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1. Introduction 

In  this paper we consider the problem of the existence of a a-finite measure 
which is equivalent to a given measure and invariant with respect to a given auto- 
morphism of the measure space. (An automorphism of a measure space is a bijee- 
tire, measurable, non-singular transformation of the space whose inverse has the 
same properties.) In  Section 2 we state the problem in detail and discuss previous 
results. In  Section 3 we prove two theorems. Theorem 1 describes two necessary 
and sufficient conditions for the existence of a a-finite, invariant, equivalent 
measure. In  Theorem 2 we show that  for an automorphism defined almost every- 
where on the unit interval satisfying certain conditions there does not exist any 
a-finite, invariant measure that  is equivalent to Lebcsgue measure. In  Section 4 
we describe three automorphisms which satisfy the conditions in Theorem 2 and 
hence do not have a-finite, invariant measures which are equivalent to Lebesgue 
measure. 

2. Statement of the Problem 

By a measure space we shall mean a triple (X, ~ ,  m) where X is a set, ~ is 
a a-algebra of subsets of X, and m is a measure, i.e., an extended real valued, 
countably additive, non-negative function defined on ~ such that  m ( f l ) =  0. 
(0 denotes the empty set.) The sets in ~ are called measurable sets. The space 
(X, ~ ,  m) and the measure m are called/inite if m (X) < c~, and (X, ~ ,  m) and 
m are called a-/inite if there is a countable collection {B~} of measurable sets whose 
union is X such that  m(Bt )  < c~ for i ~-- 1, 2, 3, . . . .  I f  # is a second measure 
defined on ~ ,  then/~ is said to be absolutely continuous with respect to m, written 
~u ~ m, ff #(B) ~- 0 whenever re(B) -~ O. [~ and m are said to be equivalent, 
written # ~ m, if they have precisely the same sets of measure zero. Clearly, 
/~ ~ m if and only ff # ~ m and m ~ #. 

The following terminology is used by A. TvLc~A in [1]. 

Definition 1. Let (X, ~ ,  m) be a measure space. A transformation r : X -+ X 
is called an automorphism f l i t  satisfies the following conditions: 

i) r is one-to-one and onto, 

ii) r and r preserve measurable sets, i.e., B e ~  imphes r  and 
r (B) e 2 .  

* This paper  is a revision of the  author ' s  thesis in The Mathematics  Depar tment  of Brown 
University.  I would like to t h a n k  my adviser, Professor YvaI  I~o, for his help and  guidance in 
the research which led to these results. 
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iii) r and r  are non-singular, i.e., 

~n(B) ----- 0 implies m(r  = m( r  ---- 0.  

Definition 2. Let  (X, ~ ,  m) be a measure space, and let r : X -~ X be an auto- 
morphism. A measure # defined on ~ is said to be invariant ff # (r (B)) ~ # (B) for 
each measurable set B. 

Our problem is the following one. Given a a-finite measure space (X, ~ ,  m) and 
an automorphism r : X --> X, when does there exist a a-finite measure # defined 
on ~ such tha t  # is invariant  and m ~ # ? The requirements tha t  # be a-finite and 
tha t  m ~ / ~  are intended to exclude such trivial invariant  measures as the counting 
measure and zero measure. However, the following proposition shows there is no 
loss of generality in requiring tha t  # - m. 

Proposition. Let (X,  ~ ,  m) be a a-/inite measure space, and let r : X --> X be an 
automorphism. Then there is a a-/inite invariant measure # de/ined on ~ such that 
m ~ # i / a n d  only i / there is a a-/inite invariant measure #o de/ined on ~ such that 
# o - r e .  

Proo]. Suppose # is a a-finite invariant measure defined on ~ and m ~ #. Let  
/ be a Radon-Nikodym derivative o f m  with respect to #. Pu t  A = { x e X [ / ( x )  -~ 0}, 
and 

+cr 

B = ( J  
j ~ - - o o  

Clearly, re(A) ---- 0, and by  non-singularity re(B) : O. Moreover, r  ---- B. Put  
#0 (E) : # (E - -  B) for each measurable set E. I t  is easy to verify/~0 is the desired 
measure. The converse is clear. 

