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Summary. We obtain a strong approximation theorem for partial sums of 
i.i.d, d-dimensional r.v.'s with possibly infinite second moments. Using this 
result, we can extend Philipp's strong invariance principle for partial sums 
of i.i.d. B-valued r.v.'s satisfying the central limit theorem to B-valued r.v.'s 
which are only in the domain of attraction of a Gaussian law. This new 
strong invariance principle implies a compact as well as a functional law 
of the iterated logarithm which improve some recent results of Kuelbs (1985). 

1. Introduction and Main Results 

Let B denote a real separable Banach space with norm II" II. Let X: ~2-+B 
be a random variable, defined on a p-space ((2, d ,  P). Suppose that X satisfies 
the Central Limit Theorem (CLT). This means that there exists a (nondegenerate) 
Gaussian mean zero r.v. Y such that 

(1.1) S Xk/  converges weakly to # = 5~(Y), 

whenever {X,} is a sequence of i.i.d.r.v.'s with common law ~ (X ) .  
Let H,__ B be the reproducing kernel Hilbert space determined by the covari- 

ance structure of #, and denote by K its unit ball which is known to be a 
compact subset of B. For  detailed definitions see Kuelbs (1976), Lemma 2.1. 
The following compact law of the iterated logarithm (CLIL) was obtained inde- 
pendently of each other by Heinkel (1979) and Goodman  et al. (1981). 

Theorem A. Assume (1.1). Let {X,} be a sequence of  i.i.d, r.v.'s with the same 

distribution as X.  With probability one, Xk/  : nc  is relatively corn- 
L 1  

pact in B, and its limit set coincides with K, iff 

(1.2) E[IIXII2/Lz [IXl]] < oe. 
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Here and in the following L x  denotes log(max(x, e)), whereas L z x  stands 
for L(Lx) ,  x > O. 

Moreover, Philipp (1979) showed that CLT plus CLIL implies a strong invar- 

lance principle with error term o (]/n L 2 n). 
Combining this result with Theorem A, one obtains the following basic 

strong invariance principle for partial sums of i.i.d. B-valued r.v.'s satisfying 
CLT. 

Theorem B. Assume (1.1). One can construct a p-space ((2 o, ~4o, Po) and two 
sequences o f  i.i.d, r.v. 's {X,}, { Y,} with the same distribution as X and Y, respective- 
ly, such that 

1 1 

/ff (1.2) holds. 

Since {Y,,} is a sequence of i.i.d. Gaussian r.v.'s, {I1,} satisfies a functional 
law of the iterated logarithm. Therefore, it immediately follows from (1.3) that 
{X,} satisfies not only the CLIL but also the functional law of the iterated 
logarithm. 

It is now of interest to find analogous results if X is only in the domain 
of attraction of Y,, i.e., if 

(1.4) ~ Xk/a  . converges weakly to g__~o(y) 

for some sequence a,T oo. 
Kuelbs (1985) obtained a compact as well as a functional law of the iterated 

logarithm under the assumption (1.4). The main purpose of the present paper 
is to show that even more is possible: We give an extension of the strong 
invariance principle (1.3) to B-valued r.v.'s in the domain of attraction of a 
Gaussian law. Using this general theorem, we obtain a compact and a functional 
law of the iterated logarithm which improve somewhat upon the above men- 
tioned results of Kuelbs (1985). 

Theorem 1. Let  X be a B-valued mean zero r.v. satisfying (1.4). One can construct 
a p-space ((2 o, d o, Po) and two sequences o f  independent r.v.'s {X,}, {Y,} such 
that ~ ( X , ) =  5~(X), 5r ~ ( a ,  Y), where a,2.'=bE, L2,j ' b,:=a2,/n, n~]N, and 

n n 

Z x k - Z  a.s. 
1 1 

(1.5) 

iff 
oo 

(1.6) ~ P ( [ [ X  [[ > at, L2,1) < ~-  
t 

Corollary 1. Let  X be as in Theorem 1. Assume (1.6). I f  {X , }  is a sequence o f  
i.i.d, r.v.'s with the same distribution as X ,  we have with probability one" 
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1 ~ X k :  n~ is relatively compact in B, and the set of its limit points 
a [ 2 n L 2  n] 1 

coincides with K. 

Before we state our functional law of the iterated logarithm we need still 
some further notation. We denote by CB[0, 1] the space of all continuous B- 
valued functions on [0, 1] endowed with the sup-norm. Let Y be the canonical 
cluster set determined by the covariance structure of Y (cf. Kuelbs (1976), (5.1)). 
We denote by q,: f2--. CB[0, 1] the random polygon defined by 

( rn 

r l . ( t ) , = ~ X k ,  t=m/n,  O<_m<_n 
(1.7) 

[linearly interpolated elsewhere for 0 < t < 1. 

where {X,} is a sequence of independent copies of X. 

Corollary l .  Let X be as in Theorem 1. Assume (1.6). I f  {qH} is defined by (1.7), 
we have with probability one: {tln/a[2nLznl: hEN} is relatively compact in C B [-0, 1], 
and the set of its limit points coincides with X .  

We now show that our condition (i.6) is weaker than the moment assumption 
(2.5) of Kuelbs (1985). Since by the convergence of types theorem all norming 
sequences {a,} in (1.4) are asymptotically equivalent, we have 

(1.8) at2.L2.1~d(2nL2n) as n ~ ,  

where d(t), t>O is defined as in Proposition 1 of Kuelbs (1985). Moreover, we 
have for the norming sequence {7.} in the compact (functional) LIL of Kuelbs 
(1985)" 

(1.9) 7 , ~ d ( 2 n / L 2 n ) L 2 n  as n~oo.  

