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1. This paper owes its existence to a lecture by Prof. A. Rénv1 in Cambridge
in April 1967.

It is possible in a natural way to define a measure on the space of all lines of
Euclidean K2 whose distance d from the origin satisfies 0 << d < 1. Given such
lines Ly, ..., Ly, let II be the convex polygon consisting of all points which lie on
the same side of each I; as the origin. Further let E, be the expectation value of
the number of sides of /7 when L;, ..., Ly are “chosen at random” with respect
to the measure mentioned above. Then RENYT and SvLaNkE [1] have shown that
the limit

lim #,,
n—r 00
exists, and that it is equal to #2/2.

It is the purpose of this note to prove the existence of rather more general

limits of this type. We shall not evaluate these limits.

2. We shall be concerned with hyperplanes H of Euclidean space E*, k> 1,
which do not contain the origin. The equation of such a hyperplane can uniquely
be written

(1) wx=w171+} "+ opwr="7

where w = (w1, ..., wg) is a point of the unit sphere §¥-1 and where r > 0. Put

w = w(H), r=r(H). Conversely, for given w e 8%1 and given r > 0, the

equation (1) defines a hyperplane H = H (w, r) which does not contain the origin.
Given a hyperplane H as above, write H' for the halfspace of all points «

satisfying

(2) wx=<r.

In this paper, a polyhedron IT will always be the intersection of finitely many such
halfspaces. Thus polyhedrons are closed and contain the origin in their interior,
but they are not necessarily bounded. The minimum number of inequalities (2)
needed to define a polyhedron I7 will be called the number of faces of II and

denoted by f(I1).
We shall study real-valued functions F of polyhedrons which are homogeneous
in the sense that

3) F(AIT) = F{I)

for every A > 0 where, as usual, A1/ consists of all points Ax with x € 1. We shall
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make the further assumption that
(4) | F(IT)| < DD

for every fixed number D > 1.
Now let H be the set of hyperplanes H having 0 < 7(H) < 1. The product of

the canonical measure on S¥-1 normalized such that f dw = 1, and the Lebesgue
Sk~1

measure on 0 < 7 < 1 induces a measure on H. Given a function @ defined on H

one has

(5) [GH)dH = jdw}dr G(H (w,7)),
H Sk~1 0

provided the right hand side exists; otherwise the left hand side is not defined.
One has

(6) fdH =1.
i1
Now let F be a function of polyhedrons [1. Put
™ En(F)=j---fF(ﬂH;)dH1...dHn ,
A H \j=1

n
provided the right hand side exists. B, (F) is the “expectation value” of F (m H ;)
i=1
if A1, ..., H, are “chosen at random”,

Theorem 1. Suppose the function F = F(II) is homogeneous and satisfies (4),
and B, (F) exists for n = 1,2, .... Then

E(F) = lim E,, (F)

n—-oco
exists. In fact, one has
(8) En(F)=E(F)+ O(c?)
with any constant ¢ greater than
B Vik—1)

where V (k) denotes the volume of the unit ball in EF.

For example, the theorem holds if we take F to be the number of faces or the
number of vertices of /7. The existence of F(F) in this case when £ — 2 is the
result of RENYT and SULANKE mentioned above. Or one may set ¥ = F,, where

1 if f(I)=p,
Fplll) = {O otherwise.
Theorem 2. Write
NE = E(Fy)
where k is the dimension of the space E¥ in which we are working. Then one has
Ni=0ifp<kand N> 0if p>k.

3. Put
1 if I7is contained in x| =1,

0 otherwise.

K(H):{
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The function K is not homogeneous.

Lemma.
Ey(K) =140 (c7)

where ¢ is any constant greater than the constant cx of (9).

Proof. Our first aim will be to evaluate the measure u(Hp) of the set Hy of all
hyperplanes H of H having

(1,0,...,0) ¢ H'.

This property of hyperplanes H remains invariant under rotations about the
x1-axis. It therefore will suffice to study hyperplanes H of the type

w121 + waxs =7.
Such a hyperplane H lies in Hy precisely if 0 << r << w1. We obtain
122 (H(]) == _fa)l dew
w120
and therefore

1

L k=L Vk—1

Mwm:jmi;%ﬁ%—lu—wthwm
0

/2
k—V)VE—1) [ . ~ V{k—1)
=T v ) Seleos)Rde =y
0
Next, let S; be the “spherical cap of radius ¢ and center (1,0, ..., 0}’ consisting
of all points w of S*¥-1 having spherical distance at most & from (1,0, ..., 0). Let
H, be the set of all hyperplanes H of H having H' disjoint from 8S,. As can easily

be shown, u (H,) exists and

. Vik—1
lim g (Hy) = o (Ho) =~ - = 1 — s

e—0
Now let ¢ > ¢ and choose & > 0 so small that
w(Hg) >1—c.