The problem of finding an invariant measure has been thoroughly discussed by 
P. I-I~mMos [2] and K. JAco~s [4]. Necessary and sufficient conditions for the 
existence of a finite, invariant, equivalent measure have been given by E. HOPF 
[5], Y.N. DOWKE~ [6] and [7], CiLDE~O~ [9], and KAKUTANI and HA~IAN [10]. In  
1947 HALMOS [3] used the result in [5] to obtain a necessary and sufficient condi- 
tion for the existence of a a-finite, invariant, equivalent measure. In  1951 u  N. 
DOWKW~ [8] obtained a different condition equivalent to the existence of a a-finite, 
invariant, equivalent measure.  However, both these results seemed to be rather 
difficult to apply, and when they were published it was not yet  known tha t  there 
are automorphisms for which no a-finite, equivalent, invariant  measures exist. I t  
was not until 1960 tha t  D. S. O~STEI~  [11] gave the first example of an auto- 
morphism which has no a-finite, equivalent, invariant  measure. Since then other 
examples of such automorphisms have been given by  1~. V. C~ico~  [12] and A. 
B~U~EL [13]. In  what follows we obtain a new necessary and sufficient condition 
for the existence of a a-finite, equivalent, invariant  measure (Theorem 1) and use 
it to give a new example of an  automorphism tha t  does not have a a-finite, 
equivalent, invariant  measure. The proof (Theorem 2) tha t  our example has the 
desired property also covers the automorphisms of O~NSTEIN and B~uNv.L. 

3. Main Results 

Let (X, ~ ,  m) be a a-finite measure space, and let r X--> X be an auto- 
morphism. We first remark tha t  it is no loss of generality to assume m is finite. To 
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see this, suppose m (X) = oo. Since m is a-finite, there is a countable collection 
{B~} of  pairwise disjoint measurable sets such tha t  0 < m(Bi )  < oo whose union 
is X. Define a new measure m0 on ~ by  the formula 

l m(BCSBn)  
me(B)  = 2 n m(Bn) 

n ~ l  

Clearly, m0 is finite and m0 =- m. I f  there is a g-finite invar iant  measure/~ defined 
on ~ such tha t  # - m0, then  # = m, also. So we can assume m is finite. 

Definition 3. Given a measure space (X,  ~ ,  m) and an au tomorphism r  X --~X, 
we define a new measure m CP on ~ for each integer p by  the formula 

m r (B) = m (r (B)) 

for each measurable set B. I f / z  is any  other measure defined on ~ ,  the measures 
/z CP for each integer p are defined similarly. 

I t  is easy to see tha t  the non-singular i ty of  r and r  implies m -= m CP for 
each integer p. 

We also remark  tha t  # is an invar iant  measure ff and only ff # r = #.  I f  # is 
invariant ,  an easy inductive a rgument  yields # Cp = # for every integer p. 

We now describe a result  of  H~mMos which will be used in the sequel. 

Definition 4. Le t  (X, ~ ,  m) be a measure space. B y  a decomposition of a measur- 
able set B, we mean  a countable collection {Bi} of  pairwise disjoint measurable 
sets whose union is B. (We allow finite decompositions. I n  t ha t  ease, for some 
integer io > 0, B~ = 0 for all i => i0.) 

Definition 5. Let  (X, ~ ,  m) be a measure space, and let r : X -~ X be an auto- 
morphism. I f A  and B are measurable sets, we say B is a copy of  A, wri t ten A ~ B, 
if there are decompositions {A,} and {B,} of  A and B, respectively, and a sequence 
of  integers {n~} such tha t  Cn'(A d = Bi, for i = 1, 2, . . . .  

I t  is easy to see tha t  ~ is an equivalence relation on ~ .  

Definition 6. Let  (X, ~ ,  m) and r be as in Definition 5. We define a measurable 
set E to  be unbounded if there is a measurable subset A of  E such tha t  A ~ E and 
m ( E  - -  A) > 0. We say E is bounded i f E  is not  unbounded.  E is g-bounded i f E  is 
the countable union of  bounded sets. 

Theorem (HALlos).  Let (X, ~ ,  m) be a [inite measure space, and let r : X -+ X 
be an automorphism. Then there is a (~-/inite, invariant measure /z de[ined on 
which is equivalent to m i / a n d  only i / X  is or-bounded. 

Pro@ See [3]. 
We shall need the following lemma on unbounded  sets. 

Lemma.  Let (X,  ~ ,  m) be a ]inite measure space, and let r : X --> X be an auto- 
morphism. 2[/E is an unbounded measurable set, then there exists a measurable set 
B c E with the/ollowing properties: 

i) m (B) > 0 .  

ii) 2'or any s ~ 0 there exists a measurable set C c E such that B ,,~ C and 
re(C) < s .  