Since d(t)/l~tt is non-decreasing, we can conclude: 

(1.10) lim ( aL 2,L2,j/7.) >= 1. 
n 

0(3 

Thus the assumption ~ P(I]XII >Tn)< 0% which is equivalent to condition (2.5) 
1 

of Kuelbs (i985), implies (1.6). 
An example given in Sect. 5 below shows that the converse implication does 

not hold in general. 
Basic tool of the proof of our Theorem 1 is Theorem 2 below which is of 

independent interest. 
We denote by (IR d, ]-]) the d-dimensional euclidean space. Z is always a 

non-degenerate positive semidefinite matrix. 

Theorem 2. Let X:  Y2~IR a be a mean zero random vector satisfying (1.4) with 
i t=N(0,  Z). Let {cn} be a sequence of positive real numbers such that c,,/~n is 

non-decreasing, and lira (cn/a,) > O. Assume that ~ P(I X I> c,) < oo. Then one can 
c13 

n 1 
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construct a p-space ((2o, do,  Po) and two sequences of independent random vectors 
{X.}, {Y.} with ~e(X.)=Se(X), ~(Y.)=N(O, Z.), where ~.==cov(Xl{IXl<=c.}), 
n e N ,  such that 

n n 

(1.11) ~ X k - - ~  Yk=o(c.) a.s. 
1 1 

An analogous result has been obtained by Einmahl (1987a) for sequences 

{c,} such that c,/]/n is non-increasing and c,/n 1/3 is non-decreasing (see [6, 
Theorem 13). 

The first strong approximation result for partial sums of i.i.d, real valued 
random variables with infinite variances, being still in the domain of attraction 
of N(0, 1), is due to Mijnheer (1980). Unlike Theorem 2 this result is restricted 

to symmetric r.v.'s and sequences {c,} such that c,/]//n is slowly varying. Similarly 
as in (1.11), Mijnheer obtains under his assumptions an approximation with 
error term o(c,). But the approximating sequence {I1,} of normally distributed 
random variables in his Theorem 2.1 is different, and it does not appear very 
helpful when trying to obtain general LIL results like Corollaries 1 and 2 above. 
That is the main reason why we prefer to prove the strong approximation 
theorem (1.11) instead of simply extending Mijnheer's Theorem 2.1 to the multi- 
dimensional case. 

Moreover, it will turn out when specializing the subsequent proof of Theo- 
rem 2 to real valued random variables that we have in this case no need for 
the assumption of X being in the domain of attraction of N(0, 1). We obtain 
in Sect. 2 as a byproduct a general strong approximation theorem being valid 
for arbitrary real valued random variables (see Theorem 3). 

In Sect. 3 we infer Theorem 1 from Theorem 2, which is proved in Sect. 2. 
Corollaries 1 and 2 are proved in Sect. 4. We finally give in Sect. 5 the above 
announced example for a random variable satisfying the assumptions of our 
Theorem 1 but not those ones of Kuelbs (1985). Our example also shows that 
the known LIL of Feller (1968) contains an error. 

2. Proof of Theorem 2 

2.1. A Preliminary Result 

We need the following 

Proposition 1. Let X:  #2-~ ~a be a mean zero r.v. in the domain of  attraction 
of N(O, Z). Denote by Z(t) the covariance matrix of X I  { IX]~ t ) ,  t~O. Let the 
function G(t), t ~  0 be defined by 

(2.1) G(t ) ,=E[(X ,  y)2 1 {[<X, y)[<t}] ,  

1 
where y ~ ]Ra is a f ixed vector such that (y, Z y )  = 1. Then: G(O X (t) ~ Z as t ~ oo. 
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Proof of the Proposition. (i) Let {X,} be a sequence of independent copies of 
X. According to (1.4) we have: 

(2.2) 59 Xk converges weakly to N(0, s 

From (2.2) we easily infer: 

(2.3) 59 {X  k, y) converges weakly to N(0, 1). 

Therefore, we can conclude from the general 1-dimensional central limit theorem 
(cf., Chow and Teicher (1978), Chapter 9, Theorem 4) and the convergence of 
types theorem: 

(2.4) a,~d(n) as n--+oe, 

where the function c~ is defined by 

(2.5) ci(t).-=sup {s > 0: sZ/G(s)<t}, t>0 .  

Since G(t), t> 0 is non-decreasing, we easily obtain from the above definition: 

(2.6) ci(t) 2 = t G(a(t)), t > O. 

Because of (2.3) G is slowly varying at infinity, and we obtain from (2.4) and 
(2.6): 

(2.7) a2,/n.,~G(an) as n--+oo. 

(ii) Since a, Too, we have for 8>0:  

(2.8) P(IXl>e.a, )~O as n---,oo. 

We set X,k'.=Xk/a,, 1 <=k <n, neN.  
Since the Xk'S are i.i.d.r.v.'s with the same distribution as X, we obtain 

from (2.8): 

(2.9) max P( lX,k l>O~O as n~oo  (~>0). 
l<k<_n 

Thus {X,k } is an infinitesimal triangular array such that 

(2.10) 59 X,k converges weakly to N(0, X). 
k = l  / 

(Recall (2.2).) 
Applying Corollary2.12(2), De Acosta, Araujo and Gin4 (1978) to 

f ( x ) =  <z, x),  xelR d, we obtain: 

(2.11) ~ <z, Cov(X,kl)Z ) --+ <Z, Xz )  (zelRe). 
k = l  
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1 
Since Cov(X,kl) = ~ -  Z(an), we have: 

an 

n 
(2.12) ~ Z(an)~Z 

an 
a s  n---> o0. 

