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1. Introduection

In this paper we consider the problem of the existence of a ¢-finite measure
which is equivalent to a given measure and invariant with respect to a given auto-
morphism of the measure space. (An automorphism of a measure space is a bijec-
tive, measurable, non-singular transformation of the space whose inverse has the
same properties.) In Section 2 we state the problem in detail and discuss previous
results. In Section 3 we prove two theorems. Theorem 1 describes two necessary
and sufficient conditions for the existence of a o¢-finite, invariant, equivalent
measure. In Theorem 2 we show that for an automorphism defined almost every-
where on the unit interval satisfying certain conditions there does not exist any
o-finite, invariant measure that is equivalent to Lebesgue measure. In Section 4
we describe three automorphisms which satisfy the conditions in Theorem 2 and
hence do not have ¢-finite, invariant measures which are equivalent to Lebesgue
measure.

2. Statement of the Problem

By a measure space we shall mean a triple (X, #, m) where X is a set, % is
a c-algebra of subsets of X, and m is a measure, i.e., an extended real valued,
countably additive, non-negative function defined on # such that m(0) = 0.
(@ denotes the empty set.) The sets in & are called measurable sets. The space
(X, 4, m) and the measure m are called finite if m(X) << oo, and (X, #, m) and
m are called o-finite if there is a countable collection { B;} of measurable sets whose
union is X such that m(B;) < oo fori=1,2,3,.... If g is a second measure
defined on %, then u is said to be absolutely continuous with respect to m, written
u <€ m, if u(B) =0 whenever m(B) = 0. x and m are said to be equivalent,
written g = m, if they have precisely the same sets of measure zero. Clearly,
u =mifand onlyif g € mandm < u.

The following terminology is used by A. Torora in [1].

Definition 1. Let (X, %, m) be a measure space. A transformation ¢: X — X
is called an automorphism if it satisfies the following conditions:

i) ¢ is one-to-one and onto.

ii) ¢ and ¢-1 preserve measurable sets, i.e., Be & implies ¢(B)e # and
¢-1(B)e A.

* This paper is a revision of the author’s thesis in The Mathematics Department of Brown
University. I would like to thank my adviser, Professor Yot Ito, for his help and guidance in
the research which led to these results.
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iii) ¢ and ¢! are non-singular, i.e.,
m(B)=0 implies m($(B))=m({¢-1(B))=0.

Definition 2. Let (X, #, m) be a measure space, and let ¢: X — X be an auto-
morphism. A measure y defined on # is said to be invariant if u(¢(B)) = u(B) for
each measurable set B.

Our problem is the following one. Given a o-finite measure space (X, &, m) and
an automorphism ¢: X — X, when does there exist a o-finite measure y defined
on % such that y is invariant and m < u ? The requirements that u be o-finite and
that m < u are intended to exclude such trivial invariant measures as the counting
measure and zero measure. However, the following proposition shows there is no
loss of generality in requiring that u = m.

Proposition. Let (X, #, m) be a o-finite measure space, and let ¢: X — X be an
automorphism. Then there is a o-finite invariant measure w defined on % such thai
m € p if and only if there is a o-finite invariant measure pg defined on % such that
Ho = m.

Proof. Suppose p is a o-finite invariant measure defined on % and m < u. Let
{ be a Radon-Nikodym derivative of m with respect to u. Put 4 = {xeX | f(x) =0},
and

+ oo
B = Ud#4).
j= —oco
Clearly, m (4) = 0, and by non-singularity m (B) = 0. Moreover, ¢ (B) = B. Put
uo(E) = p(E — B) for each measurable set . It is easy to verify ug is the desired
measure. The converse is clear.