7* 
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Proo/: By hypothesis  there is a measurable set A c E such t h a t  A -- E and 
m(E - -  A) > 0. This means there are decompositions {E~} and {Ai) of  E and A, 
respectively, and integers {hi) such t h a t  Cn, (Ei) ~ A~. Define a t ransformat ion 

: E -+ A b y  ~ (x) = Ca, (x) for all x in El, i ---- 1, 2, 3 . . . .  Since A c E, ~ is well- 
defined for all positive integers n. Since r is an automorphism, ff D is any  measur- 
able subset of  E, then T (D) is measurable and m (D) ~ 0 ff and only f fm (T (D)) ~ 0. 
Observe t h a t  D N ~ (D). An  obvious inductive a rgument  shows the same is also 
true of  T n (D). Now let B = E - -  A. Another  easy inductive argument  shows tha t  
{zn (B) ]n  --~ 1, 2 . . . }  is a pairwise disjoint family of  sets all contained in E. Since 
re(E) is finite, m(~n(B)) ---> 0 as n ---> c~. Since ~:n(B) ,,, B, the lemma follows. 

We shall also need the Lebesgue Densi ty  Theorem which we state in the 
following form. 

Theorem (LEBESGV]~). Let B be a Lebesgue measurable subset o/the real line. Let 
m be Lebesgue measure. Then almost every point in B has the/ollowing property: For 
each s > 0 there is ~ ~ 0 such that 

m(B(~I) ~ 1 --  s 
re(I) - 

whenever I is an interval, x ~ I,  and 0 ~ m (I) ~ 8. 

Proo]. See [14]. 
We can now state our first result. 

Theorem 1. Let (X, ~ ,  m) be a ]inite measure space, and let r : X -> X be an 
automorphism. Then the/ollowing statements are equivalent: 

(a) There exists a a-/inite, invariant measure # de/ined on ~ which is equivalent 
to m. 

(b) For every s ~ 0 there is a decomposition {Xi)  o] X (which depends on e) with 
the ]ollowing property: ]or each i, ]or each measurable set B c Xi, and/or each integer 
p such that r (B) c X~, it is true that 

m(B)/(1 + e) <= mCP(B) ~ (1 + s)m(B) . 

(c) There is a decomposition { Yi} o / X  and positive constants ki, /or i -= 1, 2, . . . ,  
with the/ollowing property:/or each i , /or  each measurable set B such that B c Yi, 
and/or each integer p such that r ( B) c Yi, it is true that 

k im(B)  ~ m C P ( B ) .  

Proo/. ( a ) ->  (b): Let  # be a a-finite invar iant  measure defined such t h a t  
/z ~- m. Let  d#/dm [din~d#] be a Radon-Nikodym derivative of  tt with respect to m 
[m with respect to #]. The fact  t ha t  # ~ m implies we can choose dtt/dm and 
dm/d# so tha t  the following equations hold for each x in X. 

d# 
0 < ~ (x) < oo (1) 

dm 
0 < ~ ( x ) < o o  (2) 

d~ ( x ) =  ~ - ( x )  . (a) 
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Given e > 0, let an = (1 ~- e) n for n = 0, ~ 1, • 2 . . . . .  Then (because of equation 
(1)) the collection of sets consisting of 

_F~ = x Ia ~ < ~ (x) < at+l , 

for i = 0, 4- 1, 4- 2, . . . ,  is a decomposition of X. Fix i. By equation (3) we also have 

i dm < 1 

Suppose B is measurable, B c Fi, and p is an integer such that  Cp (B) c F~. Then 

mCP(B) = dm (x)d#g /~ =< # r  

=< ~ 1~ (B) :< --a~ ~ (x)dm =< :ai+la~ re(B) (4) 
B 

mq~P(B) ~ (1 ~- e)m(B). 

Inequality (4) also holds for E = r and r (E) ---- B, since E c Fl and 
r (E) c Fi. Hence, 

re(B) <= (1 -~ e)mCP(B) 

re(B)~(1 + e) <= mCP(B) (5) 

Since this is true for each i, we conclude (a) implies (b). 

(b) -~ (c): Clear. 

(c) -+ (a) : Let  { Y~} be the decomposition of (c). We assert Yi is a bounded set 
for each i. To see this, suppose B and C are measurable sets, B c Yi, C c Y~, and 
C is a copy of B. Then there exist decompositions {Bj} and {Cj} of B and C, 
respectively, and integers {nl} such that  

r  = Cj for i = i ,  2 . . . . .  

So 
c o  

i=1 j~ l  

By hypothesis, mr nj (Bj) ~ k~m (Bj) for each ], so 
c o  

re(c) => ~ (~)~(Bj) > ~m(B). 
j= l  

I t  now follows from the lemma that  Y+ must be bounded for each i. Hence, X is 
a-bounded. By the theorem of tI~mMos quoted above, (a) must hold. This comple- 
tes the proof. 