Hence we infer from (2.7)" 

1 
(2.13) - - Z ( a . ) ~ X  as n~oo.  

G(an) 

(iii) Let now {tn} be a sequence such that an<tn<an+x, n~N. Since an+l/an 
--, 1 as n ~  0% we have t.--~ a, as n ~  oo. Therefore, we obtain from the convergence 
of types theorem: 

(2.14) 5~ X k converges weakly to N(0, S). 

Replacing {an} by {tn} in part (ii) of the proof, we obtain" 

1 
(2.15) - - S ( t n ) ~ Z  as n~oo.  

G(tn) 

Since (2.15) holds true for all sequences {tn} such that an<tn<an+l, heN, it 
can easily be seen that it must hold for any sequence tnl"oo. This proves the 
assertion. 

2.2. Conclusion of the Proof of Theorem 2 

W.l.o.g. we assume S = I ( =  d-dimensional unit matrix). We show that there exist 
a p-space (f21, all, P1) and two sequences of independent r.v.'s {)(,}, {Y,'} such 
that 

5f(Y,.n)=Sf(Xl{lXl<c,,}), 5r Zn), n ~ g  
and 

n n 

(2.16) ~ ( J (k - -E[X~J) - -~  Y[=O(Cn) a.s. 
1 1 

To prove (2.16), we now apply Theorem 2, Einmahl (1987b). According to 
this result it is possible to obtain a construction which yields (2.16) if the follow- 
ing condition is fulfilled: 

co 

(2 .17)  ~ Ck- 3 E l-I X k  - -  g F X k l  [31 < 00. 
1 

Though this result is only formulated for sequences of independent random 
vectors {~,} such that cov(~,)=a~F, n~N, the following considerations show 
that it is also applicable in the present situation. Using remark (a) following 
Proposition 1, and the proof of Theorem 2, Einmahl (1987b), one can easily 
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show that this result remains valid provided that the following condition is 
fulfilled: 

(2.18) lim (A (4.)/2 (4.)) < 0% 
n 

where A (4.) (2 (4.)) denotes the largest (smallest) eigenvalue of cov (~.), n e N. 
It now follows from Proposition 1 that 

2 ( X . - - E [ X . ] ) ~ G ( c . ) ~ A ( X . - - E [ X J )  as n--+oo, 

whence (2.18) holds. 
Since E[IXk--E[Xk] [ 3] < 8E[l)gkla], keN,  we obtain (2.17) from the subse- 

quent Lemma 1, applied with Z = I X I. 

co 

Lemma 1. Let Z: t'/--+[0, oo) be a r.v. such that y 'P(Z>c.)<o% where {c.} 
1 

is a positive sequence such that c./]/n is non-decreasing. Then we have: 

co 

Zc2  E[z 
I 

Proof. We set p.,=P(c._ 1 <Z  <c.), naN. (Co.'=0). Then: 

co co ~ 3 

2 O n  3 E [ Z  3 l {Z <=cn}] <= Z c; 3 ~ p k  Ck 

1 1 k = l  

= Ck/Cn) 3 Pk < k/n) 3/2 Pk 
k = l  n=k k = l  n=k / 

<= Z k  3/2 k 3/2+ Sx- /2dx pk 
k = l  k 

_-<1+ ~ 2 k p k = l + 2 ~ P ( Z > C k _ O < o O .  [] 
k = l  k = l  

Let {(.} be a sequence of i.i.d, random vectors with the same distribution 
as X. Put ~-..'=~. l{ l ( . ]<c .} ,  heN.  Employing the Borel-Cantelli lemma, we 
easily obtain that 

~ k - - ~ k = O ( 1 )  a.s. 
1 1 

Using Lemma A.1, Berkes and Philipp (1979), and (2.16), we can construct a 
p-space (f2 o, ~r Po) and two sequences of independent random vectors {X,}, 
{ Y,} with the desired distributions such that 

n 

(2.19) ~ ( X k - - E [ X 1  {IXI<ck}])--~Yk=o(c.)  a.s. 
1 1 
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Thus, it remains to show that 

n 

(2.20) ~ E [X 1 {1 X[ < Ck}] = 0 (C.). 
1 

For the sake of later reference we now prove (2.20) directly for random 
variables taking values in an arbitrary separable Banach space. 

Proposition 2. Let  X be a B-valued r.v. satisfying (1.4). Then we have for  any 
sequence {c,} such that n -  ~ c, is non-decreasing for some ~ > O, and lim (c,/a,) > 0: 

n 

~ e[X l { llXll ~ck}3 =o(c.). 

Proof  Let a: [0, o e ) ~  [0, oe) be an increasing continuous function such that 
a(n)=a, ,  n ~ N ,  a(0)=0. It is well known that (1.4) implies nP([IX[[ > a , ) ~ 0  
a s  n---+ o o .  

By means of interpolation we obtain: 

(2.21) lim (a-  1 (u) P (IIXll > u)) = 0. 
U - - 4 0 0  

Furthermore, (1.4) implies that a is a regularly varying function at infinity with 
exponent I/2, whence the inverse function a-1 of a is regularly varying at infinity 
with exponent 2. Using the Karamata representation of a -  1 (see Seneta (1976), 
Theorem 1.2), it is easy to see that a-1 satisfies condition (2.24) of Lemma 3 
for any 7e(1, 2). We conclude: 

(2.22) ("?' ) lim g[-IlXl[ 1 {llXll >u}] =0. 
u ~ o O  

Noticing that E [X] = 0, which is a consequence of (1.4), we infer: 

(2.23) ~,--,~olim ( a - ;  (u) [[E[XI{I[XI[<u}]LO=O" 

Combining (2.23) with the subsequent Lemma 2 yields Proposition 2. 

