Skip to main content
Log in

Glycogenolytic action of glucagon-family peptides and epinephrine on catfish hepatocytes

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Glycogenolytic effects of salmon and mammalian glucagons, salmon glucagon-like peptide (GLP) and epinephrine were studied on liver cells isolated from catfish (Ictalurus melas). In spring and summer, salmo-glucagon (3×10−10 to 3×10−8 M) was more effective than its mammalian counterpart in the stimulation of glucose release and cAMP synthesis in hepatocytes. GLP was less potent as compared to both glucagons. γ-amylase activity was not affected by the treatment with either glucagon-family peptides or epinephrine.

The comparison of the glycogenolytic effects of salmon glucagon to those of epinephrine reveals a greater potency of the latter hormone in the stimulation of cAMP synthesis, glycogen-phosphorylase activity and glucose release. Glycogen content in the liver cells was equally depleted after treatment with both of the two hormones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Andrews, P.C. and Ronner, P. 1985. Isolation and structures of glucagon-like peptide from catfish pancreas. J. Biol. Chem. 260: 3910–3914.

    Google Scholar 

  • Bergmeyer, H.U. and Bernt, E. 1963. D-glucose determination with glucose oxidase and peroxidase.In Methods of Enzymatic Analysis. pp. 123–130. edited by H.U. Bergmeyer. Academic Press, New York/London.

    Google Scholar 

  • Brighenti, L., Puviani, A.C., Gavioli, M.E., Fabbri, E. and Ottolenghi, C. 1987a. Catecholamine effect on cyclic adenosine-3′∶5′-monophosphate in isolated catfish hepatocytes. Gen. Comp. Endocrinol. 68: 216–223.

    Google Scholar 

  • Brighenti, L., Puviani, A.C., Gavioli, M.E. and Ottolenghi, C. 1987b. Mechanisms involved in catecholamine effect on glycogenolysis in catfish isolated hepatocytes. Gen. Comp. Endocrinol. 66: 306–313.

    Google Scholar 

  • Brown, B.L., Albano, J.D.M., Ekins, R.P., Sghersi, A.M. and Tampion, W. 1971. A simple and sensitive saturation assay for the measurement of adenosine-3′∶5′ cyclic monophosphate. Biochem. J. 121: 561–562.

    Google Scholar 

  • Carr, R.S. and Neff, J.M. 1984. Quantitative semiautomated enzymatic assay for tissue glycogen. Comp. Biochem. Physiol. 72B: 421–425.

    Google Scholar 

  • Conlon, J.M. and Thim, L. 1985. Primary structure of glucagon from an elasmobranchian fishTorpedo marmorata. Gen. Comp. Endocrinol. 60: 398–405.

    Google Scholar 

  • Desbusquois, B. 1985. Glucagon receptors and glucagon sensitive adenylate cyclase.In Polypeptide Hormone Receptors. pp. 345–417. Edited by B.I. Posner. Marcel Dekker, New York and Basel.

    Google Scholar 

  • Ensinck, J.W. 1983. Immunoassays for glucagon. Handb. Exper. Pharmacol. 66/1: 203–221.

    Google Scholar 

  • Epple, A., Vogel, W.H. and Nibbio, B.J. 1982. Catecholamines in head and body blood of eels and rats. Comp. Biochem. Physiol. 71C: 115–118.

    Google Scholar 

  • Exton, J.H., Robison, G.A., Sutherland, E.W. and Park, C.R. 1971. Studies on the roles of adenosine-3′∶5′-monophosphate in the hepatic actions of glucagon and catecholamines. J. Biol. Chem. 246: 6166–6177.

    Google Scholar 

  • Ghiglione, M., Blazquez, E., Uttenthal, L.O., Dediego, J.G., Alvarez, E., George, S.K. and Bloom, S.R. 1985. Glucagon-like peptide-1 does not have a role in hepatic carbohydrate metabolism. Diabetologia 28: 920–921.

    Google Scholar 

  • Gutierrez, J., Fernandez, J., Blasco, J., Gesse, J.M. and Planas, J. 1986. Plasma glucagon levels in different species of fish. Gen. Comp. Endocrinol. 63: 328–333.

    Google Scholar 

  • Hems, D.A. and Whitton, P.D. 1980. Control of hepatic glycogenolysis. Physiol. Rev. 60: 1–48.

    Google Scholar 

  • Holst, J.J., Ørskov, C., Vagn Nielsen, O. and Schwartz, T.W. 1987. Truncated glucagon-like peptide I, an insulin-releasing hormone from the distal gut. FEBS Lett. 211: 169–174.

    Google Scholar 

  • Hoosein, N.M., Mahrenholz, A.M., Andrews, P.C. and Gurd, R.S. 1987. Biological activities of catfish glucagon and glucagon-like-peptide. Biochem. Biophys. Res. Comm. 143: 87–92.

    Google Scholar 

  • Janssens, P.A., Caine, A.G. and Dixon, J.E. 1983. Hormonal control of glycogenolysis and the mechanism of action of adrenaline in amphibian liverin vitro. Gen. Comp. Endocrinol. 49: 477–484.

    Google Scholar 

  • Janssen, P.A. and Maher, F. 1986. Glucagon and insulin regulatein vitro hepatic glycogenolysis in the axolotlAmbystoma mexicanum, via changes in tissue cyclic AMP concentration. Gen. Comp. Endocrinol. 61: 64–70.

    Google Scholar 

  • Lowry, O.H., Rosenbrough, N.J., Farr, A.L. and Randall, R.J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275.