R e m a r k  1.1.  Theorem 1 generalizes a result of G. D. BIliK~OFF and P. 
S~ITit [15] (see also [5]) which deals with the case of finite invariant measures. 

R e m a r k  1.2.  The sets Yt and numbers k~ for i ~ 1, 2 . . . .  in (c) of Theorem 1 
also satisfy the following: for each i, ff B is measurable, B c Yi, and p is an integer 
such that  CP (B) c Y+, then 

mr <= � 8 8  
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Conversely, this condition implies the one in (c). This is proved in the same way 
inequality (5) was obtained from inequality (4). 

Corollary. Let (X, ~ ,  m) and r be as in Theorem 1. Suppose m (X) ~ 0 and that 
there is a a-/inite, invariant measure/~ de/ined on ~ such that # ~ m. Then /or  each 
s ~ 0 there is a measurable set E (depending on ~) such that m (E) ~ 0 and/or  every 
integer p 

dm r 
] < ~ - ~ ( x )  _< 1 + e 

l+e ----- 

holds a.e. on E ~ r  (E). (din CP/dm is the Radon-Nikodym derivative o I m Cr with 
respect to m) .  

Pros/.  Given s > 0, let {X/} be the decomposition of (b) of Theorem 1. 
m (X) ~ 0 implies at least one of the sets X~ must satisfy m (X~) ~ 0. Let  E be that  
set. For any measurable set B c E 5~ r (E) we have 

m(B)/ (1  + e) ~ mCP(B) ~ (1 + s ) m ( B )  

since B c E and CP (B) c E. This means 

f ~--~dm g f ~L~ (x)dm g f (l + s)dm. 
B B .B 

Since this is true for every measurable B c E n r (E), 

1 ~ dmr 
l + e =  dm ( x ) ~ ( l + s )  

holds a.e. on E n r (B). This is true for each integer p, Q.E.D. 
We now use this corollary to obtain a new technique for showing that  certain 

automorphisms do not have a a-finite, invariant, equivalent measure. 

Theorem 2. Let X be the unit  interval [0, 1], let ~ be the Lebesgue measurable 
subsets o] [0, 1], and let m be Lebesgue measure on ~ .  Let r : X --> X be an auto- 
morphism. Suppose there exists a ]amily j r  o] intervals contained in X with the 
/ollowing properties: 

(a) For almost all x in X ,  and ]or every (~ > O, there is an I in j r  such that x ~ I 
andO ~ re(I)  ~ ~. 

(b) There are positive numbers fli, fi2, and ~ with 0 ~ ~ ~ 1 such that/or every I 
in j r  there are measurable sets A ,  B i  . . . . .  Bn  contained in I satis/ying 

(bl)  Bt A Bj ~-~ for 1 ~ i ~ ] ~ = n  

(b2) re(A) >= f i im( I )  and re(B) = f l2m(I)  where B -~ ~ J B t  
i = 1  

(b3) m(Bt )  ~ ~ m ( A )  /or i = 1 . . . . .  n. 

(b4) For each i : 1, . . . ,  n, there is an integer Pi such that r --~ B~, and 
dm CW / dm is constant on A .  (The  constant is necessarily m ( B ~ ) / m ( A ) ~ ~. ) 

Then there is no (~-/inite invariant measure tt de/ined on ~ such that # =- m. 

Pros/.  I f  such a # did exist, then by the corollary there would be a measurable 
set E with m (E) ~ 0 such that  for every integer p 

2 ~ (x) < (6) ~ + 1  
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holds a.e. on E t3 r  (Take s = (1 - -  ~)/(1 + ~) in the corollary.) We shall 
show tha t  for any measurable set E of positive measure there is at least one p such 
that  equation (6) does not hold a. e. on E (3 r  (E). 

Choose e such tha t  

O < s <  f12+l " 

Suppose E is measurable and m (E) > 0. By the Lebesgue Density Theorem and 
condition (a) there is an I in J such tha t  

~ ( E  n I)  >__ (1 - ~ ) ~ ( I ) .  (7) 

This implies 

r e ( I - -  E)  < s i n ( I ) .  