The problem of finding an invariant measure has been thoroughly discussed by
P. Hatmos [2] and K. Jacoss [4]. Necessary and sufficient conditions for the
existence of a finite, invariant, equivalent measure have been given by E. Horr
[56], Y.N. Dowxker [6] and [7], CaLDERON [9], and KaRUTANT and HaJ1ax [10]. In
1947 Hatmos [3] used the result in [5] to obtain a necessary and sufficient condi-
tion for the existence of a o-finite, invariant, equivalent measure. In 1951 Y. N.
DowxkeR [8] obtained a different condition equivalent to the existence of a o-finite,
invariant, equivalent measure. However, both these results seemed to be rather
difficult to apply, and when they were published it was not yet known that there
are automorphisms for which no ¢-finite, equivalent, invariant measures exist. It
was not until 1960 that D. S. OrnsTEIN [11] gave the first example of an auto-
morphism which has no ¢-finite, equivalent, invariant measure. Since then other
examples of such automorphisms have been given by R. V. CrAcoN [12] and A.
BruwzL [13]. In what follows we obtain a new necessary and sufficient condition
for the existence of a ¢-finite, equivalent, invariant measure (Theorem 1) and use
it to give a new example of an automorphism that does not have a o¢-finite,
equivalent, invariant measure. The proof (Theorem 2) that our example has the
desired property also covers the automorphisms of ORNSTEIN and BRUNEL.

3. Main Results

Let (X, &, m) be a o-finite measure space, and let ¢: X — X be an auto-
morphism. We first remark that it is no loss of generality to assume m is finite. To
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see this, suppose m (X) = oo. Since m is o-finite, there is a countable collection
{B;} of pairwise disjoint measurable sets such that 0 < m (B;) < oo whose union
is X. Define a new measure mg on % by the formula

Clearly, my is finite and mq = m. If there is a o-finite invariant measure u defined
on 4 such that y = my, then i = m, also. So we can assume m is finite.

Definition 3. Given a measure space (X, %, m) and an automorphism ¢: X — X,
we define a new measure m ¢? on & for each integer p by the formula

m$? (B) = m(¢? (B))

for each measurable set B. If u is any other measure defined on %, the measures
( ¢? for each integer p are defined similarly.

It is easy to see that the non-singularity of ¢ and ¢-1 implies m = m ¢? for
each integer p.

We also remark that y is an invariant measure if and only if y¢ = w. If g is
invariant, an easy inductive argument yields 4 ¢? = u for every integer p.

We now describe a result of Hat.mos which will be used in the sequel.

Definition 4. Let (X, 4, m) be a measure space. By a decomposition of a measur-
able set B, we mean a countable collection {B;} of pairwise disjoint measurable
sets whose union is B. (We allow finite decompositions. In that case, for some
integerip > 0, B; = @ forall¢ = 4p.)

Definition 5. Let (X, &, m) be a measure space, and let ¢: X —> X be an auto-
morphism. If 4 and B are measurable sets, we say Bis a copy of 4, written 4 ~ B,
if there are decompositions {4;} and {B;} of 4 and B, respectively, and a sequence
of integers {n;} such that ¢™(4;) = B;, fort =1,2,....

It is easy to see that ~ is an equivalence relation on %.

Definition 6. Let (X, %, m) and ¢ be as in Definition 5. We define a measurable
set & to be unbounded if there is a measurable subset 4 of £ such that 4 ~ E and
m(B — 4) > 0. We say F is bounded if £ is not unbounded. ¥ is ¢-bounded if E is
the countable union of bounded sets.

Theorem (Harmos). Let (X, &, m) be a finite measure space, and let ¢: X — X
be an automorphism. Then there is a o-finite, tnvariant measure p defined on %
which is equivalent to m if and only if X is o-bounded.

Proof. See [3].

We shall need the following lemma on unbounded sets.

Lemma. Let (X, %, m) be a finite measure space, and let ¢: X — X be an auto-
morphism. If B is an unbounded measurable set, then there exists a measurable set
B c B with the following properties:

iym(B)>0.

i) For any & > 0 there exists a measurable set C c B such that B ~ C and
m(C) < e.

7%
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Proof: By hypothesis there is a measurable set 4 c £ such that 4 ~ E and
m(E — A) > 0. This means there are decompositions {¥;} and {4;} of F and 4,
respectively, and integers {n;} such that ¢™(#;) = A;. Define a transformation
T: B+ Abyv(x) = ¢$%(x) for allwin B;, i =1,2,3 ..., Since 4 c E, 7 is well-
defined for all posmve mtegers n. Since ¢ is an automorphism, if D is any measur-
able subset of #, then 7 (D) is measurable and m (D) = 0if and only i m (7 (D)) = 0.
Observe that D ~ ¢(D). An obvious inductive argument shows the same is also
true of 77 (D). Now let B = E — A. Another easy inductive argument shows that
{r#(B)|n = 1,2 ...} is a pairwise disjoint family of sets all contained in Z. Since
m (E) is finite, m (7% (B)) — 0 as n — oo. Since 7% (B) ~ B, the lemma follows.

