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1. Introduction 

Let X be a "nice" Markov process; say a right process for definiteness. Let R be 
a random time; that is R is a positive random variable. We say that R has the 
Markov property if the pre-R field ~R and the post-R field fOR are conditionally 
independent given X R. See Sect. 2 for precise definitions of all unfamiliar terms 
used in this introduction. By the very definition of a Markov process, constant 
times have the Markov property, and the strong Markov property implies that 
stopping times have the Markov property. It has been known for some time (see 
[11] or [12]) that coterminal times have the Markov property. If R is either a 
stopping time or a coterminal time much more is known: namely the post-R 
process (XR+t, t>0 )  defined on {R< ~}  is itself a strong Markov process. 

In this paper our main concern is to investigate the situation for co-optional 
times. Section2 collects the necessary definitions and preliminaries, and the 
main results follow in Sect. 3. First of all it is easy to see that not all co-optional 
times have the Markov property and we give a simple example at the end of 
Sect. 3. We begin Sect. 3 by reformulating the Markov property in terms of the 
dual optional projection of certain increasing processes associated with R. We 
then give two sufficient conditions that a co-optional time L have the Markov 
property. The first of these (Proposition 3.7) states that if L is disjoint from all 
stopping times in the sense that for all #, P u [ 0 < L = T < ~ ] = 0  when T is a 
stopping time, then L has the Markov property. Following Dynkin we say that 
L is reconstructable if there exists a decreasing sequence (L,) of co-optional times 
with L,$L and L,>L on { 0 < L < ~ } .  Reconstructable co-optional times are 
closely related to the co-predictable return times discussed by Az6ma in [1]. 
Proposition 3.8 states that every reconstructable co-optional time has the Mar- 
kov property. This result is very reminiscent of the fact that a process reversed 
from a co-optional time has the moderate Markov property. Finally in Sect. 3 
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we give a new proof in the spirit of the present paper that coterminal times have 
the Markov property. 

In Sect. 4 we apply the result on reconstructable co-optional times to the 
space time process in order to prove that if L is co-optional, then the process 
=(L, Xtc), 0 < t < 1 defined on {L< oo} is an inhomogeneous Markov process. 
This generalizes one of the main results in [8]. 

In [6] a theory of "splitting times" was developed. This was based on the 
fact that the end of a homogeneous optional set (i.e. a coterminal time) has the 
Markov property. Clearly the results of that paper can be extended to co- 
optional times having the Markov property. 

It would be very interesting to characterize precisely which co-optional times 
have the Markov property, or to investigate general properties of the class of all 
times having the Markov property. 

2. Preliminaries 

Our basic datum is a Markov process X=(f2,  ~,, Yt, Xt, Ot, P x) with state space 
(E,N) which satisfies the right hypotheses as stated in [5]. After a change, if 
necessary, to the Ray topology these hypotheses amount to saying that X is a 
right continuous strong Markov process with a Borel transition function on 
(E,g) where E is a universally measurable subset of a compact metric space/~ 
and g is the Borel a-algebra of the metric space E. In addition t ~X~ has left 
limits in/~ on (0, oo) almost surely, but we shall have no need for these left limits 
in this paper and so this condition could be omitted from our hypotheses. We 
do not single out a particular state to act as a cemetery, and so no questions of a 
lifetime ~ arise. 

In applying the general theory of processes to the system ((2, ~, 4 ,  P") for all 
# simultaneously, one needs to be precise about the meanings of familiar 
sounding objects. A process Z = (Zt) is optional if for each initial measure # it is 
P" indistinguishable from a process Z" that is optional over the filtration ((2, W", 
~,~t ", P~) in the usual sense of the general theory [3]. Measurable and predictable 
processes are defined similarly. Two processes are indistinguishable if they are 
P" indistinguishable for all #. A process Z is homogeneous if it is measurable and 
Zt+s(co)=Zt(Os~o ) for all t>0 ,  s>0 ,  and coeQ. The restriction that t be strictly 
positive in this definition is crucial. An optional function f on E is a universally 
measurable function such that the processf(Xt) is optional. Every Borel function 
and every s-excessive function is an optional function. 

