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1. Introduction 

Let  X(t) ,  t ~ O, be a stable process of  index :r 0 < g ~ 2, in N dimensions. The 
process is t ransient  when ~V > ~ and this is the case considered here. The range of  
the process up to t ime t is the set 

R (t) = R (t, o~) = ( X  (s, o~) : 0 <_ s <_ t} 

in R ~v, and the graph of  the process up to t ime t is the set 

a( t )  = a ( t ,  ~)  = ((8, x (s, ~)) :0 _< s _< t} 

in R iv+ 1. The purpose of  the present paper  is to find the correct Hausdorff  measure 
function for the graph, i.e. a measure funct ion 9 such tha t  the 9-measure of  
G(t, o)) is almost  surely positive and finite. The s ta tement  and proof  of  this result  
is in section 4. The nonsymmetr ic  Cauchy processes (~ = 1) are not  included. 

BLVME~Tm~L and G~TOOR [4J obtained the I tausdorff  dimension of  the graph 
when N = 1 in the symmetr ic  case. Their methods are easily extended to N 
dimensions in the symmetr ic  case or even the nonsymmetr ic  case when ~ < 1. 
This is discussed in section 3. TAYLo~ [8] has obtained the correct measure funct ion 
for the range of  the process. Bo th  the techniques and results of  these authors  will 
be quite evident  in the present paper.  

2. Preliminaries 

The N-dimensional  characteristic funct ion of  X (t) has the form exp [t ~ (y)], 
where 

y~(y) = i (a, y) -- A l yl~ ~ w:~(y, O) #(dO) , 
S,v 

with a e R zr A > 0 ,  

w~ (y, 0) = [1 - -  i sgn (y, 0 ) tan  zco:12]i(yl] y l, 0) t~ 

f f ~ # l ,  

w, (y, 0) = I(Y/] Y I, 0) l + (2 il=) (vii Y l, O)logl (y, 0) I , 

and # a probabi l i ty  measure on the surface of  the unit  sphere SN in R iv [6]. We 
shall assume tha t  X is a genuine N-dimensional  process, i. e. t h a t / t  is not  supported 
by  a proper  sub@ace of  R ~. The element a e R iv is taken  to  be zero th roughout ;  
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otherwise the  behavior  of  the  linear component  of  X would be dominan t  when 
< 1. The process is called symmet r i c  when # is uniform. When  :r ---- 1, we shall 

consider only the  symmet r ic  case. Finally,  i t  is assumed tha t  the  process has been 
defined in such a way  t h a t  the  sample functions X (t) are r ight  continuous and have  
left l imits everywhere.  

The densi ty  /(t, x) satisfies the scaling p rope r ty  (except in the  nonsymmet r i r  
case when ~ ~ 1) 

[ (t, x) : [ (r t, r 1/~ x) r ~/~ 

for all r > 0, or in t e rms  of the  process i tself  X ( r t )  and rl/C~X(t) have  the same 
distr ibution.  Jo in t  distr ibutions of  the  process also enjoy this scaling p rope r ty  so 
t h a t  i t  can be extended to such things as first passage t imes.  (The first passage t ime 
out of  the  sphere of  radius ra and r~ t imes the first passage t ime out  of  the sphere 
of radius a have  the  same distribution.)  

L e m m a  2.1. Let A (a) be a collection o] cubes o / s ide  a, a • 1, in ~ w~th the 
property that the number o/these cubes which intersect an arbitrary sphere o /radius  
a in R • is bounded by a constant K which is independent o / a  and the sphere. (Th i s  
is the case when the cubes do not overlap too much.)  Let M (a) be the number o/these 
cubes hit by the path X (s) at some time s ~ [0, t]. Then there is a constant c, which is 
independent o / a  but not o / t ,  such that 

E M (a) ~ ca -~.  