We shall also need the Lebesgue Density Theorem which we state in the
following form.

Theorem (LEBESGUR). Let B be a Lebesgue measurable subset of the real line. Let

m be Lebesgue measure. Then almost every point in B has the following property: For
each ¢ > 0 there is 8 > 0 such that

m(BNI)

m) =1—¢

whenever I is an interval, x € I, and 0 < m(I) < 4.

Proof. See [14].
We can now state our first result.

Theorem 1. Let (X, Z, m) be a finite measure space, and let ¢: X — X be an
automorphism. Then the following statements are equivalent:

(a) There exists a o-finite, invariant measure y defined on B which is equivalent
to m.

(b) For every & > 0 there is a decomposition {X;} of X (which depends on &) with
the following property: for each i, for each measurable set B c X;, and for each integer
p such that ¢2 (B) c Xy, it is true that

m(B)(1 - &) <m¢?(B) < (1 + &)m(B).

(¢) There is a decomposition {Y;} of X and posiiive constants ks, fori = 1,2, ...,
with the following property: for each , for each measurable set B such that B c Yy,
and, for each integer p such that ¢? (B) c Yy, it is true that

kim (B) = m¢?(B)

Proof. (a) ~> (b): Let u be a ¢-finite invariant measure defined such that
u = m. Let du/dm[dm|du] be a Radon-Nikodym derivative of u with respect to m
[ with respect to u]. The fact that y = m implies we can choose dujdm and
dm/dy so that the following equations hold for each z in X.

0 <o (@) < oo (1)
O<dm(x)<oo 2)

o =(gr@) " 3
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Given¢ > 0,leta, = (1 + &)nforn = 0, -1, -2, ... . Then (because of equation
(1)) the collection of sets consisting of

fori =0, L1, +2,...,isadecomposition of X. Fix ¢. By equation (3) we also have
1 d 1
Fi={o| - <—”3(x)§?}.

ai+1 d,u )

Suppose B is measurable, B ¢ F;, and p is an integer such that ¢2(B) c F;. Then

i) = P @< (= )Jdu (;)W’(B)s
?(B)
(sl [Eomstnn

m¢? (B) = (1 + &)m(B).
Inequality (4) also holds for £ = ¢?(B) and ¢—P(H)= B, since EcF; and
¢—2(E) c Fy. Hence,
m(B) < (1 &)m¢?(B)
m(B)/(1 + &) < m¢?(B) (5)

Sinece this is true for each 7, we conclude (a) implies (b).

(b) — (c): Clear.

(¢) — (a): Let {¥;} be the decomposition of (c). We assert Y; is a bounded set
for each 7. To see this, suppose B and C are measurable sets, Bc Y;, ¢ c ¥, and
C is a copy of B. Then there exist decompositions {B;} and {C;} of B and C,
respectively, and integers {n;} such that

¢ (By)=0; for j=1,2,....
So
n(0) =S m(Cy) =S mm(By).
=1

j=1

i
By hypothesis, m ¢™ (B;) = kym (By) for each §, so

>Z (k)m(By) = kym (B) .
j=1
It now follows from the lemma that ¥; must be bounded for each ¢. Hence, X is
g-bounded. By the theorem of Harmos quoted above, (a) must hold. This comple-
tes the proof.

Remark 1.1. Theorem 1 generalizes a result of G. D. Birrmorr and P.
Sm1TH [15] (see also [5]) which deals with the case of finite invariant measures.

Remark 1.2. The sets Y; and numbers %; for ¢ = 1, 2, ... in (¢) of Theorem 1
also satisfy the following: for each ¢, if B is measurable, B c Y;, and p is an integer
such that ¢2(B) c Yy, then

m¢?(B) = -m(B).

P
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Conversely, this condition implies the one in (¢). This is proved in the same way
inequality (5) was obtained from inequality (4).

Corollary. Let (X, &, m) and ¢ be as in Theorem 1. Suppose m(X) > 0 and that
there is a o-finite, invariant measure u defined on % such that u = m. Then for each
& > 0 there is a measurable set B (depending on &) such that m(E) > 0 and for every
integer p

1 dm ¢P
e DS T
holds a.e. on E N ¢~2(E). (dm P [dm is the Radon-Nikodym derivative of m ¢? with
respect to m ).