A raw additive functional (RAF) is an increasing right continuous measurable 
process A=(At),>=o with Ao=0  and satisfying At+~=At+As o 0 t identically. An 
additive functional (AF) is a RAF that is adapted to (4) .  Note that this 
definition corresponds to what is often called a perfect AF or RAF since we 
permit no exceptional set in the shift identity. In view of the perfection results of 
Walsh [14] and Meyer [-9] this causes no essential loss in generality and we 
have decided to suppress the adjective "perfect". The same remark applies to the 
definition of co-optional times in the next paragraph. 

A random time R is an ~ measurable random variable with values in IR + 
=[0,  oo]. A co-optional time L is the end of a homogeneous set; that is, L 



The Markov Property at Co-Optional Times 203 

=sup {t: (t, co)EH} where H c 1 R  + x O is homogeneous. (A set is homogeneous 
provided its indicator function is a homogeneous process.) It is easy to see that a 
random time L is a co-optional time if and only if L o O t = ( L - t )  + identically 
where r+=sup(r ,  0) for r a n  +. A coterminal time is the end of an optional 
homogeneous set. This differs from the definition of coterminal time given in 
[11] which required killing operators. However, an exact coterminal time L as 
defined in [11] is the end of an optional homogeneous set. Although this is a 
very simple fact we shall prove it for completeness at the end of this section in 
Proposition 2.3. The definition of a coterminal time as the end of an optional 
homogeneous set seems to be more convenient and has the advantage of 
emphasizing the crucial difference between co-optional and coterminal times. 

With any random time R one associates a a-field YR by saying that an 
measurable random variable F is ~-e measurable provided that for each/~ there 
exists an optional process Z ~ = (Zr") relative to the filtration (~2, Y~, ~ " ,  W) such 
that F =Z~  on {R < oo}. Clearly R is ~ measurable and it is easy to see that so 
is f ( X R )  I{R < ~ for any universally measurable f on E. We shall call ~ the a-field 
of events before R. Recall that ~ *  is the a-field of universally measurable sets 
over (f2,~~ Observe that if F~,~*,  then Fo O R I~R<~E~ We define the a-field 
of events after R, NR, as follows: an Y measurable F is NR measurable provided 
there exists G e ~ *  with F = G o O R on {R < ~}.  If F ~ * ,  then F o O R I{R < oo~fR. 
In particular, i f f ~ d  ~*, then f(XR)I{R<~ISN R. 

We turn now to showing that an exact coterminal time as defined in [11] is 
the end of an optional homogeneous set. Let L be a coterminal time as defined 
in [11]. We do not assume that L is exact. Then according to Definition 4.1 and 
Proposition 4.1 of [1i] ,  L is a random time with the following properties: 

(2.1) (i) Lo 0 s = ( L -  s) § ; i.e. L is co-optional 

(ii) L o k s = L  on {L<s} 

(iii) Lo k s < s 

(iv) Lo k~ < L 

(v) t--, Lo k~ is increasing on [0, oo). 

In (2.1) the k, are killing operators and the statements involving s hold for every 
se lR+=[0 ,  c~). We refer the reader to [11] for the properties of the killing 
operators. Define 

(2.2) E = sup Lo k~ = lim Lo k t. 
t>0 t~oo 

Then E < L  and E is called the exact  regularization of L. One says that L is exact  
if L = E .  It is easy to see that the process (Lo kt) is predictable and so if we define 

L t = infLo k~ = lim Lo ks, 
s > t  s $ $ t  

then L t is a right continuous (~ )  adapted process and hence optional. 