So then by  (b 2) 

m ( A  (~ E) >= (31 -- e ) m ( I )  

m (B (3 E) ~ (fl~ --  s) m ( I ) ,  

where A and B are the sets referred to in (b2). From (bl)  and (b4) we conclude 
tha t  

m P' (E) (3 Bt v, (E) (3 Bi) ---- m Cv, (E (3 A)  
" =  i = 1  

i=1 re(A) 

m Cv' (E) c~ B/ > fl2m(I) (ill --  s ) m ( I )  > fl2(fil --  e ) m ( I ) .  
= r e ( I )  = 

This means 

) m CP'(E) c~ B~ + m ( E n B ) > = f l 2 ( f l l - - e ) m ( I ) + ( f l 2 - - e ) m ( I )  

>= (fl2fll - -  eft2 + f12 -- e ) m ( I )  > f l2m(I)  = re(B)  

n 

by our choice of s. Since E n B and QJ(r n B~) are both subsets of B, this 

last inequality implies 

m P'(E)(3B~ ( 3 E ( 3 B  > 0 .  

So for some ] 
m(r n B i (3 E) > O . 

Apply r  to this set and use non-singularity to obtain 

m ( E  (~ r  n A) > 0 .  

But  dmCVJ/dm(x) =< ~ < (e + 1)/2 on A. I t  follows tha t  inequality (6) does not 
hold a.e. on E n q~-P (E) when p = pj. This completes the proof. 

t ~ e m a r k  2 .1 .  The conclusion of Theorem 2 is still true if the hypothesis is 
modified in the following way. First, let X = [0, 1]-N where N is a set of Lebesgue 
measure 0, let ~ be the Lebesgue measurable subsets of X, and let m be Lebesgue 
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measure restricted to ~ .  Second, interpret the word interval to mean a set of the 
form I0 (3 X, where I0 is an interval in the usual sense. The proof remains the 
same; in particular, the Lebesgue Density Theorem can still be used to obtain the 
inequality (7). The details are left to the reader. I t  is this modified version of the 
Theorem tha t  we shall use in the next  section. 

4. Applications 

I t  is not obvious how Theorem 2 can be used to show the existence of auto- 
morphisms which do not have a-finite, invariant, equivalent measures. However, 
the hypotheses of Theorem 2 were chosen with a specific automorphism (Example 
1) in mind. I t  turned out tha t  the automorphisms of Ornstein and Brunel also 
satisfy these hypotheses. We shall now describe these three automorphisms. 

E x a m p l e  1. We shall first define a transformation r from [0, 1) onto (0, 1). 
Suppose 0 < ~ < 1. We define Xn -~ 1 - -  [~/(~ A- 1)] n+l for n = 1, 2 . . . .  , and 
x-n = 1/(~ ~ - l )  n+l for n : 0 ,  1, . . . .  Then {xnl - -oo < n  < c~} is a strictly 
increasing sequence in [0, 1] with l imno~x  n = 1, ] imn~_~x  n --- O. We define r on 
[0, x0) ---- [0, 1/(~ A- 1)) by  

(l-x0] 
r (x) = - ~ - / x  + x0 

1 
---- ~x-}- c~+l ' 

SO tha t  r maps [0, x0) onto [xo, 1). We define r on [xn, Xn+l) by 

( x-~ - z-('~+~) ) (x _ x~) § x_(,~+l) r (~) = ~§ z - ~  
( ( (Z ~n+i~ 1 

= ~r x - -  1 + \ ~ - + ~ ]  ] + (~ + 1)~+2 ' 

so tha t  r maps [xn, Xn+l) onto [x-(n+1), X-n). I t  is now easy to see tha t  r maps [0, 1) 
onto (0, 1), tha t  r is one-to-one, and tha t  r and r are measurable and non- 
singular. 

Now let 

= - C /  x [0, ]) CJ({0}). 
]=0 

Let ~ be the Lebesgue measurable subsets of X, and let m be Lebesgue measure on 
~ .  Then r (X) = X, so the restriction of r to X, which we also denote by  r is an 
automorphism of (X, ~ ,  m). 

We now interpret the word interval to mean a set of the form J n X where J is 
an interval in the usual sense. We shall show tha t  r has been defined such tha t  for 
each non-negative integer k the space X is the union of 2 ~+1 pairwise disjoint inter- 
vals, I~, ] 1, 2, 2 ~+1, with the property tha t  r (I~) . . . . .  = 1i+ 1 and dmr is 
constant on I~ for ] = 1, 2 . . . . .  2 ~+x - -  1. These intervals will form the set J of 
Theorem 2. 