Proof. Given ¢ > 0, let {X;} be the decomposition of (b) of Theorem 1.
m(X) > 0implies at least one of the sets X; must satisfy m (X;) > 0. Let £ be that
set, For any measurable set B c E N ¢—?(E) we have

m(B)/(1 + &) =m¢?(B) = (1 + &) m(B)

since B ¢ E and ¢?(B) c E. This means
d
f1+d = [ S dm</ el
B

Since this is true for every measurable B c £ N ¢—2(E),

=BT g <t

holds a.e. on B N ¢—2(E). This is true for each integer p, Q.E.D.
We now use this corollary to obtain a new technique for showing that certain
automorphisms do not have a ¢-finite, invariant, equivalent measure.

Theorem 2. Let X be the unit inferval [0, 1, let B be the Lebesgue measurable
subsets of [0, 1], and let m be Lebesgue measure on B. Let ¢: X — X be an auto-
morphism. Suppose there exists a family F of intervals contained in X with the
following properties:

(a) For almost all x in X, and for every § > 0, there is an I in S such that x & I
and 0 < m(Iy < é.

(b) There are positive numbers f1, a2, and o with 0 << « << 1 such that for every I

in S there are measurable sets A, B, ..., By contained in I satisfying
(bl) By Byj=0 for 1 _£_7/<7<1’I,
(b2) m(A4) = p1m(I) and m(B) = fam(I) where B = UB@
1=1

(b3) m(By) Zam(A) fori=1,...,n
(b4) For each i =1, ..., n, there is an integer p; such that ¢**(4) = B;, and
dm ¢?*[dm is constant on A. (The constant is necessarily m (Bg)im(4) = «.)
Then there is no o-finite invariant measure y defined on % such that y = m.
Proof. If such a u did exist, then by the corollary there would be a measurable
set £ with m (£) > 0 such that for every integer p
Ejzr_l < dmvﬂp

@) == (6)

+ b0
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holds a.e. on B N ¢~?(E). (Take ¢ = (1 — a)/(1 + ) in the corollary.) We shall
show that for any measurable set E of positive measure there is at least one p such
that equation (6) doesnot hold a.e. on & N ¢~7(E).

Choose ¢ such that
Bebr
fat+1°
Suppose ¥ is measurable and m () > 0. By the Lebesgue Density Theorem and
condition (a) there is an I in .# such that

mE AL =1 —e)m(). (7)

0<e<

This implies
m(l — By =Zem(l).
So then by (b2)
m(d N B) = (b — eym(I)
m(BNE) = (fs—e)m(I),

where 4 and B are the sets referred to in (b2). From (b1) and (b4) we conclude
that

m<o¢pt (EYyn Bi) = imﬂﬁp‘(E) N B;) = En:lm¢p¢(E N A4)
i=1 i=

=1 =
<= m(By) _ m(B)
_21 ) (B v A) = 2 4)
m<(’)¢m<ﬂ)nm)ziﬁ”(’%(ﬂl—e)mm = fa(pr — eym(I).
i=1

This means

m(O‘ﬁp'(E) N Bi) + m(E N B) = 21— eym(I) + (B2 — e)m (I)
i=1
= (821 — eB2 + B2 — eym(I) > Bam(I) = m(B)

by our choice of ¢. Since £ N B and C)(qﬂp‘ (#) N By) are both subsets of B, this
last inequality implies =
m([CJgﬁ’"(E) N Bi} mEnB>>O.
So for some j§ =
m($* (YN B;NE)>0.

Apply ¢ % to this set and use non-singularity to obtain

m(ENG™PE)NA)>0.
But dm ¢?jdm (x) < o < (2 + 1)/2 on A. It follows that inequality (6) does not
hold a.e. on B N ¢~? (E) when p = p;. This completes the proof.

Remark 2.1. The conclusion of Theorem 2 is still true if the hypothesis is
modified in the following way. First, let X = [0, 1]-N where NV is a set of Lebesgue
measure 0, let Z be the Lebesgue measurable subsets of X, and let m be Lebesgue
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measure restricted to 4. Second, interpret the word interval to mean a set of the
form Iy N X, where Ij is an interval in the usual sense. The proof remains the
same; in particular, the Lebesgue Density Theorem can still be used to obtain the
inequality (7). The details are left to the reader. It is this modified version of the
Theorem that we shall use in the next section.