Lemma 2. Let  X be a B-valued r.v. such that 

lim (g~ u) ,]E[XI{IIXII<=u}],,)=O, 

[] 

where g: (u0, oe)--*(0, ~ )  is an increasing function. Then, we have for any sequence 
{c,} such that n -  ~ c, is non-decreasing for  some c~ > 0, and lim(g(c,)/n) > 0: 

n 

~ EEX I { IIXll ~ck}] =o(e.). 
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Proof Let e > 0  be fixed. From the above assumptions it easily follows that 
we have for k > ko (e) (say): 

lIE[X1 {[IXI] _---ck}] 1[ <=eck/k. 

We get for n > k o : 

" _-<ko ~2 c2 1 ~ E [ X I { I ] X l l  <ck}3 Cko/C,+ eck/kc, 
k = k o  

<= ko cko/c, + ~ n-  1 e(k/n)- 1 +~ 
k = k o  

1 

< k o c k o / c , + e S x - X + ~ d x < 2 e / ~  for n>k l ( e  ) (say). [] 
0 

Lemma 3. Let 4" f2--+ [0, oo) be a random variable such that lim (h(u) P(~ > u)) < C, 
u ~ o o  

where h: [Uo, oo)--.(0, oo) is a function such that the following condition is fulfilled 
for some K > i and some 7 > 1 : 

(2.24) h(u)/h(v)< K(u/v) y, Uo <U<_V. 

Then we have 

lim (?  

Proof By means of partial integration we obtain: 

EE~I { ~ > u } ] < u P ( ~ > u ) +  ; P ( ~ > v )  dv. 
u 

Let 8 > 0 be fixed. Then we obtain for u > Ul (8) (say): 

h ( 1 ) (u) E [~ 1 { ~ > u}] <--_ (C + 8) 1 + u S (h (u)/h (v)) d v 
IA u 

<=K(C+8)(l+u ~-1 ;v -~dv)<=(2C+28)K/(7-1). 
u 

[] 

2.3. A General Strong Approximation Theorem for Partial Sums 
of I.I.D. Real Valued Random Variables 

The only place in the proof of (2.19), where we have used the assumption that 
X is in the domain of attraction of N(0, Z) is (2.18). But if d = 1 (2.18) is automati- 
cally fulfilled. Thus, we have implicitly proved: 
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03 

Theorem 3. Let X be a real valued random variable. Assume that ~ ,P(]XI>c , )  
1 

< o% where {c,} is a sequence of positive real numbers such that c,/]/n is non- 
decreasing. Then one can construct a p-space (Do, do ,  Po) and two sequences of 
independent random variables {X,}, { Y,} with ~ (X,) = ~ (X), ~ (Y,) = N (0, a2), 
where o-2 = E [-X 2 1 {IXl __< c.}] -- (E [X1 {[X[ =< c,}]) 2, neN,  such that 

n n 

(2.25) ~ ( X k - E [ X 1  {IXl~c~}3)--ZYk=O(C,) a.s. 
1 1 

When X has a symmetric distribution, (2.25) reduces to (1.11). Thus, Theo- 
rem 2 holds true for any real valued symmetric random variable. 

The following Lemma 4 shows that (1.11) also remains valid for arbitrary 
non-symmetric mean zero random variables under additional assumptions on 
the sequence {c,}. 

(3O 

Lemma 4. Let X:  D+IR be a mean zero r.v. such that ~P(IXI >c.)< oo, 
1 

where {c,} is a sequence of positive real numbers such that c,/]/n is non-decreasing, 
and 

(2.26) c,/n ~ is eventually non-increasing for some 7 < 1 

o r  

(2.27) 

Then we have: 

c, = c (n), n e N, where c: [1, oo) ~ (0, oo) is regularly varying 

at infinity with exponent 7 < 1. 

1 

Proof Lemma 4 follows by an obvious modification of the proof of Proposi- 
oo 

tion 2. Notice that Y',P(IXI >c.)< oo implies: nP(IX[>c,)--*O, since {c,} is non- 
decreasing. [] 1 

3. Proof  of  Theorem 1 

To prove Theorem 1, we proceed similarly as Philipp (1979) and Kuelbs and 
Philipp (1980): We first prove Theorem 1 for finite-dimensional r.v.'s (cf. 3.1). 
Combining this special case of Theorem 1 with an appropriate law of the iterated 
logarithm, we obtain Theorem 1 for r.v.'s taking values in an arbitrary separable 
Banach space (cf. 3.2). 
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Since Y~/at,,L2,,~---,O a.s., we easily see that (1.6) is necessary for (1.5). Thus, 
it suffices to show that under condition (1.6) a construction yielding (1.5) is 
possible. 