(2.3) Proposition. Let  H={(t ,  co): L~---t}. Then H is a homogeneous optional set 
and M = sup {t: tEH}  = E, the exact  regularization o f  L. 
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Proof. Clearly H is optional. If t_>__ O, then 

(2.4) L t o 0 s = lim Lo k u o 0 s = lim Lo 0 s o ku+ ~ 
u;~t  u~; t  

= lira (Lo ku+~ - s) + = (Lt+ ~ - s) + . 
u ,L ,. t 

Thus if t>0 ,  t = L t o O  s if and only if t + s = L t + s ,  and so H is homogeneous. If 
L(co)=a< ~ and s > a  then L(ksco)=a by (2.1-ii) and so Lt(~o)=a for every t > a .  
Hence M((a) = a. Thus M = L  on {L< ~}.  In view of (2.1-iii) and (2.2) in order to 
complete the proof it suffices to show that M o k t - - ~ M  as t]'oo. Let H(kt) 

= {s: L~ o k t = s} so that M o k t = sup H(k~). Since 

L~ o k t = lim Lo k.  o k t -~ lim Lo k. ~ t, 
u~ts  u;J~s 

we see that L~okt<=t and if s< t ,  then L s o k t = L  ~ while if s > t ,  L s o k t = L o k  t. 
Combining these observations with Lo k t < L t <_ t for all t we see that 

(2.5) 

and 

(2.6) 

H(k t )=  {s: L~o k , = s }  c {s<=t: L~=s} 

[-0, t )c~H(kt )= {s< t: L~o k t = s  } = {s<t :  L s = s  }. 

From (2,5) we obtain M o k t < M ,  and from (2.6) we observe that 

M okt>-_sup{[O,t)c~H(kt)}=sup{s <t:  Ls=S}  

and the last term increases to M as tToe. This proves that M o k t ~ M  as tToe. 

3. The Markov Property and Co-Optional Times 

In this section we shall develop two sufficient conditions for a co-optional time 
to have the Markov property. We begin with the following general definition. 

(3.1) Definition. A random time R has the Markov  property i f  for  every F ~b ~ * 
(i.e. F is bounded and ~ *  measurable) there exists  f s b g *  such that f o r  every 
bounded optional process Z and every initial measure I~ one has 

(3.2) E ~ [ Z R F  o OR ; 0 < R < oo] = E" [ Z R f ( X R )  ; 0 < e < o0]. 

The set { 0 < R <  oo} is in WR but not in NR in general. Since f ( X R )  l~R<ool is 
in both ~qR and ~-R, (3.2) implies that under every Pu the traces of fiR and (~R on 
{0 < R  < oo} are conditionally independent given X R. 

If R is a stopping time, then the strong Markov property states that R has 
the Markov property in a slightly stronger form, with {0<R < oo} replaced by 
{R < o0} in (3.2). Although less familiar it is also known that a coterminal time L 
also has this stronger form of the Markov property. See [11-] or [12]. This last 
fact will be given a new proof later in this section. See Proposition 3.13. 

The following result is an immediate consequence of (3.1) and standard 
results on the construction of kernels. See [41, for example. 
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(3.3) Proposition. Let R be a random time having the Markov property. Then 
there exists a sub Markov kernel K(x, dog)from (E, 8*) to (f2, ~ * )  such that for each 
initial measure 12, F e b  ~ * ,  and bounded optional process Z one has 

E~[ZRFO OR; 0 < R <  oo] = E" [ Z RK (XR ,F) ;  0 < R <  oo 3 . 

We begin by giving a very simple reformulation of the Definition (3.1). To 
this end fix a random time R. If F_> 0 is in b i f *  define 

(3.4) BFt =Fo  O R l(0<R<t }. 

Thus Be=(B~) is an increasing right continuous process that is constant except 
for a single jump of magnitude F o O R at t = R  when 0 <R  < oo. If R =0  or R = oo, 
then Bte=0 for all t. When F =  1 we write simply B for B 1. It is known [13] (see 
also [10]) that there exists a right continuous adapted increasing process A e 
such that for each #, A F is a version of the dual optional projection of B F 
relative to W. Again we write A for A 1 the dual optional projection of B = B  1. 
Finally if C=(Ct)  is an increasing process and f>__0 is in b8*  we write f * C  for 
the increasing process t ~  ~ f ( X s ) d C  s. With these concepts we may refor- 
mulate (3.1) as follows. (o.tj 

(3.5) Lemma. Let R be a random time. Then R has the Markov property if and 
only if for each F e ~ *  with O< F <_ 1 there exists an f ~8* with O<=f < 1 such that 
A v = f , A  where A v and A are defined above. Of  course, this equality means that 
A F and f ,  A are indistinguishable. 