Proo/. Let  a0 ~ 0 and  for k ~ 1, let 

T~ = Tk (a) = inf{s ~ a~- l :  I X (s) - -  X (a~-l) I > a} 

ak = a ,  (a) = min  {Tk, ak-1 ~- as} .  

Then Y~ = Y~ (a) = (~k - -  ak-1 is a sequence of independent ,  identically distri- 
bu ted  r a n d o m  variables.  Note  t h a t  the  r ight  cont inui ty  of  X (s) implies the 
posi t iv i ty  of  Y~. I f  ~ = ~ (a) = re_in {k: ak ~ t}, then  (see, e.g. [5], p. 566) 

E ~? . E Y I  -~ E a~ ~ t -~ a~ . 

Now Yl (a)  and a ~ Yl(1) have  the same dis tr ibut ion b y  the  scaling p rope r ty  so 
tha t  E Yl (a)  ~ a~E Y1(1). Thus  

E ~ ( a )  g (t -t- 1)[E Y l ( 1 ) ] - l a  -~ .  

~_nally, we note  t h a t  R (t) is covered b y  the spheres of center  X (a~), radius  a, for 
k ~ 0, 1, 2, . . . ,  ~ - -  I and  t h a t  each of these can intersect  a t  mos t  K cubes of  A 
so t h a t  M (a) ~ K ~  (a). 

The nex t  l emma  is due to Takeuchi  [7] in the  symmet r ic  case. The proof  here 
mus t  be different since the hi t t ing probabil i t ies can be larger for nonsymmet r i c  
processes. 

L e m m a  2.2. I] S is a sphere o] radius a in R ~ and X is any stable process o/ 
index ~ with N > ~ (excluding the nonsymmetric processes when ~ -~ 1), then there 
is a constant c such that 

p x [ x ( t )  e S  ]orsome t ~ T ] ~ c \ ~ 7 ~ ]  �9 
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Proo/. There is no loss in centering S at the origin. We let tt denote the 
capacitory measure on S. (The definitions and relevant properties of the poten- 
tial theory used here are given in [8], p. 1234.) Then the hit t ing probabili ty of 
S is given by  

oo 

4) (y,S) = PY [X(t) e S for some t =~ 0] = f .f / (t, z - y )  dt # (dz) . 
S O  

Therefore 

p x [ X ( t )  e S  for some t >--_ T/  -~ f / (T ,  y - -  x) ~) (y,S) dy 
/ /N 

= f ~  f / ( T , y - - x ) / ( t , z - - y ) d y d t # ( d z )  
S O  R ~v 

oo 

= f f / ( T  + t, z - -  x) dt t~ (dz) 
S 0 

co 

= f f / ( 1 , s - i /~ ( z - - x ) )  J - ~ d s #  (dz) 
S T 

C (T-1/~) N-a/~ (S), 

the finalinequality being a consequence of the boundedness o f /  (1, x). Finally 
/~ (S) -----ca ~ -~  by Lemma 3 of [8] 

We state as a lemma a remark of B. Fi~ISTEnT which must  be well known and 
yet  its utility has apparently been overlooked. 

Lemma 2.3. Let E be any Borel set in R ~ and q) be any measure/unction. Then 

q) - -  re(Projection o/ E on any subspace) ~ q) - -  re(E).  

Proo/. This is just the observation tha t  if one covers E with a collection of 
spheres, the projection will be covered by the projections of the spheres and the 
corresponding diameters cannot increase. 

3. The Dimension of the Graph 

Although the dimension result given in this section is a corollary of the correct 
measure function result of the next  section, it seems worthwhile to consider it 
separately since the proof is somewhat easier. As noted above the proof is essentially 
tha t  used by BLUM~TH~L and GETOOR [4] in the symmetric,  one-dimensional case. 

Theorem 3.1. Let G (t, co) be the graph o / a  stable process o / index  o~ in R N (the 
nonsymmetric processes with ~ -~  1 are excluded). The Hausdor// dimension o/ 
G(t) is almost surely max( l ,  ~). 