Let  I ~  [0, x0) n Z and 10 = Ix0, 1) (~ X. Then r = i o. Suppose we 
have shown tha t  there are 2 ~+1 intervals, I~ . . . . .  I~, (letting n = 2 ~+1 to simplify 
notation) such tha t  the f o l l o ~ g  are satisfied: 

i) I~ ~- [0, x-D n X and I~n = [x~, 1) 5~ X. 
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ii) {I][] ---- 1 . . . . .  n} is a decomposi t ion of  X. 
ifi) 4 ( I ~ ) =  1~+: f o r ] ' =  1 . . . . .  n - -  I. 

iv) I~ is a subset  of  [0, x0) or [x/, x~+:) for some integer i ~ 0, for ~ -~ 1 . . . .  , n - -  1. 

Define I k = [0, x_(~+:)) (~ X and I~ 2 [X-(k+:), x_~) n X.  Define I .~. 
= r (I1~,i) for )" = 1 . . . . .  n and i = 1, 2. It follows f rom tim) t h a t  r (]1 k) = In  k. 
I t  follows f rom iii), iv), and  the definition of  r t h a t  

r  (x) = ax  + b (8) 

for x in I k, where a and  b are real constants ,  a > 0. Hence  In~: = Cn-:(I~,:) 
= [xe, y) f ~ X  and I n ~ e = r  [y, 1) n X  for some y such t h a t  x g <  
< y < 1. Now x-(~+:) satisfies 

X - / c  - -  X - ( k + l )  

x-(k+D 
Hence  

m(ii~ ) - -  g .  

dm r 
Equa t ion  (8) implies ~ (x) : a for x in I1~1. So 

re(Ink, 2) m a n - 1  (Tk ~ am(I~,2) _ _  ~ ~ : , 2 2  

m (/Tn~, :) m(~n-i (Ilk 1 ) a~(ll~,l) 
This implies 

1 - - y  
y - -  xg 

Ikn,1 = [Xk, Xk+l)  ('~ X 

1 )m(I~) (9) m (z~:) = ~ _ ~  

( ~ )m(I~) (10) ~(1~2)  = ~ - + ~  

~ ( 1 ~ )  = ~ ( s ~ : ) .  ( u )  

k I t  also follows f rom conditions iii) and  iv) t h a t  dmCp/dm is cons tant  on Ii, 1. 
Equa t ion  ( l l )  implies this cons tan t  is ~. Also, i t  follows f rom equations (9) and (10) 
t h a t  

1 max m(I~) ,  
] i 

Hence,  

which implies y xk+:. So and  I e = n,e = [xe+z, 1) r~ X. 
I t  follows f rom the definition of r t h a t  r ---- I~,2. So now, if  we define 
i ~ + 1 =  i~,l and I ~ + } =  I~2 for ] =  1 . . . . .  n, then  r  i~++~ for ] =  1, 
2 . . . . .  2n  - -  1. (Note 2n  = 2k+2.) Hence  (I~+:]] = 1 . . . .  , 2  ~+2} is a set  of  2 k+2 
intervals  t ha t  sat isfy conditions i ) - - iv )  with k replaced b y  k -k 1. I t  follows b y  
induct ion t h a t  for each non-negat ive  integer k there  is a set  {I~] ] ---- 1 . . . . .  2 ~+1} 
of  intervals  t h a t  sat isfy conditions i ) - - iv) .  

Le t  I~ be one of the  intervals  we have  jus t  constructed.  Then I~ = I ~ :  kJ I~2 
and  111 (~ I~2 ---= 0. Also, Cv(I~x ) = I~, 2 where p ----- 2 k+l. I t  follows f rom condi- 
t ions iii) and  iv) t h a t  dm CJ-:/dm is cons tant  on I1 k, and this implies 

- ~ .  
~(• - m(I~,:) 
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and hence 
lim max m ( I~) = O . 

k-+oo ] 

I t  is now easy to see that  the automorphism r satisfies the hypothesis of 
Theorem 2 as modified in R e m a r k  2.1. Let  {I~1i  = 1 . . . .  ,2~§ ~ = 0, 1 . . . .  } be 
the f a ~ l y  ~ .  For each 1~ in J ,  let  ~ = I 5  and B = B1 = I 5 .  Let  ~ be the 
used in the construction of C, and let fil = 1/(~ ~- 1) and let f12 ---- ~/(~ -~ 1). The 
integer Pl = 2 ~+1. By Theorem 2 there is no ~-finite, invariant measure defined on 

which is equivalent to Lebesgue measure. 