Proof Fix F s ~ *  with 0-<F_<1 and an optional process Z with 0_<Z<I .  Also 
fix an initial measure #. Then from the very definitions 

(3.6) E"[ZRFo OR; 0 < R <  oo I = E " I Z ,  d B ~ = E " ~ Z t d A  ~. 

Suppose firstly that A e = f , A .  Using the measures on E defined by 

v 1 (h) = E ~ [Z R h (XR); 0 < R < 003 

v 2 ( h ) = E ~ Z t h ( X t ) d A t  

and the universal measurability of f, there exists a Borel function g on E such 
that Vl(g)=v l ( f )  and v2(g)= v2(f). Therefore 

e ~ ~ Z tdA r = E" I Zt f (X , )  dA t = E" ~ Z t g (Xt) dA t 

=E~[ZRg(XR); 0 < R <  oo] =E~[ZRf(XR);  0 < R <  oo]. 

Combining this with (3.6) shows that R has the Markov property. Conversely if 
R has the Markov property, then just reversing the above argument shows that 
A e = f ,  A where f corresponds to F in (3.1). 

We turn now to co-optional times L. If L is co-optional, then using the facts 
that on {L < t}, Lo 0, = 0 while on {L > t}, Lo 0 t = L -  t and 0 L o 0 t = 0 t + Lo Or = OL, it 
is easily checked that the increasing process B f = F o 0 L 1~o < L-<t~ defined in (3.4) is 
a RAF. It is known [2] or [13] that in this case one may choose A e, the dual 
optional projection of B e, to be an AF. 
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If 0 < F < I ,  then AF+AI -F=A because of the additivity of dual optional 
projections. Therefore if A is continuous, then according to the absolute 
continuity theorem for continuous additive functionals proved in [2] there exists 
an optional f with 0 < f < l  and A e = f . A .  If T is a stopping time, then let I is 
optional where IT]  is the graph of T. Therefore 

E~[AAT; T< ~]  =EU S ltTl(t)dA t 

=EUS lm(t) dBt=W[O<L= T< oo7. 

Hence A is continuous if and only if W [ 0 < L = T < o o ] = 0  for every stopping 
time T and every initial measure 12. Combining these remarks with (3.4) we 
obtain the following result. 

(3.7) Proposition. Let L be a co-optional time. I f  the dual optional projection A of 
l{o<L<t } is continuous, then L has the Markov property. Moreover, A is continuous 
if and only if 

W [ 0 < L = T < ~ ] = 0  

for every stopping time T and every initial measure #. 

Recall that a co-optional time is reconstructable provided there exists a 
decreasing sequence (Ln) of co-optional times such that almost surely L,+L and 
L , > L  on { 0 < L <  oo}. We say that the sequence (L,) reconstructs L. Here is our 
second result. 

(3.8) Proposition. A reconstructable co-optional time has the Markov property. 

Proof Fix F 6 f f *  with 0 < F < I  and let B, B F, A, and A e be as above. If T is a 
stopping time and AEo~r, then t-~ 1A l[r](t ) is an optional process, and so one 
obtains 

(3.9) F _ u e ] ~r} �9 AAT I(o<T<oo)--E {ABT I(o<T<oo} 

Let (L,) be a sequence reconstructing L. Then 

ABrT I{O<T< oo}=F o 0 L I(O<L= T< oo} = F ~  Or 1{o <L= r<~o}, 

and 

{O<L= T< oo}={T <=L,O<T< oo} - {T<L,O<T< ~}  

={T<L,  Vn, O<T< oo}-{LoO~r>O,O<T< oo } 

={L,  o 0 r > 0  Vn, LoOT=O,O<T< oo }. 