3.1. The Finite-Dimensional Case 

W.l.o.g. we assume that X is in the domain of attraction of N(0, I). 
Since we have: 

(3.1) aE,L2,~gl(nL2n ) as n--,oo, 

where the function d is defined as in (2.5), we obtain from (1.6): 

oo 

(3.2) ~ P(I X I> d(n L 2 n)) < oe. 
1 

Applying Theorem 2 with c,,=gt(nL2n), we obtain a p-space (f2o, do,  Po) and 
two sequences of independent random vectors {X.}, {Y.} such that 5('(X.) 
= 5a(X), Y(~ . )=N(0 ,  S.), where 2; .=cov(Xl{ lXl<a(nL2n)} ) ,  n~N, and 

n 

(3.3) ~ Xk-- ~ ~ = 0 (d(n L2 n)) = o(at.r2.~) a.s. 
1 1 

(Notice that relation (2.6) shows that ~(n L 2 n)/]/n L 2 n is non-decreasing.) 
From Proposition 1 we infer: 

(3.4) G(gt(nL2n)) 1Z,--+I as n~oo.  

Therefore, we can w.l.o.g, assume that 2;, is positive definite for all n~N. 
We set: 

(3.5) Y,=a, ,S2 1/2 Y,,, n~N.  

Since { I I , -  Y,} is a sequence of independent d-dimensional r.v.'s such that 

(3.6) ~ o ( y _  L ) = N ( 0  ' (~,,I_S~/2)2), n~N,  

we obtain from (3.4), (2.6) and (3.1), using an appropriate LIL for normally 
distributed random variables: 

n 

(3.7) Y,(Yk-- ~'k)= o((n a 2 L 2 n) 1/2) = o(at, L2,1 ) a.s. 
1 

Combining (3.3) and (3.7) yields the assertion. 

3.2. The General Case 

We need the following law of the iterated logarithm' 
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Theorem 4. Let {X,} be a sequence of i.i.d. B-valued mean zero r.v.'s such that 

(3.8) ~qJ X k converges weakly to #=5~(Y)  

for some sequence a, Too, where Y is a (non-degenerate) Gaussian mean zero 
r.v. Assume" 

(3.9) ~ P(IIXll > at,L2,1) < oo. 
1 

Then we have: 

d ~ " K)--,O (a~z.L2.1 ~ Xk, a.s., 

where K is the unit ball of the Hilbert space H,. 

Recall that for A~_B d(' ,  A) is defined by 

d(x, A):=inf{l[y-xll:  yeA} ,  xeB.  

To prove Theorem 4, we first show by a modification of the proof of Corol- 

lary 7, Kuelbs and Zinn (1983), that, with probability one, X k : n e  
a[2nL2n] 

is relatively compact in B. (cf. (i) and (ii).) Applying our Theorem 1 to appropriate 
1-dimensional r.v.'s, we finally obtain that, with probability one, the limit set 

{ " } of 1 ~ X k :  n e N  is a subset o f K  (cf. (iii)). 
a[2nL2n] 1 

Proof. (i) We first assume that X has a symmetric distribution. Let f e B *  be 
a fixed functional such that E I f ( Y )  2]-- 1. Set G(t ) ,=E[ f (X)  2 l { ] f (X)[<t}] ,  
a(t):=sup{s>O:sZ/G(s)<t}, t>0 .  Using the same argument as in (2.4), we 
obtain: 

(3.10) a,~a(n)  as n~oo .  

We set g(t),=tz/s(t  L 2 t), t> O, where 

t 

S ( t ) : = ~ E [ l f ( X ) [ l { [ f ( X ) l > u } ] d u ,  t>0 .  
0 

Since t/S(t), t> 0 is non-decreasing, we easily see that g(t), t > 0 is an increasing 
function. Moreover, it can be shown by obvious changes in the proof of Corol- 
lary 7, Kuelbs and Zinn (1983), that our function g fulfills (2.61-i, ii, iii) of Kuelbs 
and Zinn (1983). 

Since S( t )~  G(t) as ~ oo (cf. Kuelbs and Zinn (1983), (6.25)), we have: 

(3.11) g(d(t(L2t)2)/L2t)~t as t--*oo. 
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Thus, we obtain for d(t)..=g-~(t), t > 0 '  

(3.12) d(0~a(t(L2 t)~)/L2 t as t--,c~. 

(Notice that S is slowly varying at infinity, since f (X) is in the domain of 
attraction of N(0, 1).) 

Since d(t)/~t, t > 0 is non-decreasing, we infer from (3.12): 

(3.13) lim (d(n)/d(n)) > 1. 

Using (3.8) and (3.13), we obtain that { ~  (d~n) ~ ) N }  X k " ne is tight. There- 

fore, we can choose a compact convex symmetric set D such that the following 
holds true for n e N :  

(3.14) P ~(~ Xkr _--<1/(16e2). 

Since (cr 1 da)(n) ~d(n L 2 n) as n-* o% where cfft) = t / L  2 t ,  t > 0, we obtain from 
(3.9) and (3.10): 

oo 

(3.15) ~P(I[XI[ > (~-1 dc~)(n))< o0. 
1 

Hence: 
(3.16) E[0~ -1 g ~(llX][)3 < oo. 

Applying Theorem 5 of Kuelbs and Zinn (1983) to the seminorms x~q~(x) 
:=inf{t: x/teD~}, 6>0 ,  we obtain similarly as in their Corollary 7 that, with 

probability one, d(n L2 n) Xk: ne is relatively compact in B. 

(ii) We now show that we have for not necessarily symmetric r.v.'s with 
probability one: 

(3.17) ~(nL2n) Xk: neN is relatively compact in B. 

To prove (3.17), it now suffices to show that 

(3.18) 
d(n L2 n) 

e[llXl[l{llXll>p~(nL2n)}3~0 (p>O). 

(We use the same argument as in the proof of Corollary 7, Kuelbs and Zinn 
(1983).) 