Proo/. We give the proof here only in the symmetric ease, leaving the general 
result as a corollary of Theorem 4.1. As a consequence of Lemma 2.3, the dimension 
of the projection of any set E is no larger than the dimension of the set E itself. By 
projecting the graph on the time axis, we see tha t  its dimension must be at least 
one. A projection on the range space shows tha t  the dimension must  be at least the 
dimension of the range which is ~ almost surely [1]. Therefore 

P / d i m  G(t, co) ~= max( l ,  ~)] : 1. 

10 Z. Wahrsche in l ichke i t s theor ie  verw. Geb., Bd.  9 
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For the other inequality, i t  suffices to show tha t  if fl > max( I ,  ~), then the 
x~ - -  m of the graph is finite. As in the one-dimensional proof of BnVME~THAL and 
G~Too~ [4], an application of their Theorem 8.4 of [3] to the process Y(s) = (s, X(s))  
reduces the problem to one of showing that  the fl-variation of X is finite. This is 
known to be the case by  Theorem 4.1 of [1]. 

R e m a rks .  The use of the projection argument gives a considerable simplifica- 
tion of the proof of the lower bound for the dimension as given by  BLUMENT~ 
and G~TOO~. The present proof of the lower bound is valid in general since the 
dimension of the range is g even ff the process is not symmetric [2]. The given proof 
of the upper bound is also legitimate when ~ < 1, because when ~ < fl ~ 1, the 
fl-variation of X is finite [3], so tha t  one may  prove tha t  the x-measure of the graph 
is finite. However, the question of whether the fl-variation is finite in the non- 
symmetric ease with max( l ,  ~) < fl is still open so tha t  this proof cannot yet  be 
extended to the non-symmetric processes of index ~ ~ 1. 

4. The Correct Measure Function 

The main result is stated in the following 

Theorem 4.1. Let X (t) be a stable process of index ~ in R ~ (the nonsymmetric 
processes with :r ---- 1 are excluded) and 

a (t, ~o) = {(s, X (s, ~ ) ) :  0 --< s _< t } ,  

the graph o/ the  process up to time t. Let 

h f f  ~ I  

q~(h)~- h~loglogl /h  f f  ~ > 1  

Then there is a constant c > 0 (which is independent of t and co but may depend on r162 
such that 

~ - - m ( G ( t ) )  = c t  

/or all t ~ 0 almost surely. When ~ ~ 1, the constant c -~ 1. 

Proo/. We first obtain the lower bound by  use of Lemma 2.3. I f  ~ ~ 1, 

q~ -- m(G(t))  ~ ~o -- m((O, t)) -~ t 

by projecting on the time axis. I f  ~ > 1, 

--  m(G(t))  ~ qJ --  m(R( t ) )  ---- ct 

by Theorem 6 of [8], where R denotes the range of the process. For the upper bound, 
we must  consider three cases. 

Upper bound, ~ < 1. In  this case, an argument involving the variation similar 
to tha t  used for the upper bound in the last section would suffice if we were not  
interested in the value of the constant c. But  ff we are to evaluate the constant, 
a more economical covering must  be used. Let  ~ > 0 be given and choose y so tha t  
0 < ~ < ~/4. As in the proof of Lemma 2.1, let a0 = 0 and for k ~ 1, 

O'k = ~ {$/r O'k--1 "~- ~ /2} .  
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Note  t h a t  ]X (rk) - -  X (a/c-l) [ _--> y by  the  r ight  cont inui ty  of  the  paths .  Now if  

M ---- rain {k: a/c >= t} 

and  

A/c = [a~- l ,  a/c) X X[a/c-1,  a D ,  

then  {A/C}M=I is a cover  of  G(t). Let  

A/c= sup IX(u)--X(v)[. 
u,v~[ak-l,c;~) 