E x a m p l e  2. We now describe the automorphism constructed by  D. S. O~N- 
S T ~  in [11]. Let  I~ = (1/2, 1] and I12---- (0, 1/2]. Define T on I ~ b y  T ( x )  
---- x - -  1/2, so tha t  T ( I  1) -= I~. I f  J1 and J~ are intervals, we call the map of the 
form x --~ a x  + b, where a and b ~re real constants, a > 0, which maps J1 onto J2, 
the a]]ine map of J1 onto J2. Suppose we have constructed Kiv pairwise disjoint 
intervals whose union is (0, 1]. Call them I ~  . . . . .  I ~ .  (All intervals in this example 
are assumed to be left open and right closed.) Suppose we have defined T on 

K~: -- 1 

so tha t  the restriction of T to I~ v is the affine map of I~ v onto I ~v for j ---- 1, 
i + 1 ~  �9 �9 �9 

. . . .  KN --  1. We shall now define T on at least half of I ~ .  To do this, divide I ~  
into K~v intervals as follows. Let  I :v be the left half of I~ ,  and let l~j ,  ] = 2, 1,1 �9 �9 �9 

. . . .  K~, be K~v - -  1 pairwise disjoint intervals of equal length whose union is 
I ~  zr K~v is chosen so = - -  I1,1. The number  tha t  K~v > 2 and 

( 1 2 )  m ( T  k-l(I~,i) ) <= (100)NKN 

for /c ---- 1, 2 . . . . .  KN and ] ----- 2, 3, . . . ,  K 1. (m denotes Lebesgue measure.) Now 
define I~,j = T k- l ( I~ j )  for k = 1 , . . . ,  K2v and ] =  1, 2 . . . . .  K~r Define T on 

N KN, i o n t o  1 , i + 1  ' ' .  IK~ 5 by putting T equal to the affine map of I ~v 12v for ] = 1, 2, 
g~v 1. Now define I~, 1 rN+l  for k 1, 2, g~v and 7" ----- 1, 2, �9 ", -- ~ • 1) +k ----- "'', "'" 

. . . .  K~v. Then (I~+11~ = 1,  2 ,  . . . ,  K N K ~ }  is a set of KN+I = K N K ~  pairwise 
disjoint intervals whose union is (0, 1] such tha t  T is defined on 

KN+I - -  I 

U If+~ 
1 = 1  

and the restriction of T to I f  +1 is the affine map of I~r onto I ~  + 1  for ] =  1 
2, . . . ,  KN+I - -  1. This procedure, after a countable number of steps, defines T 
on (0, 1] in such a way tha t  the range of T is (0, 1). Note tha t  it is possible to give 
explicit formulas for T as we did for ~ in Example 1, but  the formulas for T would 
be rather  complicated. 

Let  

= -0 X (0, 1] Tk({1}). 
k = 0  

Let ~ be the Lebesgue measurable subsets of X, and let m be Lebesgue measure 
restricted to ~ .  Then it is easy to verify tha t  T is an automorphism of (X, ~ ,  m). 
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We remark  t ha t  inequal i ty  (12) implies t h a t  K~v ~ 3 for each N. To see this, 
observe t h a t  m ( I ~ )  = 1/2 ;v for each N.  I f  K ~  = 2 for some N,  then  m(I~l,U) 
- -  1/2 ;v+~. Then  (12) would not  be satisfied for ] ~ 2 and k = 1, since clearly 
KN ~ 2 ~v for each N. So K~v ~ 3 for each N. I n  fact,  these r emarks  show t h a t  K)r 
mus t  t end  to infinity ve ry  rap id ly  as N tends to infinity. OgNSTn~S used (12) in 
lfis p roof  t h a t  there is no a-finite, invar ian t  measure  for T which is equivalent  to 
Lebesgue measure.  However ,  in order for T to sat isfy the hypotheses  of  Theorem 2, 
i t  is only necessary t h a t  K~v ~ 3 for each N. T h a t  is, a t  each stage of the  con- 
s t ruct ion of  T, when I ~  is divided into smaller  intervals,  i t  is only necessary t h a t  
the  r ight  ha l f  of  I ~  be divided into 2 or more  parts .  

We now show T satisfies the  hypotheses  of  Theorem 2 as modified in R e m a r k  
~. 1. We let : be the co~ection { S f l :  = 1, . . . ,  g ~ ;  ~ = 1, e, ...} of  ~tervals .  
( In te rva l  is now in te rpre ted  as in l~emark 2.1.) I t  follows f rom the construct ion of 
T t h a t  for each N and ] 

~ ( s b )  = �89  

and since K ~  ~ 3 

~ ( ~ Z ~ ) _ < ~ ( ~ Z ~ )  for ~ = 2 , . . . , K ~ .  