Sk-1 may be covered by a finite number of spherical caps of radius ¢, say by
S, ..., 8. Now for fixed j between 1 and N the set of all n-tuples Hy, ..., Hy
such that no H; completely separates S from the origin has measure (1 — u(Hyg))”.
The measure of the set of n-tuples Hy, ..., H, which have this property for some
j between 1 and N is

< N(1 — p(H)" < o

Since SY, ..., 8™ give a covering of S*-1), the lemma is proved.
Let B be the subset of H X --- X H consisting of n-tuples H;, ..., Hy such

n
that () H; is not contained in the ball | x| < 1. Our lemma says precisely that
=1
(10) (B < on.
4. The notation
Hi=Hy
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will mean that r (H;) < r(Ha2). Since each ordering of Hy, ..., H, according to this
notation occurs with the same likelihood, we have for any m with 1 <m < n
the relation

e (32 ] e,

Hi<Hn if ism
H;zHn if j2zm

The hyperplanes Hy, ..., Hp-1 are now of the type H; = r(Hpy) G; where G
lies in H (1 =¢ <m — 1). Furthermore,

dHl de_]_ = T(Hm)m“lda']_ ...dGm_]_,

whence
—1
En(F):<n (7;‘_ 1)) SS r(Hm)m—lde...dHnS-“gdGl...dGm_1
HijzHn
(11) (F=Meu )
m—1 , n ,
F ((ﬂ (r (Hm) Gi)) n (ﬂ%))
t=1 J=m
Substituting F =1 we obtain
n—1
=|n e\ T g)™ Mmoo ne
a2 (o (20 ] teanan
HyzHn
{J=1tuee, 1)

By (4) and (10) one has
F(.)dG1...dGp

G1 X X @1 € Br—1

uniformly in # and m, for every ¢ > ¢z and every D > 1. On the other hand, if
m—1
G1 X +++ X Gp—1 is not in Bm-1, then ﬂ G; is contained in the ball |x] =1 and

i=1
m—1 n m—1
F(Q(r(ﬂmm;mﬂff;):F(ml( (Hm)Gl)) (r WIG)
i= j=m 1= g =

This gives
f---fdGl AdGp 1 F(. f fF(mG)dGl .AG -1+ O(cm D7)

H H ¢ Bm-1 t=1

m—1
=f- fF(ﬂ Gé)dGl---dGm_l +0(emDm) + O (cm Dn)

— Epa(F) 1 0 (D7),
by virtue of (4) and (10). Combining this relation with (11) and (12) we get
En(F) = By (F) + O(cm D)
or, replacing m by m + 1,
(13) | En(F) — En(F)| € ¢emDr,

This inequality holds for any ¢ > ¢; and any D > 1, uniformly for all n, m having
1=m=n.
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Let ¢z << ¢ < 1. There are ¢ > ¢ and D > 1 having ¢y D2 = ¢. One then has
for m < =,
| En(F) — En(F)| < ¢ D2m 4 ¢ Dim | gbm Dém 1 ..
(14) <cm+62m_{_63m+...
L cm,
Hence I, (F"), E5(F), ... is a Cauchy sequence and has a limit E (F). The equation
(8) follows immediately from (14), and hence Theorem 1 is proved.

b. It remains to show Theorem 2. If p < £, there is no bounded polyhedron in
E* with p faces, hence there is no polyhedron with p faces contained in the ball
|#] = 1. The equation Nt = 0 therefore follows immediately from the lemma
of §3.

If p > &, put Fy(I1) = Fp(II) K (IT). There exists a polyhedron IT of E* with
precisely p faces which is contained in the interior of the ball || < 1. This
implies in particular that Fp(IT) = 1. Continuity arguments show that

:j...jﬁp(ﬁﬂg)dﬂl...dﬂwo.
H H t=1

Apply (11) with m = p + 1, n > p, F = F,. The inner integral on the right
hand side of (11) becomes

[ fats.aeury [y (1)

H i=1 p+1
dGy...dGp Fyl...
2 J g a0 Est
¢Bo
= - jF,,(ﬂG)dGl .dGp=Ep(Fy).
qugé XGp \i=1

In view of (12) this gives
Bn(Fp) Z Ep(Fp).

The theorem now follows immediately.
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