Since 

i Z (u) - -  X (v) l _--< [ X  (u) - -  X (a/c-l) [ + [ X  (v) - -  X (a/c_1) [ _--< 2 7 ,  

i t  follows t h a t  A~ ~ 27. Now 

diamA/c ~ a/c - -  a/c-1 + A~ < e/2 ~- 2 7 < e 

so t h a t  our cover is wi th  sets having diameters  less t h a n  e. Choose/3 so t h a t  
< / 3  < 1. When  a/c ----- r/c, we have  

A~ < 2 7 <= 271-~[X(a/C ) - -  X(a/c-1)[Z, 

while if  a/c = a/c-1 + e/2, 

A/C ~ 2 7 : 4 7 e-l(a/c - -  a/c-1). 

I n  any  case, therefore,  

A/c <~ 271-~[X(a/c  ) - -  X ( a ~ - l ) [  fl -{- 4 7  e-l((r/c - -  a/c-l).  

Using this es t imate  in the  approx imat ing  sum, 

M M M 
diamA/c ~ ~ (a/c - -  a k - 1 ) @  ~ A / C  

k = l  k = l  k = l  
M 

< (1 + 4 7 ~-1) (t + e/2) + 2 ~1-~ ~ [ x (a/c) - x (a~-l) ]~. 
k = l  

Now the sum is bounded  by  the/3-var ia t ion of X on [0, t -}- e/2] which is finite a.s.  
b y  Theorem 4.2 of  [3]. Since 7 is a rb i t rary ,  

q~ --  m[O(t)] <= t + el2 a.s. 

Finally,  let t ing e -+ 0 we have  t h a t  

q) - -  m[G(t)] ----- t a.s.  

when e < 1. 
Upper bound, ~ = 1 (Symmetric case). Le t  a/c, re ,  Y/c, ~/be defined as in the 

proof  of  L e m m a  2.1, and  let 

A/C = [ a k - 1 ,  (Y/C) X X [ a / r  gk) 

as above.  Then {A/c};= 1 is a covering of G(t) b y  sets of  d iameter  a t  mos t  3a.  I t  
follows t h a t  

cp --  m(G(t))  ~ l i m ~ ( a ) .  3 a .  
a-~0 

10' 
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By the weak law of large numbers, ak(1)/k tends to E YI(1) in probabili ty as k 
tends to infinity. Now let s ~ 0 be given and choose 5 ---- E Y1(1)/2. By a change 
of scale 

PI  ~ ) - - a E Y I ( 1 ) ~ a ~ l = P  [ ~-~k (-1) EYI(1)  ~ ( ~ ] ~ s  

for all/~ ~ K. On the complement of the first event above, 

~(a)) _> a5 k --  

so tha t  for all a ~ t (K 5)-1, we have 

P[~(a)  ~t(a~) -1 -~ 1] ~ 1 --  s.  

By letting sn ---- 2 -n, there is a sequence an -> 0 such tha t  

P[~(an) ~= t(an(~) -1 + 1] ~ 2-n .  

Applying the Borel-Cantelli lemma, we obtain the result tha t  

lira an ~ (an) ~ t (~-1 a.s. 
n---~'O0 

This proves tha t  ~ - -  m(G(t)) is finite a.s. for every t ~ 0. Since it was shown 
earlier to be positive, the argument of TAr•OR and W~D]~L [9], section 7, allows 
us to conclude tha t  it must have the form ct for some positive constant c. 

Upper bound, ~ > 1. In  this ease, one might conjecture tha t  the ~0-ttausdorff 
measures of G (t) and R (t) are equal. But  since the actual value of the constant c 
is unknown even for R (t), we shall make no effort to obtain an "opt imal"  covering. 

As in TAYLo~ [8] we consider the collection An of cubes in R N of the form 

--2" = x i ~  2" ' i ----1,2 . . . . .  N , 

where the ]i are integers. TAYLOR has shown tha t  for all n sufficiently large, there 
6n 

is a covering of R (t) by  cubes C~ with the Ci coming from ~ J  Aj such tha t  
~'=n 

~ (diam C~) =< M, 
i 

where M is a fixed constant. Now choose an integer k to satisfy 

/ r  ( N - -  ~) > 2. 