4. Applications

It is not obvious how Theorem 2 can be used to show the existence of auto-
morphisms which do not have ¢g-finite, invariant, equivalent measures. However,
the hypotheses of Theorem 2 were chosen with a specific antomorphism (Example
1) in mind. It turned out that the automorphisms of Ornstein and Brunel also
satisfy these hypotheses. We shall now describe these three automorphisms.

LExample 1. We shall first define a transformation ¢ from [0, 1) onto (0, 1).
Suppose 0 < o << 1. We define z, = 1 — [af(xx + 1)]?**L for n=1,2,..., and
Z_p = 1f(x + 1)#*1 for n=0,1,.... Then {xy|—oco < n < oo} is a strictly
increasing sequence in [0, 1] with lim,, ..z, = 1,lim,_, %, = 0. We define ¢ on
[0, @) = [0, 1/(x 4 1)) by

1—uxg

$(x) = (—ir) x + 2o
1
=TT
so that ¢ maps [0, o) onto [z, 1). We define ¢ on [wy, Zn+1) by

d(x) = (i-n_“_’”;(m) (@ — #n) + 2—(n+1)

Lp+l — In T ;
o n
= (o =14 () ) +
so that ¢ maps [y, Zn41) onto [2_(nt1), #—p). It is now easy to see that ¢ maps [0, 1)
onto (0, 1), that ¢ is one-to-one, and that ¢ and ¢-! are measurable and non-
singular.
Now let
X =[0.1) = U (0).
f=
Let & be the Lebesgue measurable subsets of X, and let m be Lebesgue measure on
%. Then ¢ (X) = X, so the restriction of ¢ to X, which we also denote by ¢, is an
automorphism of (X, &, m).

We now interpret the word interval to mean a set of the form J N X where J is
an interval in the usual sense. We shall show that ¢ has been defined such that for
each non-negative integer  the space X is the union of 2#+1 pairwise disjoint inter-
vals, I¥,j = 1,2, ..., 26+1, with the property that ¢(I¥) = I7,; and dm¢/dm is
constant on I;? for j =1,2,...,28+1 — 1 These intervals will form the set # of
Theorem 2.

Let IS = [0, 20) N X and I2 = [xo, 1) N X. Then $(I9) = I3. Suppose we
have shown that there are 26+1 intervals, 1%, ..., I%, (letting n = 2%+1 to simplify
notation) such that the following are satisfied:

i) I*=[0,2_) " X and I* =[xy, 1) N X.
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ii) {I¥|j =1, ..., n} is a decomposition of X.
i) g(If) = IF  forj=1,...,n — 1.
iv) Ig? is a subset of [0,xg) or [#4,241) for some integer ¢ =0, forj=1,...,n—1.
Define Il 1=[0, 2_x11y)) " X and I’f’z == [2_(x+1), —1) N X. Define Ijkl
= ¢/ 1(I¥ ) forj =1, ...,n and ¢ = 1, 2. Tt follows from iii) that ¢n-1(I%) = IE.
It follows from i), iv), a,nd the definition of ¢ that
¢pnt(z) =ax + b (8)
for z in I% where @ and b are real constants, a > 0. Hence It = qS”—l(I’{,l)
=[xk, y) N X and IE, = ¢n-1(I¥ ) = [y, 1) N X for some y such that xx <
< y << 1. Now x_(g+1) satisfies
Tk — T—(k+1)
oot
Hence

m(If ) -
m(I% )

dm ¢n-1
dm

Equation (8) implies () = aforzin I’f,l. So
m(If )  mém(Ifs)  am(If o)

m(TE )~ mgr(TE ) T am(@ty) T

This implies
11—y
y—ax

H

which implies y = zg41. So I];;,l = [a, zxg+1) N X and Iﬁ,z = [zp+1, 1) N X.
It follows from the definition of ¢ that ¢(I% ) = I¥ ;. So now, if we define
I+l = %, and IEtj=I%, for j=1,...,n, then $(I*¥¥1) = IFH] for j=1,
2,...,2n — 1. (Note 2n = 2%+2)) Hence {I¥*1|j =1, ..., 2¥+2} is a sot of 2¢+2
intervals that satisfy conditions i)—iv) with % replaced by £ + 1. It follows by
induction that for each non-negative integer k there is a set {I;“ [7=1,..., 281}
of intervals that satisfy conditions i}—iv).