    Google Scholar 

  • Mojsov, S., Weiz, G.C. and Habener, J.F. 1987. Insulinotropin: glucagon-like peptide 1 (7–37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J. Clin. Invest. 79: 616–619.

    Google Scholar 

  • Mommsen, T.P., Andrews, P.C. and Plisetskaya, E.M. 1987. Glucagon-like-peptides activate hepatic gluconeogenesis. FEBS Lett. 219: 227–232.

    Google Scholar 

  • Mommsen, T.P. and Moon, T.W. 1989. Metabolic actions of glucagon-family hormones in liver. Fish Physiol. Biochem. (In press).

  • Moon, T.W. 1988. Adaptation, constraint, and the function of the gluconeogenic pathway. Can. J. Zool. 66: 1059–1068.

    Google Scholar 

  • Moon, T.W., Walsh, P.T. and Mommsen, T.P. 1985. Fish hepatocytes: a model metabolic system. Can. J. Fish Aquat. Sci. 42: 1772–1782.

    Google Scholar 

  • Morata, P., Vargas, A.M., Pita, M.L. and Sanchez-Medina, F. 1982. Involvement of gluconeogenesis in the hyperglycemia induced by glucagon, adrenaline and cyclic AMP in rainbow trout (Salmo gairdneri). Comp. Biochem. Physiol. 73A: 379–381.

    Google Scholar 

  • Ottolenghi, C., Puviani, A.C. and Brighenti, L. 1981. Glycogen in liver an other organs of catfish (Ictalurus melas): seasonal changes and fasting effects. Comp. Biochem. Physiol. 68A: 313–321.

    Google Scholar 

  • Ottolenghi, C., Puviani, A.C., Gavioli, M.E. and Brighenti, L. 1984a. Effect of insulin on glycogen metabolism in isolated catfish hepatocytes. Comp. Biochem. Physiol. 78A: 705–710.

    Google Scholar 

  • Ottolenghi, C., Puviani, A.C., Baruffaldi, A. and Brighenti, L. 1984b. Epinephrine effects on carbohydrate metabolism in catfish (Ictalurus melas). Gen. Comp. Endocrinol. 55: 378–386.

    Google Scholar 

  • Ottolenghi, C., Puviani, A.C., Baruffaldi, A., Gavioli, M.E. and Brighenti, L. 1988. Glucagon control of glycogenolysis in catfish tissues. Comp. Biochem. Physiol. 90B: 285–290.

    Google Scholar 

  • Picukans, I. and Umminger, B.L. 1979. Comparative activities of glycogen phosphorylase and γ-amylase in liver of carp (Cyprinus carpio) and goldfish (Carassius auratus). Comp. Biochem. Physiol. 62B: 455–457.

    Google Scholar 

  • Plisetskaya, E.M. 1975. Hormonal regulation of carbohydrate metabolism in lower vertebrates. Nauka. Leningrad, pp 215 (in Russian).

    Google Scholar 

  • Plisetskaya, E.M., Ottolenghi, C., Sheridan, M.A., Mommsen, T.P. and Gorbman, A. 1989. Metabolic effects of salmon glucagon and glucaon-like peptide in coho and chinook salmon. Gen. Comp. Endocrinol. 73: 205–216.

    Google Scholar 

  • Plisetskaya, E.M., Pollock, H.G., Rouse, J.B., Hamilton, J.W., Kimmel, J.R. and Gorbman, A. 1986. Isolation and structures of coho salmon (Oncorhyncus kisutch) glucagon and glucagon-like peptide. Reg. Pept. 14: 57–67.

    Google Scholar 

  • Plisetskaya, E.M. and Sullivan, C.V. 1989. Pancreatic and thyroid hormones in rainbow trout (Salmo gairdneri); what concentration does the liver see? Gen. Comp. Endocrinol. (In press).

  • Pollock, H.G., Kimmel, J.R., Ebner, K.E., Hamilton, J.W., Rouse, J.B., Lance, V. and Rawitch, A.B. 1988. Isolation of alligator gar (Lepisosteus spatula) glucagon, oxyntomodulin and glucagon-like peptide. Gen. Comp. Endocrinol. 69: 133–140.

    Google Scholar 

  • Rosenfeld, E.L., Popova, I.A. and Orlova, V.S. 1970. Influence of adrenaline on the splitting of glycogen and maltose by γ-amylase of liver, heart and skeletal muscles of the rat. Bull. Soc. Chim. Biol. 52: 1111–1118.

    Google Scholar 

  • Sokal, J.E., Sarcione, E.J. and Henderson, A.M. 1964. Relative potency of glucagon and epinephrine as hepatic glycogenolytic agents: studies with the isolated perfused rat liver. Endocrinology 74: 930–938.

    Google Scholar 

  • Umminger, B.L. and Benziger, D. 1975.In vitro stimulation of hepatic glycogen phosphorylase activity by epinephrine in the brown bullhead (Ictalurus nebulosus). Gen. Comp. Endocrinol. 25: 96–104.

    Google Scholar 

  • Williamson, J.R., Copper, R.H. and Hock, J.B. 1981. Role of calcium in the hormonal regulation on liver metabolism. Biochim. Biophys. Acta 638: 243–285.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ottolenghi, C., Puviani, A.C., Gavioli, M.E. et al. Glycogenolytic action of glucagon-family peptides and epinephrine on catfish hepatocytes. Fish Physiol Biochem 6, 387–394 (1989). https://doi.org/10.1007/BF01875608

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01875608

Keywords

Navigation