Defining hr(x)=EX(F;L,>OVn, L=O), one may then write (3.9) in the form 

(3.10) AA~=hv(Xr) a.s. on { 0 < T < o o } .  

We would like to conclude from (3.10) that the processes AA v and 
t ~ hv(Xt)l~t > o~ are indistinguishable. This would follow from the section theo- 
rem if we knew that h e was optional. However, all that is clear is that h v is 
universally measurable. 
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To get around this let h = h  ~. Then 

h(x) = PX(L, > 0 V n) - PX(L > O) 

= lira pX(L, > O) - PX(L > 0), 
n 

the limit existing since (L,) is a decreasing sequence. But if M is co-optional, the 
function c(x) = PX(M > 0) is excessive since 

Pt c (x) = p x ( M  o 0 t > O) = n~ (M > t) ~ c (x). 

Consequently h is an optional function, and so it follows that z]A t and 
h(Xt )  l{t > o} are indistinguishable. Therefore 

C,---A,- Y h(X ) 
O < s < _ t  

is a continuous additive functional. In particular h(X~)>0 for at most countably 
many values ors. Hence ~h(Xs)dC~=O, and so C is carried by the optional set D 
={h=0}.  Since {t: X t 6 D  ~} is countable and optional it follows from VI-T33 of 
[31, that given # there exists a sequence (T,) of stopping times with disjoint 
graphs such that {t: XtED ~} and U[T,] are PU indistinguishable. But h e < h  and 
so a.s. Pu 

(3.11) h Q X ) = ~ h Q X T ~  ) 1ET,j(t ) 
n 

for all t. Now hV(Xr.)  is "~Tn measurable and so it follows from (3.11) that h F is, 
in fact, optional, and we may conclude from (3.10) that AA F and t ~ h F ( X t )  I{~>0 } 
are indistinguishable. 

Finally let Cf f=A~ - ~ hF(x,)  be the continuous part of A r. Since 
O<s<=t 

0_< F_< 1, A F is strongly dominated by A, and hence C F is strongly dominated by 
C. Hence C F is carried by D, and by the absolute continuity theorem [21, there 
exists an optional function q~ such that C F = ~o �9 C. If we now define 

hF(x) , , . 
f ( x )  =h(x)  tDctX) + q~(x) 1D(X), 

then A F = f .  A. Therefore L has the Markov property by (3.5). 

(3.12) Remark. Note that we actually proved that if L is reconstructable or 
satisfies the condition in (3.7), then one may choose f to be an optional function 
in (3.2). 

As mentioned before the following fact is known but we shall sketch a proof 
based on Lemma 3.5. 

(3.13) Proposition. Let  L be a coterminal time. Then for  every F ~ b f f *  there 
exists a bounded universally measurable function f such that for  each initial 
measure # and bounded optional process Z one has 

Eu[ZLFo OL; L <  oo I = E U [ Z L f ( X L ) ;  L <  o0]. 
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Proof. Let L=sup{t:  M t = l  } where M is the indicator of a homogeneous 
optional set that may be assumed closed without loss of generality. 

Let R = i n f { t > 0 :  M t = l  }. Since M is homogeneous and optional, R is a 
terminal time. Therefore (p(x)=E~(e -R) is 1-excessive and hence optional. For  

l__<n<oo, let A ,=  x: < 9 ( x ) <  and let Ao~={x:~o(x)=l}.  Then E 
tZ 

=U{An; l<_n<oo}. Fix F s ~ *  with 0_<F_<I. Since M L = I  if L < o o  it follows 
that M t dAFt = dAFt. Also 

AF-=IA~*AF+ ~ 1A~ *AF, 
l~n<oo 

and since each A n is optional, 1A~ * A p is the dual optional projection of 1An * n F, 
1 _< n_< oo where the notation is that introduced above. 

If T is a stopping time, then for any # 

(3.14) E"[1A~(XT) AAfr; 0 <  T< oo7 =E"[IA~o(XT)F o OT; L= T,0< T<  oo]. 

