not
have the Markov property. Let E={a,b,c,4}. Let X be a pure jump process
with 4 a trap and all other transitions possible. Let J,,={t>0: X, =a, X,=c}.
Let L, =supJ,, . Since J,, is an optional homogeneous set, L, is a coterminal
time. Define J,, and L,, similarly and let L=L, AL,,. Then L is co-optional.
Note that L<oo and that P*(L>0)>0 if x44. Let T=infJ,, and F=1,_,,.
Since J, e #(RT)x F° FeZ* Suppose that L has the Markov property and
that f corresponds to F in (3.2). Let Z* be the indicator of J,, and note that Z§
=1 if and only if L=L, >0 and that Fo ;=0 on {L=L_, >0}. Since X, =c on
{0<L< o} one has

0=E°[ZiFo0,; 0<L]=E‘[Z%f(X,); 0<L]
=f(0)P*[0<L=L,],

and consequently f(c)=0. Now use the Markov property with Z® the indicator
of J,.. Then

0<P[0<L=L,; T, <]
=E[Z0Fo0,;0<L]=f(c)P‘[0<L=L,],

and hence L can not have the Markov property. In this example the AF, A,
associated with L is carried by the discrete set J,.uJ,, and, consequently, 4 is
purely discontinuous.

Remark. It is easy to see that the set {0 <L < oo} can not be replaced by {L <0}
in the statement of the Markov property for co-optional times. For example, let
E={b,4} where b is a holding point with transition to A possible and 4 is a
trap. Let L=sup{t:X,=b} and L=Lo0 =(L —s)* for a fixed s>0. Then L is
reconstructable, but one easily checks that the Markov property does not hold
on {L=0}.
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Remark, If L is a co-optional time having the Markov property, one might
wonder if A has the following property — compare with (3.5): given an AF, B
strongly dominated by A, then B has the form B=fx A. However, it is very easy
to construct a coterminal time L for which this fails.

4. Random Time Dilations

In this section we are going to generalize a result that we proved in [8] under
much stronger hypotheses. However, under the stronger hypotheses of [8] we
obtained more explicit results.

(4.1) Proposition. Let L be a co-optional time. Then under P* for each initial
measure p the process Y,=(L,X,;), 0<t<1 defined on {L<co} is an inhomo-
geneous Markov process relative to the filtration (7,,).

Proof. For the proof we introduce the space time process associated with X. To
be explicit for reR™* let 7,(r)=r+t. Let @=R* x Q and define X,(d)=X,(r, »)
=(1,(w), X,()) and 8, & =0,(r, w)=(r +1, 0, w). If for each (r,x)eR* x E we define
Pr¥=¢ ®P*, then (Q,%,%,X,,0,P") is a right process with state space R*
x E. Here 4 and #, have their usual meanings relative to process X. This is
discussed in a more general setting in [6]. For each te(0, 1) define L, on @ by

L,(r, )=t L(0; _, w)=(tLw)—(1-1)r)~" =t(L(w)+r)—n"*.

One may then check that for each fixed te(0, 1), L, is co-optional for X. That is,
L,o0 =(L,~s)*. Moreover, if 0< L,(r, w) < o, then for t<s<1,

L(r, 0)=(s(L(w) +7)—7r)*" > L,(r, w).

In addition, L,(r,w) decreases to L,(r,w) as s|t. Therefore, each L, is a recon-
structable co-optional time for X. Because of Proposition (3.8) (see also (3.3))
there exists a kernel K,(r,x;dd) such that for every initial law v on R™* x E,
every bounded process Z that is optional for X and every Feb 4 *

42) E{Z(L)Fob0:;0<L,<oo}=E{Z(L)K(X(L); F); 0<L,<0}.

Specializing (4.2) to the case v=¢,@pu where g is an initial law on E,Z is
optional for (#,) and Feb F* gives

(43) EF{Z(L)Fo0,,;0<L<o}=E*{Z(tL)K (L X(tL);F);0<L<o0}.

From (4.3) it follows that the o-fields #(¢L) and #(¢tL) are conditionally
independent on {0<L<o0}, given (L, X(tL)). From this, the inhomogeneous
Markov property of ¥,=(L, X,;), 0<t <1, relative to the filtration (%) is clear,
because if O<s<i<1, X,; =X, 0, where u=(t—s)/(1—s).
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