From relation (2.22) above we obtain: 

a 1 (p ~i(n L2 n)) 
EEIIXII l{llXJl>pa(nL:n)}3-~O (p>O), 

a(n L 2 n) 
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where a: [0, 00)--.[0, ~ )  is an increasing continuous function with a(n)=a,, 
h e N ,  a(0)=0.  In general, the function ci is not continuous, but we have: 

gt(nL2n)~a(nL2n ) as n--.oo. 

Recalling that a -  ~ is regularly varying at infinity, we conclude: 

nL2 n 
(3.19) a(nL2n~ EI-IlXrl i {llX[I >pgt(nL2n)}]-~O (p>0), 

whence (3.18) holds. 
Noticing (3.10), we obtain from (3.17) that, with probability one, the following 

holds: 

(3.20) Xk: ne is relatively compact in B. 
a[2nLznl 

(iii) To finish the proof, it remains to show that with probability one" 

n 

where C({z,})denotes the cluster set of the sequence {z,} _~B. 
Using analogous arguments as in Kuelbs (1985), (4.6)~4.12), we can see that 

(3.21) holds if we have for all functionals h eB* such that E [-h(Y) 2] > 0: 

( 1  n ) 
(3.22) lim ~ ~ h ( X k )  <=(E[h(y)2]) 1/2 a.s. 

n [2nL2n] 1 

According to Theorem 1 (the finite-dimensional case-3.1), there exists for 
every fixed functional heB* a sequence of independent r.v.'s {y,} such that 
~%a(y,) = N(0, azg[h(y)2]), where ( 7  n 2 _ _  - -  bt, L2,1, b,=aZ/n, neN, and 

n n 

(3.23) ~ h(Xk) -- ~. y~ = o (at, L~,~ ) a.s. 
1 1 

k 

2 k e N ,  we obtain by the same argument as in (3.7): Setting tk "=~  am, 
1 

1 
(3.24) lim (2t,  Lzt , )  1/z ~Yk<(E[h(y)2])I/a a.s. 

n 1 

2 n~oo .  Using this asymptotic Since a 2, h e n  is slowly varying, we have t , ~  n o-, as 
equivalence, we can easily show that 

(3.25) 2t, L2t,~(ate,L2,1) 2 as n~oo .  

(3.22) now follows from (3.23), (3.24) and (3.25). []  

We consider the maps [IN: B~B  obtained from # = S f ( Y )  according to Lem- 
ma 2.1 of Kuelbs (1976). Using Theorem 4, we can show: 
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Corollary 3. Given e > 0 we have for N sufficiently large: 

n 

l imat~,] ,  ~(Xk-- / /uXk)  <e a.s. 

Proof Since x ~ x - / / N ( x ) = :  Qu (x) is continuous, we have by Theorem 4: 

(3.26) d (Qu ( a ~ , l @  Xk), QN(K))-*O a.s. 

By relation (3.7), Kuelbs (1976), there exists NoeN such that 

(3.27) Qu(K)~- {x: [Ix]l_---e} for N> N o. 

Combining (3.26) and (3.27), we obtain Corollary 3. [] 

Let now {Yk} be a sequence of independent r.v.'s such that 2,~(Yk)=Y(o- k Y), 
2 2 is defined as above, i.e. ak = btkc2k ], keN.  keN,  where o- k 

Then we have for any given e > 0: 

" ~ )  ____e (3.28) l i m  a t ~ 2 .  ] 2(Yk--ff/N a.s., 
n 1 

if N is sufficiently large. 
To verify (3.28), we consider a mean zero Brownian motion {W,(t): t>0} 

with the covariance structure of/t  = ~(Y).  From Lemma 4.2, Kuelbs and Philipp 
(1980), we infer for sufficiently large N: 

(3.29) lim (t, L 2 t,)- t/2 II % ( t . ) -  r/u w. (tn)II ----< e a.s., 
n 

where t, is defined as in (3.24). 
Using (3.25), we easily obtain (3.28) from (3.29). 
We now consider the r.v. FluX: f2~B. Since we have dim(//uB) 

=rain(N, dim(Hu))=N(w.l.o.g.), we can identify the spaces (//uB, II'Hu) and 
( ]RN, I" l) by 

(3.30) tl Sat + ... +tuSc~u+-+(tl .... , tN). 

(cf. Lemma 2.1, Kuelbs (1976).) 
We denote by X(m: ~___+~U the r.v. obtained f r o m/ / NX according to (3.30). 

Since / /u  is continuous, we have for all sequences {X~ m} of i.i.d.r.v.'s with 
the same distribution as X(m: 

(3.31) 
(in / 

~-~ ~ Xff ) converges weakly to ~ (Y(m), 
1 / 

where y(m is the NN-valued Gaussian r.v. obtained from / /u Y according to 
(3.30). 
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Since IX(X)[ = lllluXJ[u< C~ rl/INxII ~ c2 [IX/I, where Ci, i=  1, 2 are appro- 
priate positive constants, we obtain from (1.6): 

GO 

(3.32) ~ P([ X(u) I > at,L2,j ) < oo. 
1 

(Notice that [I'll and /]'l]u are equivalent norms on the finite-dimensional space 
HUB.) 

Since X and consequently X (m have mean zero, we can apply Theorem 1 
to the finite-dimensional r.v. X (m. 