Let 1% be one of the ]'ntervals we have just constructed. Then I} k= I; k LUl ;‘ 2
and If; N I%, = 0. Also, ¢?(I%,) = I%, where p = 2k+1, Tt follows from condi-
tions iii) and 1v) that dm ¢/~ 1/dm is constant on 1%, and this implies

m(Ify)  m(If,)

m(Ify)  m(lEy)

Hence,
m(T8) = () () ©)
m(180) = (o) m(I (10
m(I%5) = am(I%y) . (11)
It also follows from conditions iii) and iv) that dm¢?/dm is constant on Ij,.
Equation (11) implies this constant is «. Also, it follows from equations (9) and (10)

that
1 o TE
ma;xm(lj’.‘“) = 7 Mmax m(IF),
7
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and hence

lim max m(I;?) =0.

k—>o0 j

It is now easy to see that the automorphism ¢ satisfies the hypothesis of

Theorem 2 as modified in Remark 2.1. Let {Iﬂj =1,...,26; k=0,1,...} be
the family .#. For each I¥in #,let A = I, and B = B; = I%,. Let a be the «
used in the construction of ¢, and let 8; = 1/(ae - 1) and let f2 = «/(x + 1). The
integer p1 = 2%+, By Theorem 2 there is no o-finite, invariant measure defined on
% which is equivalent to Lebesgue measure.

Example 2. We now describe the automorphism constructed by D. 8. Orx-
sTEIN in [11]. Let It = (1/2, 1] and I} = (0, 1/2]. Define 7' on Iiby T(x)
= — 1/2, so that T (I}) = I}. If J; and J3 are intervals, we call the map of the
form xz — ax + b, where @ and b are real constants, @ > 0, which maps J; onto J3,
the affine map of J1 onto Ja. Suppose we have constructed Ky pairwise disjoint

intervals whose union is (0, 1]. Call them I¥, ..., I %N. (All intervals in this example
are assumed to be left open and right closed.) Suppose we have defined 7 on
Ky-—1

U &
i=1

so that the restriction of 7' to Ij-v is the affine map of I,l-v onto Iﬁrl, forj=1,...
..., Kx — 1. We shall now define 7' on at least half of I%N. To do this, divide Ii"
into K% intervals as follows. Let I%; be the left half of IV, and let IY,,j =2, ...
..., K%, be K% — 1 pairwise disjoint intervals of equal length whose union is
I¥ — I¥,. The number K} is chosen so that K} = 2 and

m(TYI) = rooy & (12)
fork=1,2,..., Ky and j = 2,3, ..., K§. (m denotes Lebesgue measure.) Now
define Iy, = Th-1(I¥)) for k=1,...,Ky and j =1,2,..., K. Define T on
1%, ; by putting T' equal to the affine map of I%, ; onto I, for j=1,2,...
veey K} — 1. Now define If; = IX¥} ).z fork=1,2,...,Kyand j=1,2,...
cor, K. Then {I¥+1|i=1,2,..., KyK}} is a set of Ky = KyK} pairwise
disjoint intervals whose union is (0, 1] such that 7' is defined on

and the restriction of 7' to IN*1 is the affine map of IF+1 onto I 4! for j=1
2, ..., Ky+1 — 1. This procedure, after a countable number of steps, defines 7'
on (0, 1] in such a way that the range of 7' is (0, 1). Note that it is possible to give
explicit formulas for 7' as we did for ¢ in Example 1, but the formulas for 7' would
be rather complicated.

Let

X =01~ (.
k=0

Let 4# be the Lebesgue measurable subsets of X, and let m be Lebesgue measure
restricted to %. Then it is easy to verify that 7' is an automorphism of (X, #, m).
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We remark that inequality (12) implies that K%, = 3 for each N. To see this,
observe that m(I¥) = 1/2¥ for each N. If K} = 2 for some N, then m(I7,)
= 1/2¥+1, Then (12) would not be satisfied for § = 2 and & = 1, since clearly
K = 2% for each N. So K}V = 3 for each N. In fact, these remarks show that K}V
must tend to infinity very rapidly as NV tends to infinity. ORNSTEIN used (12) in
his proof that there is no o-finite, invariant measure for 7' which is equivalent to
Lebesgue measure. However, in order for 7' to satisfy the hypotheses of Theorem 2,
it is only necessary that K} = 3 for each N. That is, at each stage of the con-
struction of 7', when I¥ is divided into smaller intervals, it is only necessary that
the right half of I¥ be divided into 2 or more parts.