But almost surely on {XT~A, ,  0 < T < o o }  one has RO0T=0 and hence 
Lo 0 r > 0 ;  that is L > T .  Hence the right side of (3.14) is zero and so 1A~ *A F is 
continuous. 

For  1 <n  < o% the process M~ = 1An(X,) M t is the indicator of a homogeneous 
optional set. Let R , = i n f { t > 0 :  M~'= 1} be its debut. Clearly R < R  n and one has 

E x (e- R~) < E x (e- R) = (p (X). 

But on A~, (p<=n/n+l < 1. A familiar argument now shows that M~ lit>O } is 
indistinguishable from the indicator of the set of iterates Rk~, k_> 1 of R n (R~ = R~ 
and R~+I=Rk~+R, oOR~ for k>=l). See, for example, the proof of (3.5) in [7]. 
Since M is the indicator of a closed set, ML= 1 if L <  oo. Therefore 

M~ dS~ = M t 1A~(Xt) dB~ = 1A~(Xt) dSVt, 

and so la~(X~)dAVt=MtdA~. Hence 1A*A F is carried by the discrete set (Rk,). 
Now for every/1 

1 An (XRn) A A F Rn I{O<R~< oo} 

=E"[FoOR~; XR ~A~,L=Rn, O<Rn < oo],~RJ 

= E x(R"}(F; L = 0) 1A~(XR, ) 1~0 < R, < ~o} 

because on { 0 < R , <  oo} one has L>R~ and so on this set L=R~ if and only if 
Lo Oa~ =0. Let hF(x)=E~(F; L=0). It now follows by iteration that the processes 
1An(Xl~) A Af and 1An(X3 hF(X`) M~ are indistinguishable. Note that if x s A , ,  
h f (x )=0  since W ( L > 0 ) = I .  Therefore summing on n, l < n < o o ,  AAFt and 
hF(Xt) M~ are indistinguishable because 1A~ * A F is continuous. Let h = h 1 and set 

h F 
(3.15) f=~-l(h>O~+q0 llh=0 / 
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where q0 is an optional function such that CF= (0, C, C e and C being the 
continuous parts of A e and A. Then A e = f *  A, and so from (3.5) one obtains for 
any bounded optional process Z and initial measure # 

E ~' [ Z  L F o 0 L ; 0 < L < oo] = E ~ [ Z  L f ( X L ) ;  0 < L < oo]. 

But using the Markov property at zero and (3.15) 

E" [ Z  L f ( X L ) ;  L = O] = E" [Z o f(X0);  L = 0] 

-- E" [Z o f ( X o )  h (Xo) ] = E u [Z o hF(Xo)] 

= E"[ZoEX(~ ; L=0)]  = EU[ZoF ; L=O] 

= E ~' [Z  L F o 0 L ; L = 01 , 

completing the proof of (3.13). 

(3.16) Example.  This is an example of a co-optional time which does not have 
the Markov property. Note firstly that the minimum of two co-optional times is 
co-optional, but the minimum of two coterminal times is not, in general, 
coterminal. We shall exhibit two coterminal times whose minimum does not 
have the Markov property. Let E = { a , b , c , A } .  Let X be a pure jump process 
with A a trap and all other transitions possible. Let Jac= { t>0:  X t_ =a,  X t = c  }. 
Let Lac = sup J~. Since J~ is an optional homogeneous set, L~c is a coterminal 
time. Define Jb~ and Lb~ similarly and let L=Loc/xLb~.  Then L is co-optional. 
Note that L < o o  and that PX(L>0)>0  if x=#A. Let T=infJac and F=l{r<oo}. 
Since J a ~ ( I R  +) x i f0 ,  F ~ - * .  Suppose that L has the Markov property and 
that f corresponds to F in (3.2). Let Z" be the indicator of J~ and note that Z~ 
= 1 if and only if L = L,~ > 0 and that F o 0 L = 0 on {L = L~ > 0}. Since X L = c on 
{ 0 < L <  oo} one has 

0 =Ea[Z~LF o OL; 0 < L ]  =Eo[Z~Lf(XL); 0 < L ]  

=f(c)  Pa [0 < L = L j ,  

and consequently f ( c ) = 0 .  Now use the Markov property with Z ~ the indicator 
of Jbc. Then 

O < W [ O < L = L b ~ ;  ToOL~o< oo] 

= E ~ [ZbL F o 0 L; 0 < L] =f(c)  pa [0 < L=  Lb~], 

and hence L can not have the Markov property. In this example the AF,  A, 
associated with L is carried by the discrete set Ja~UJb~ and, consequently, A is 
purely discontinuous. 