Thus we obtain a p-space (Qo, do,  Po) and two sequences of independent 
r.v.'s {~,}, {rl, } such that s = 5~(X(~)), ~'(t/n) = s y(N)), n~IN, and 

(3.33) ~ k - Z  ~ = o(aL.L~.l) a.s. 
1 1 

By means of (3.30) we obtain two sequences {)Tk}, {~} of B-valued r.v.'s such 
that s176 (JT,)= ~(HNX), 2'(~)= 5~(~,HN Y), neN and 

n n 

(3.34) ~)Tk-- ~ ~=o(at,L2<) a.s. 
1 1 

(with convergence w.r.t. II" H). 
(Notice that we have according to Lemma 2.1, Kuelbs (1976): []'j[ < c  I1'11~ 

for some positive constant c.) 
Using Lemma A.1, Berkes and Philipp (1979), we can w.l.o.g, assume that 

-~k = HN Xk, ~ = HN Yk if {Xk}, {Y k} are the sequences considered in Corollary 3 
and (3.28), respectively. Hence we have for sufficiently large N: 

n n 

(3.35) 1-~a~,~2,1 ~Xk--~Yk <2e  a.s. 
n 1 1 

Thus, we have shown that for any e > 0 a construction is possible such that 
(3.35) holds. But this is still too weak to prove Theorem 1 since, as the proof 
shows, the sequences {X,}, {Y,} are depending on U and consequently on e. 
Therefore, it remains to show that there exist "universal" sequences {X,}, { Y,}, 
which fulfill (3.35) for all e>0.  But this can be done by a well known argument 
of Major (1976) (cf. Philipp (1979), p. 187 and Dudley/Philipp (1983), p. 532). 

4. Proof  of  Corollaries 1 and 2 

W.l.o.g. we assume that an/]~ is non-decreasing. Let the p-space (s ~4o, Po) 
of Theorem 1 be given. Set ~.'=o-~ -1 Yk, kEN. In order to prove Corollaries 1 
and 2, it suffices to show: 

m m 

(4.1) max ~Xk--Cr.~ ~ =o(aE.~2.1 ) a.s., 
1 ~ _ m ~ n  1 1 

when (1.6) holds. 
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Then we can immediately infer the functional (compact) LIL for X with 

respect to the norming sequence at2,L~, 1 ~ n 00, from the usual LIL results 

for the Gaussian r.v. Y (with respect to the norming sequence 2]/2nL22 n). 
Suppose now that X satisfies condition (1.6). Since (1.5) implies: 

m m 

( 4 . 2 )   Xk-- 00k ) a . s . ,  

it remains to be shown: 

(4.3) 

It follows from 

(4.4) 

and 

(4.5) 

m 

A,,= max ~= (00,,--ak) ~ =o(aE,L2, ~) a.s. 
l <--m<--n k 1 

A2./a[2.Ln]"'*O a.s. 

max (Am- z~ 2 . . . .  )/at2.L. ~ 0  
2 n < m < 2  n + l  

a . s .  

Using (4.6), (4.7) and the Levi inequality, we get for e > 0: 

2 n 

Po(A2,>=eac2,L,l)<=2Po(,~,1(cr2n--00k)~ _-> e at2-L,l) 

= 2P([[ Y][ >eat2~ -1/2) 
< 2E [exp (fl II Y[[ 2)] exp(-- fle 2 a~2.L,l(b . 2" a2.)- 1) 

< n-2 for sufficiently large n, 

2 n 

since 3, :=~,(002-- o-k)2/2n o-2 z---->O by (4.8). This immediately implies (4.4). 
1 

Since {0 ~ is slowly varying (cf. 2.6), it follows 

n 

(4.8) ~, 2 z 00k ~ F /00n  a s  /~----> 0 0 .  

1 

Since Y is Gaussian, there exists a fl > 0 such that 

(4.6) E [exp(fl I] Nil 2)] < Go. 

(cf., Araujo and Gin6 (1980), Theorem 6.5, Ch. 3.) 
Moreover, we have: 

n n \ 1 / 2  

(4.7) ~(~(a,--ak)~)=~q,q~((~1(a,--00k)2 ) Y). 
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It  is easy to see tha t  

A m ~ A 2- +1 Jr (0"2,~ +1 -- 0-2. ) 1Nm_<2 n+lmax ~ ~ , 2 n < m < 2  "+1. 

Since a2n~O'2n+l as n--+c~, we can show by similar a rgumen t s  as in the p r o o f  
of  (4.4) tha t  

(az.+,-az.) m a x  ~ ~ =o(aEz~L,~) a.s. 
l <m<=2n+ l 1 

This proves  (4.5) and  consequent ly  (4.3). 

5. An Example 

Main  pu rpose  of this section is to show tha t  our  c o m p a c t  (functional) law of 
the i terated loga r i thm is m o r e  general  than  the c o m p a c t  (functional) L I L  p roved  
by Kue lbs  (1985). 

In  Sect. 1 it was  shown tha t  the m o m e n t  a s sumpt ion  (2.5) of  Kue lbs  (1985) 
implies our  condi t ion  (1.6). We give now an example  of  a r.v. X :  f2~N.  such 
tha t  our  condi t ion  (1.6) holds and,  at  the same time, the L I L  of Kuelbs  (1985) 
is no m o r e  applicable.  

We  first give an  equivalent  r e fo rmula t ion  of (1.6). 
Let  X :  O ~ I R  be a mean  zero r.v. in the d o m a i n  of a t t rac t ion  of N(0,  1). 