We now show T satisfies the hypotheses of Theorem 2 as modified in Remark
2.1. We let # be the collection {If’]y =1,..., Ky; N=1,2,...} of intervals.
(Interval is now interpreted as in Remark 2.1.) It follows from the construction of
T that for each N and §

and since K% = 3

m(IF) <imIY;) for i=2,..., K}.

So for each IY we let A = IJ; and B; = I},  fori =1,..., K} — 1. We take
@ = p1 = B2 = 1/2. The integers p; = i Ky for i =1, ..., K} — 1. Finally, we
note that
max m (I} *1) = f maxm (L)) .
i i
Therefore

lim max m (IF) = 0.
N—ooco §

It follows from. Theorem 2 that 7 has no ¢-finite, invariant measure defined on %
which is equivalent to Lebesgue measure.

Example 3. We now describe the automorphism constructed by A. BRUNEL.
The method of construction is similar to the one used in the preceding example.
Let I1 = [0, 1/4), I} = [1/4, 3/4), and I} = [3/4, 1). Define ¢ on I} so that y is
the affine map of I} onto I}, and define ¢ on I} so that y is the affine map of I}
onto I3. Now suppose we have constructed 3% pairwise disjoint intervals whose
union is [0, 1). Call them I%, ..., I* (where n = 3F). Suppose we have defined ¢ on
n—1
U ¥ in such a way that the restriction of y to I¥ is the affine map of I¥ onto
Jj=1
I f+1 forj=1,...,n — 1. (Each of these intervals is assumed to be left closed and
right open.) We shall now define y on 3/4 of I%. To do this, divide % into 3 inter-
vals as follows: let I¥ ; be the left quarter of I%, let I% , be the middle half of I%,
and let 7% ; be the right quarter of I*. Now define I;‘z = pi-1(I% Y fori =1,2,3,
and j = 1, ..., n. Define y on I% ; by putting 9 equal to the affine map of It
onto I’fﬂ-ﬂ for 4 =1 and 2. Now define I;-fi = I’ml_l)ﬂ- for +=1,2,3, and
j=1,...,n Then {I¥*1|j=1,...,3n} is a family of 3%+l pairwise disjoint
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intervals whose union is [0, 1), and ¥ is defined on
3Ic+1 -1

U e
i=1
so that the restriction of  to I*+! is the affine map of I*+1 onto I¥}] for j=1
2, ..., 381 — 1, This procedure, after a countable number of steps, defines » on
[0, 1) such that the range of y is (0, 1). We remark that Brunel did not define y by
this procedure. He defined y by describing its graph. It is also possible to give
explicit formulas for y as we did for ¢ in Example 1.
Now let

X =1[0,1) —szpf({O}).
i=0

Let 4 be the Lebesgue measurable subsets of X, and let m be Lebesgue measure
on %. Then y is an automorphism of (X, %, m).

We now show that y satisfies the hypotheses of Theorem 2 as modified in
Remark 2.1. We let .# = {Iﬂy =1,...,3%5; k=1,23,...}. (Asin Examples 1
and 2, we shall now denote I¥ N X by I%.) It follows from the construction of p
that for each k and § we have

and hence

So for each I* we let A = I¥, and B = By = I¥;. We take o« = 1/2 = f§; and
P2 = 1/4. The integer p; = 3. Finally we note that
max m (I5¥+1) = § max m (I%)
i )
so that

lim max m (I%) =0.
k=00 §
It now follows from Theorem 2 that there is no o-finite, invariant measure for
which is defined on & which is equivalent to Lebesgue measure.

Remarks. In Examples 1 and 2 we have actually defined classes of auto-
morphisms, since in Example 1 we get a different automorphism for each choice of
ain (0, 1), and in Example 2 we get a different automorphism for each choice of the
sequence {K¥}. Also, the construction used in Example 3 can be modified so as to
produce a class of automorphisms of which y is the simplest example. Other more
or less technical modifications are possible.
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