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1. This paper owes its existence to a lecture by  Prof. A. l~]~Yi ill Cambridge 
in April 1967. 

I t  is possible in a natural  way to define a measure on the space of all lines of 
Euclidean E 2 whose distance d from the origin satisfies 0 < d ~ 1. Given such 
lines L1 . . . .  , Ln, l e t / / b e  the convex polygon consisting of all points which lie on 
the same side of each L~ as the origin. Further  let En be the expectation value of 
the number of sides o f / / w h e n  L1, ..., Ln are "chosen at  random" with respect 
to the measure mentioned above. Then l~]~YI and SULA~K~ [1] have shown tha t  
the limit 

Jim En 
~t---> o o  

exists, and tha t  it is equal to ~2/2. 
I t  is the purpose of this note to prove the existence of rather more general 

limits of this type.  We shall not evaluate these limits. 

2. We shall be concerned with hyperplanes H of Euclidean space E ~, k > 1, 
which do not contain the origin. The equation of such a hyperplane can uniquely 
be written 

(1) t ox  = ~olxl + "'" + co~w~ = r 

where to ---- (COl . . . . .  eo~) is a point of the unit sphere S ~-1 and where r > 0. Pu t  
to-~ to(H), r ~-r(H). Conversely, for given t o  e Sk-1 and given r > 0, the 
equation (1) defines a hyperplane H = H(to,  r) which does not contain the origin. 

Given a hyperplane H as above, write H '  for the halfspace of all points x 
satisfying 

(2) to x ~ r. 

In  this paper, a polyhedron//~ll  always be the intersection of finitely many  such 
halfspaees. Thus polyhedrons are closed and contain the origin in their interior, 
but  they are not necessarily bounded. The minimum number  of inequalities (2) 
needed to define a p o l y h e d r o n / / w i l l  be called the number  of ]aces o f / / a n d  
denoted by  ] (//). 

We shall s tudy real-valued functions F of polyhedrons which are homogeneous 
in the sense tha t  

(3) F (~f/) = F (II) 

for every 2 > 0 where, as usual, 211 consists of all points 2x  with x ~ / / .  We shall 
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make the further assumption tha t  

(4) [F(17) l ~ D/< ~) 

for every fixed number  D > 1. 
Now let H be the set of hyperplanes H having 0 ~ r (H) ~ 1. The product of 

the canonical measure on S k-1 normalized such tha t  f dto = 1, and the Lebesgue 

measure on 0 < r ~ 1 induces a measure on H. Given a function G defined on H 
one has 

1 

(5) f G (H) dH -~ f dto f dr G (H (to, r) ) , 
H S ~-I 0 

provided the right hand side exists; otherwise the left hand side is not defined. 
One has 

(6) fdH = 1. 
H 

Now let F be a function of polyhedrons/7.  Put  

(5:1 (7) Z n ( ~ ' ) : f ' " f F  H dH1. . .dHn , 
l~ H \ i =  1 / 

(o:) provided the right hand side exists. En (F) is the "expectation value" o f f  

ff H1 . . . . .  Hn are "chosen at  random".  

Theorem 1. Suppose the/unction F ~- F(TI) is homogeneous and satis/ies (4), 
and En (F) exists/or n = 1, 2 . . . . .  Then 

E (F) = lim En (F) 
~ ---> o o  

exists. In /act ,  one has 

(8) E~ (F) = E (F) + 0 (en) 

with any constant c greater than 

(9) c~ = 1 V ( k -  1) 
V (k) 

where V (k) denotes the volume o/ the unit ball in E ~. 
For example, the theorem holds if  we take F to be the number of faces or the 

number  of vertices of ] / .  The existence of E (F) in this case when k --~ 2 is the 
result of R~NYI and S~rLA~XE mentioned above. Or one may  set F = F~ where 

F , ( / / ) = { 1  ff / ( I I ) ~ p ,  
otherwise. 

Theorem 2. Write 
~ = E(F~) 

where ]c is the dimension o/ the space E~ in which we are working. Then one has 
N~p ~-- O i/ p ~ ]c and N~ > O i/ p > ]c. 

3. Pu t  

K ( H )  ~ [10 ffotherwise.//is contained in [x[ ~ 1, 
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The function K is not homogeneous. 

L e m m a .  

E n ( K )  -~ 1 q- 0 (c n) 

where c is any constant greater than the constant c~ o/(9) .  

Proo]. Our first aim will be to evaluate the measure/z (H0) of the set H0 of all 
hyperplanes H of H having 

(],0 . . . . .  0 )~H' .  

This property of hyperplanes H remains invariant  under rotations about the 
xl-axis. I t  therefore will suffice to study hyperplanes H of the type 

O91Xl "q- 0 ) 2 X 2  ~ r .  