Put  G (t)-'= E [ - X  2 1 {] X [ < t}], G (t).'= G (t) v 1, t > 0. Then  we have:  

(5.1) Condi t ion  (1.6) holds iffE[X2/G(IXI)L2 IX[]  < oo. 

t 

Proof of (5.1). We  put  S(t):=SE[IX[ l{[X]>u}3du, t > 0 .  Then,  it is easy to 
o 

see tha t  g(t):=t2/S(t), t > 0  is an  increasing con t inuous  function. Sett ing d(t) 
. .=g-1 (t), t > 0, we ob ta in  f rom Propos i t ion  1, Kue lbs  (1985): 

(5.2) 2" Xk/d(n ) converges  weakly  to N(0,  1), 

whenever  {X,} is a sequence of i.i .d.r.v. 's with the same dis tr ibut in as X. 
Therefore,  our  condi t ion  (1.6) is equivalent  to 

:x) 

(5.3) Y~ P(I X l > d(n c2 n)) < 0o. 
1 

Since d(n L 2 n ) ~ g -  1 ~ -  l(n), where  c~ ( t )=  t/L 2 t, t > 0, we see tha t  (5.3) holds iff 

(5.4) E [ ~ g ( I X l ) ]  < oo. 

Since G is slowly vary ing  at infinity, G(t)~S(t) as t - . o %  we easily obta in  tha t  
(5.4) is equivalent  to E[XZ/CJ(IXI)L2 Ixl] < oo. [ ]  
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Moreover, it can be shown that X satisfies the moment assumption (2.5) 
of Kuelbs (1985) iff E [X2/G (1X IlL 2 I X 1) L 2 ]X 1] < oO (cf. Kuelbs (1985), (4.4)). 

Thus, it suffices to find a r.v. X: ~-~IR in the domain of attraction of N(0, 1) 
such that 

(5.5) E[X2/G(IXI)L2IXI]< oo and E[X2/G(IXI/LaIXI)L21XI]=oo. 

We show: 

Example. There exists a symmetric r.v. X: fl-~lR in the domain of attraction 
of N(O, 1) such that 

E[X2/G(IXI)L2 IX]3<oo and E[X2/G~(IXI)L2 I X [ ] = ~  

for all ~>0,  where G~(t) :=G(t / (L 2 t)~), t~0 .  

Proof. We set m,'.=exp(n(Ln)(L 2 n)2), A,.'={exp(m, + k): 1 < k <  [g  2 hi}, nffN. 
We define X in a way such that 

(5.6) P ([X[~nU=IA,,)= I. 

Because of (5.6) the distribution of X is determined by the following relations: 

(5.7) G(exp(ml + 1))= c 

(5.8) G(exp(m~+k))/G(exp(m,+k-1))=exp(1/l/L2n), l _< k_< [-L2 n], n>2 .  

(From (5.6), (5.7) and (5.8) we obtain that we must have: 

P(X=exp(m~+k))=P(X=-exp(m.+k))=lq. ,k,  l<k<[L2n], n~N, 

where q~,l =c  e x p ( - 2 m  1-2)  and 

G(exp(m.+k-1))(exp(1/~n)-l)=q. ,kexp(2mn+2k),  l<-k<[L2n], n>=2. 

It now easily follows that 
[L2n ] 

qn,k =cK < o% 
n = l  k = l  

where K is a positive constant. Setting c=  I/K, we obtain the distribution of 
X.) 

Since we have by (5.8): G(e t)/G(t)< exp ( 1 / ~ 2  n) for t > exp(m,), we immedi- 
ately see that G is slowly varying at infinity. This shows that X is in the domain 
of attraction of N(0, 1). 

To prove that E [X2/Cj ([ X 1) L2 [X [] < o% it suffices to show: 

(5.9) ~ G(exp(n))-G(exp(n-1)) 1 <oo. 
,>_-m2 G(exp(n-- 1)) Ln 
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From (5.6) and (5.8) we obtain: 

~, G(exp(n))G(exp(n- G(exp(n_ 1)) Ln- 1)) =< ~ [L2 n] (exp(1/L]/~2 n)-- 1) 
n>=m2 n =  1 

< e(nLn(L2 n)3/2) - 1 < 00. 

Since L2 exp(m.) > n, n >  1, we have for n>n 0 =no(e) (say): 

G~ (t) < G (exp (m.)) if t < exp (m. + 1)- 

Therefore, we have: 

nLn(L2 rt) 2 

[ X2 ]>=~=G(exp(m.+l))-G(exp(m.)) 
E G~(IX[)Lz]X[ o G(exp(m.)) 

(nLn)-l(L2n) 2 

0o 

_->~ exp( L]/~n2 n -  1)(nLn)- I(L 2 n) -2 = 00. []  
nO 

Let now {X,} be a sequence of i.i.d.r.v.'s with the same distribution as 
the r.v. X considered in the above example. Since X is in the domain of attraction 
of N(0, 1), there exists a sequence a,]'oo such that 

(5.10) 2.~ Xffa. converges weakly to N(0, 1). 

Applying our Theorem 1, we obtain: 

n 

(5.11) lim ZXffar, L2,~=~2 a.s. 
n 1 

Since E[Xa/G(IX[/L2 IX[)Lz I x l ]  = ~ ,  we h a v e  

n 

(5.12) lim ~XffT.=oo a.s., 
n I 

if {Tn} is the sequence considered in Theorem 1, Kuelbs (1985). This shows that 
our compact (functional) law of the iterated logarithm is also applicable in 
situations when the law of the iterated logarithm of Kuelbs (1985) does not 
hold. 

Moreover, we have if {X,} is as above: 

n 

(5.13) lim~Xffa,~/L22a,=oo a.s. 
n 1 

(Notice that E [-X2/G([ X I/] /L~ X [) Lz I X [] = oo.) 
This shows that Theorem 1, Feller (1968), cannot hold true as stated there. 

It can only be valid if E [X2/G(I X [ / ] ~  X I)L2 IX l] < oo. 
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