We will call a cube C from Am bad ff it is hit by X at some time ~ g t and if the 
t ime set which X spends in C cannot be covered by k intervals of length 2-m+1 ~N:  

We can now describe the covering of G (t). First, consider a good cube C~ e Am 
from Taylor 's  covering of R (t). Since it is good, either it is not hit by X prior to 
t ime t and thus might as well be discarded, or the set of times spent in Cf 
can be covered by  k intervals of length 2-u+~ ~N.  Form Di~, Die . . . . .  D/~ by  
taking the Cartesian product of Ci with these/c intervals on the time axis. The par t  
of the graph such tha t  X is in a good cube is then covered by  the D~ formed in 
this way, and since diam D~ ~- ~f2diam Ci, we have for all n sufficiently large 

~, ~ (diam Dil) <= 2 a k ~ ~ (diam C~) _--< 2~ k M .  
i ,] i 
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The rest of the covering of G (t) will consist of all Cartesian products of bad cubes 
Ci ~ A m  from Taylor's covering of R (t) with intervals of the form 

J~m , 2a , J = 1 , 2 , . . . ,  [t2m] + 1,  

on the time axis. We shall now prove that  the contribution of this part of the sum 
is negligible. 

For a given cube C ~ A m ,  define a sequence of stopping times as follows: 
To = ~, the hitting time of C, and for ] >_ 1, Tj is the hitting time of the sphere 
of center X(~), radius 2-m+1 ~ N  starting from X ( T j - 1  -~- 2 - m + l / N ) .  Note that  
if Tj-1 : 0% then we define Tj : co also. Now if T~ ----- co, there are k intervals 

of length 2 - m + I ~ N , [ T j , T ~ + 2  -m+l~N],  for ? ' = 0 , 1 , 2  . . . . .  k - - l ,  which 
cover the set of times spent in the cube C since the cube is contained in the sphere. 
Therefore, for all m sufficiently large. 

P [C is bad] = P [C is hit by time t]. P [C is bad I C is hit by time t] 

g P [ C  is hit by time t]. c. (2-m)(1-1/~)(~v-~)k, 

where Lemma 2.2 has been applied k times to estimate P [Tk < col. The constant c 
here is to be a positive constant which is independent of m but is not the same as 
in Lemma 2.2. Letting N m  denote the number of bad cubes in Am and M m  the 
total number of cubes of A m  hit by time t, and recalling the manner in which k 
was chosen, we obtain 

E N m  < c ' 2  -2mEMm ~ c" 2 -2m" 2 ma 

by an application of Lemma 2.1. Again the constant c has been changed at the 
last step to incorporate the constant from Lemma 2.1. Now 

r 
P [Nm > m 2 2m~ 2-2m] < m2 

so by the Borel-Cantelli lemma, for almost all ~o and all m sufficiently large, 

N m  ~ m 2 2 m~ 2 -2m �9 

For each bad cube of Taylor's covering, there will be It 2 m] + 1 cubes of diameter 

2 -m ~4N + 1 in R N + 1 in our covering. Thus the contribution to the sum from all 
bad cubes in Am will almost surely be no larger than 

(t 2m + 1) N m  q~ (2-m ~4 N + 1) < c 2m mz 2-2m log m < c m 2 2-m log m 

for all m sufficiently large. Since the last estimate is summable, we see that  
6n  

with probability one the contribution from all bad cubes in ~.) Am will be small 

when n is large. Thus the ~v-Hausdorff measure of G(t) is finite almost surely. 
Again the argument of Section 7 in TAYLOR and W~ND~L [9] concludes the proof 
by showing that  ~0 -- m(G(t ) )  =- c t a.s. for some constant c. 
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