Such a hyperplane H lies in H0 precisely if 0 ~ r ~ r We obtain 

# (/t0) = f o91 dr 
oJ1 _ 0  

and therefore 
1 

= -- J" ogi k V (k) 
# (/t0) (k -- 1) V(k -- 1) (1 - -  o9~)(~-a)/2 dogl 

0 

v ( k -  1) 
_ (k -- 1) V(k -- 1) ]/'sin ~(cos ~)~_ 2 
- ~ v(k)  . d~  - -  VvYk i  

q 

0 

Next, let S~ be the "spherical cap of radius e and center (1, 0 . . . . .  0)" consisting 
of all points to of S ~-1 having spherical distance at  most e from (1, 0 . . . . .  0). Let  
H ,  be the set of all hyperplanes H of H having H '  disjoint from S,. As can easily 
be shown, # (H~) exists and 

vffr 1) 
l im#(Hs)  = # ( H 0 ) - -  kr(k)  - -  1 - - c k .  
8-->0 

Now let c > c~ and choose e > 0 so small tha t  

/z(H~) > 1 - -  c. 

S k-i  may  be covered by  a finite number  of spherical caps of radius e, say by 
S~ 1), . . . ,  S~ N). Now for fixed ] between 1 and N the set of all n-tuples H i  . . . . .  Hn 
such tha t  no H,  completely separates S~ j) from the origin has measure (1 - -  tz(H~)) n. 
The measure of the set of n-tuples H i ,  . . . ,  Hn which have this property for some 
j between 1 and N is 

N(1 - -  #(He))  n ~ c n.  

Since o~(1), . . . .  S~ iv) give a covering of S(~-x), the lemma is proved. 
Let  Bn be the subset of H • ... • H consisting of n-tuples H i ,  . . . ,  Hn such 

tha t  ('~ H~ is not contained in the ball ] x ] ~ 1. Our lemma says precisely tha t  

(m) ~(B~) ~ c~. 

4. The notation 

H i  =< H2 
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will mean tha t  r (H1) ~ r (He). Since each ordering of H1 . . . .  , Hn according to this 
nota t ion occurs with the same likelihood, we have for any  m with 1 ~ m ~ n 
the relation 

It 
H~Hm ~ i~_m 
Hj>~H~ j ~ m  

The hyperplanes H1 . . . . .  H m - z  are now of the type  H~ : r (Hm)Gi  where G/ 
lies in H (1 ~ i ~ m --  1). Furthermore,  

d i l l . . ,  dHm-z  : r (Hm) m-1 dGz . . . dGm-1, 
whence 

Hj  >_- H ~  
(11) (j=m...,n) 

n t 
F (r (Hm) 

Subst i tut ing F = 1 we obtain  

By  (4) and (10) one has 

f '"  "f r (Hm) m-1 d H m . . ,  dHn. 

(i=m,..., n) 

uniformly in n and m, for every c ~ ck and  every D ~ 1. On the other  hand~ if 
m - - 1  

G1 •  • Gin-1 is no t  in B m-l,  then ~'~ G~ is contained in the ball [ x ] G 1 and 

This gives 
/ m - - 1  p\  

H H ~ B ~ - I  

= E,~-I (F) + 0 (cmD~), 

by  vir tue of  (4) and (10). Combining this relation with (11) and (12) we get 

E n ( F )  : E m - z ( F )  -~ 0 (cmD n) 

or, replacing m by  m -~ 1, 

(13) IEn(F)  - -  Era(F)[ < cmD n . 

This inequali ty holds for any  c ) ck and any  D ~ 1, uniformly for all n, m having 
l ~ m ~ n .  



162 W.M. Scm~IDT: Some Results in Probabilistic Geometry 

Let  c~ ~ c ~ 1. There are co ~ c~ and D ~ 1 having coD 2 -~ c. One then has 
for m ~ n ,  

I En (F) -- Em (F) I < c~ D 2m ~- c~ '~ D 4m + c~ ~ D sm -~ . . .  
(14) ~ c m + c ~m -~- c3m + . . .  

c m .  

Hence E1 (F), E2 (F) . . . .  is a Cauchy sequence and has a limit E (F). The equation 
(8) follows immediately from (14), and hence Theorem 1 is proved. 

5. I t  remains to show Theorem 2. I f  p _<_/~, there is no bounded polyhedron in 
Ek with p faces, hence there is no polyhedron with p faces contained in the ball 
Ix [ ~ 1. The equation 2V~ = 0 therefore follows immediately from the lemma 
of w 

I f  p > k, pu t /V ,  (H) --~ F ,  (//) K (//). There exists a polyhedron H of E~ with 
precisely p faces which is contained in the interior of the ball I xl ~ 1. This 
implies in particular tha t  F ,  (//) = 1. Continuity arguments show tha t  

E,(F,) =Jt...fi t ~,(i01Hi) dH1 ...dH~9~O. 

Apply (11) with m = p -~ 1, n > p, F = F , .  The inner integral on the right 
hand side of (11) becomes 

~"" ~ d G , . . . d G ,  F ,  r(H,+I)G i n H 
B ~ U = p + l  / i  

~= ] ' " S d G I . . . d G ,  F , ( . . . )  
G~x ""xG~ 

= ~.. .  ~F,  O~ d d l . . . d a p  = E , ( F , ) .  
GI•215  

In  view of (12) this gives 
E~ (F,) _> E, (F,). 

The theorem now follows immediately. 

Reference 

1. R]~YI, A., and R. S~LA~KE: Zuf~llige konvexe Polygone in einem Ringgebiet. Z. Wahr- 
scheinlichkeitstheorie verw. Geb. 9, 146--157 (1968). 

Prof. W. M. SeH~IDT 
Department of Mathematics 
University of Colorado, 
Boulder, Colorado 80302, USA 