Remark.  It is easy to see that the set { 0 < L <  oo} can not be replaced by {L< oo} 
in the statement of the Markov property for co-optional times. For  example, let 
E =  {b,A} where b is a holding point with transition to A possible and A is a 
trap. Let E = s u p { t : X t = b  } and L = E o O s = ( E - s )  + for a fixed s>0.  Then L is 
reconstructable, but one easily checks that the Markov property does not hold 
on {L=0}. 
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Remark. If L is a co-optional time having the Markov property, one might 
wonder if A has the following property - compare with (3.5): given an AF, B 
strongly dominated by A, then B has the form B = f .  A. However, it is very easy 
to construct a coterminal time L for which this fails. 

4. R a n d o m  T i m e  Di la t i ons  

In this section we are going to generalize a result that we proved in 1-8] under 
much stronger hypotheses. However, under the stronger hypotheses of [8] we 
obtained more explicit results. 

(4.1) Proposition. Let L be a co-optional time. Then under P~ for each initial 
measure I~ the process ~ = ( L ,  XtL), 0 < t < l  defined on {L<oe} is an inhomo- 
geneous Markov process relative to the filtration (~L). 

Proof. For the proof we introduce the space time process associated with X. To  
be explicit for relR + let %(r)=r+t .  Let ~ = I R  + x f2 and define 2~(c5)=2~(r, co) 
=(~t(co), Xt(co)) and Ot&=Ot(r, co)=(r +t,O, co ). If for each (r,x)elR + x E we define 
/5(r,~) = G| px, then (f), ~,  ~ ,  J(t, Ot,/3(r,x)) is a right process with state space IR + 
x E. Here ~- and ~ have their usual meanings relative to process X. This is 

discussed in a more general setting in [-6]. For each re(0, 1) define/-t on ~ by 

L,  (r, co) = t L(O ~ - ' r  CO) = (t L(CO) --  (1 --  t) r) + = (t (L(CO) + r) - r) +.  
t 

One may then check that for each fixed re(0, 1), L t is co-optional for 2 .  That is, 
L t o O s = (L t - s) +. Moreover, if 0 < L t (r, co) < o% then for t < s < 1, 

L~(r,  co) = (s ( L ( ~ )  + r) - r) + > L , ( r ,  co). 

In addition, L~(r, co) decreases to L~(r, co) as sJ, t. Therefore, each L~ is a recon- 
structable co-optional time for X. Because of Proposition (3.8) (see also (3.3)) 
there exists a kernel Kdr, x;&5 ) such that for every initial law v on IR + x E, 
every bounded process Z that is optional for J( and every Feb ~ *  

(4.2) ~{z (L , )FoOs  0<L,< oo} = ~ { z ( L ~ ) K , ( x ( L , ) ;  f ) ;  o < L , <  oo}. 

Specializing (4.2) to the case V=ao| where # is an initial law on E,Z  is 
optional for (~)  and Feb ~ *  gives 

(4.3) Eu{Z( tL )Fo  OtL;O<L < o0} =E"{Z( tL)K~( tL ,  X ( t L ) ; F ) ; O < L  < o~}. 

From (4.3) it follows that the a-fields Y( tL)  and N(tL) are conditionally 
independent on {0<L<oo},  given (L,X(tL)).  From this, the inhomogeneous 
Markov property of ~=(L ,  XtL), 0 < t <  1, relative to the filtration (~L) is clear, 
because if 0 < s < t < 1, X~L = X,L o 0~L where u = (t - s)/(1 - s). 
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