So for each I 7  we let ; = I~1 and ~ = I 5 + ~  for ~ = 1 . . . . .  K ~  - -  1. We take 
= fil = fie = 1/2. The  integers p~ ~- i K N  for i = 1 . . . . .  K~v - -  1. Finally,  we 

note  t ha t  

Therefore  

l im m a x  m (I~)  = 0 .  
jy-->oo : 

I t  follows from. Theorem 2 t h a t  T has no a-finite, invar ian t  measure  defined on 
which is equivalent  to Lebesgue measure.  

E x a m p l e  3. We now describe the au tomorph i sm constructed b y  A. B~UNEL. 
The me thod  of  construct ion is similar to the  one used in the  preceding example.  
Le t  11 ---- [0, 1/4), 12 ~ ~- [1/4, 3/4), and  I~ : [3/4, 1). Define ~ on 11 so t h a t  y~ is 
the  affine m a p  of  11 onto 121, and  define ~ on I~ so t h a t  ~ is the affine m a p  of I~ 
onto I~. Now suppose we have  const ructed 3 k pairwise disjoint intervals  whose 
union is [0, 1). Call t h e m  I~ . . . .  , In  k (where n ---- 3~). Suppose we have  defined W on 
n - - 1  

( . J  I~ in such a w a y  t h a t  the  restr ict ion of  !P to I~ is the affine m a p  of  I ]  onto 
j = l  

I~+1 for ] ----- 1 . . . . .  n - -  1. (Each of these intervals  is assumed to be left  closed and  
r ight  open.) We shall now define ~ on 3/4 of  In k. To do this, divide I~ into 3 inter-  
vals as follows : let  I~ 1 be the  left  quar te r  of  I~, let I~,2 be the middle ha l f  of  I~, 
and  let I~,a be the r ight  quar te r  of  I~. Now define I~ i  ---- ~f1-1 (I~ i) for i ---- 1, 2, 3, 
and ] : 1 . . . . .  n. Define ~0 on I~,i b y  pu t t ing  ~ equal  to the affine m a p  of  Ink~ 
onto I~1,i+1 for i ---- 1 and  2. Now define I ~..J,~ ~ I~+ln(i-1)+] for i = 1, 2, 3, and  
1" = 1 . . . .  , n .  Then  { I ] + l l ]  = 1, . . . ,  3n} is a family  of  3 k+l pairwise disjoint 
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intervals whose union is [0, 1), and ~p is defined on 

3 ~+~- 1 

SO tha t  the restriction of  ~ to I~ +1 is the affine map of I~ +~ onto ~j+lr~+l for j ~ 1 

2 . . . . .  3 ~+1 - -  1. This procedure, after a countable number  of  steps, defines W on 
[0, 1) such tha t  the range of  W is (0, 1). We remark  tha t  Brunel  did no t  define ~v by  
this procedure. He  defined W by  describing its graph. I t  is also possible to give 
explicit formulas for W as we did for r in Example  1. 

Now let 
CO 

x = [ 0 , 1 )  - U ~ J ( { 0 } ) .  

Let  ~ be the Lebesgue measurable subsets of X, and let m be Lebesgue measure 
on ~ .  Then ~0 is an automorphism of (X, ~ ,  m). 

We now show t h a t  ~ satisfies the hypotheses of  Theorem 2 as modified in 
Remark  2.1. We let J ---- {I~[{ = 1, . . . ,  3~;/c ---- 1, 2, 3 . . . .  }. (As in Examples  1 
and 2, we shall now denote 11 n X by  11. ) I t  follows from the construct ion of  ~0 
tha t  for each k and { we have 

(~,3)  = ~ ~ ( ~ )  

and hence 
m(I~,8) = ~ k ~ m ( I i , 2 )  . 

So for oaeh 11 we  let  A = I~,2 and B = B1 = ~ ,3 .  W e  t a k e  ~ = 1/2 = ~1 and  
f12 = 1/4. The integer Pl  ~ 3 ~- Final ly we note t ha t  

m a x  ~ (I~ +1) = �89 m a x  ~ (I~) 
J" i 

so tha t  

lira max  m (11) -~ 0 .  

I t  now follows f rom Theorem 2 t h a t  there is no a-finite, invar iant  measure for ~0 
which is defined on ~ which is equivalent  to Lebesgue measure. 

R e m a r k s .  I n  Examples  1 and 2 we have actual ly  defined classes of auto- 
morphisms, since in Example  1 we get a different an tomorphism for each choice of  

in (0, 1), and in Example  2 we get a different au tomorphism for each choice of  the 
sequence {K~v }. Also, the construct ion used in Example  3 can be modified so as to 
produce a class of automorphisms of  which F is the simplest example. Other  more 
or less technical modifications are possible. 
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